Assessment of Machine Learning Techniques for Simulating Reacting Flow: From Plasma-Assisted Ignition to Turbulent Flame Propagation
Abstract
:1. Introduction
2. Challenges in Turbulent Combustion
3. Conventional Turbulent Combustion Modeling
4. Scopes of ML in Turbulent Combustion Models
5. Machine Learning Integration in Turbulent Combustion
- Predict turbulent flame behaviors: ML algorithms can be trained on large sets of experimental or simulation data for predicting the behavior of turbulent flames under different conditions. This can give a better understanding of flames’ reactions to pressure, temperature, and fuel composition changes [60].
6. Machine Learning Applications in Turbulent Combustion Modeling
6.1. ML Application Using Image Processing
6.2. ML Application in Chemical Composition
6.3. ML Application in Flamelet-Based Models
7. New Insights into ML for the Prediction of Plasma-Assisted Ignition Kernel Growth
7.1. Decision Tree Model (DT)
7.2. Random Forest Model (RF)
7.3. Comparative Analysis of DT and RF Models
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence | ANN | Artificial Neural Network |
CFD | Computational Fluid Dynamics | CH | Hydrocarbon |
CMC | Conditional Moment Closure | CNN | Convolutional Neural Network |
CPU | Central Processing Unit | DI | Direct Integration |
DNN | Deep Neural Network | DNS | Direct Numerical Simulation |
DRG | Directed Relation Graph | DT | Decision Tree |
ECN | Engine Combustion Network | FGM | Flamelet-Generated Manifold |
FPV | Flamelet Progress Variable | GPU | Graphics Processing Unit |
HCCI | Homogeneous Charge Compression Ignition | ILDM | Intrinsic Low-Dimensional Manifolds |
ISAT | In-Situ Adaptive Tabulation | KNN | K-Nearest Neighbors |
LEM | Linear-Eddy Model | LES | Large-Eddy Simulation |
LHS | Latin Hypercube Sampling | LSTM | Long Short-Term Memory |
LUT | Look-Up Table | MAE | Mean Absolute Error |
MDP | Markov Decision Process | ML | Machine Learning |
MLP | Multilayer Perceptron | MMC | Multiple Mapping Conditioning |
MoE | Mixture of Experts | NOx | Nitrogen Oxide |
ODE | Ordinary Differential Equation | ODT | One-Dimensional Turbulence |
OH | Hydroxyl Radical | PCA | Principal Component Analysis |
Probability Density Function | PFR | Plug-Flow Reactor | |
PIV | Particle Image Velocimetry | PLIF | Planar Laser-Induced Fluorescence |
PaSR | Partially Stirred Reactor | QSSA | Quasi-Steady State Approximation |
RAM | Random Access Memory | RANS | Reynolds-Averaged Navier–Stokes |
RCCE | Rate-Controlled Constrained Equilibrium | RF | Random Forest |
RL | Reinforcement Learning | RMSE | Root Mean Squared Error |
RNN | Recurrent Neural Network | SOM | Self-Organizing Map |
SOx | Sulfur Oxide | SVM | Support Vector Machines |
UFE | Unsteady Flame Embedding | UFPV | Unsteady Flamelet Progress Variable |
UHC | Unburnt Hydrocarbon | VULCAN | Upwind Algorithm for Complex Flow Analysis |
References
- Kondratiev, V.N. Combustion. Encyclopedia Britannica. Available online: https://www.britannica.com/science/combustion (accessed on 24 September 2024).
- Tyurenkova, V.; Smirnova, M. Material combustion in oxidant flows: Self-similar solutions. Acta Astronaut. 2016, 120, 129–137. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent combustion modeling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Betelin, V.; Nikitin, V.; Mikhalchenko, E. 3D numerical modeling of a cylindrical RDE with an inner body extending out of the nozzle. Acta Astronaut. 2020, 176, 628–646. [Google Scholar] [CrossRef]
- Poludnenko, A.Y.; Gardiner, T.A.; Oran, E.S. Spontaneous Transition of Turbulent Flames to Detonations in Unconfined Media. Phys. Rev. Lett. 2011, 107, 054501. [Google Scholar] [CrossRef] [PubMed]
- Tropina, A.A.; Mahamud, R. Effect of Plasma on the Deflagration to Detonation Transition. Combust. Sci. Technol. 2022, 194, 2752–2770. [Google Scholar] [CrossRef]
- Tropina, A.; Mahamud, R.; Yorn, D.W.; Miles, R.B. Deflagration to detonation transition assisted by equilibrium and non-equilibrium plasma. In AIAA Aviation 2019 Forum; AIAA AVIATION Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- Cherif, M.A.; Masuda, R.; Claverie, A.; Starikovskaia, S.M.; Vidal, P. Plasma-enhanced detonability: Experimental and calculated reduction of the detonation cell size. Combust. Flame 2024, 268, 113639. [Google Scholar] [CrossRef]
- Nikitin, V.; Mikhalchenko, E. Safety of a rotating detonation engine fed by acetylene–oxygen mixture launching stage. Acta Astronaut. 2022, 194, 496–503. [Google Scholar] [CrossRef]
- Williams, F. Combustion Theory; Addison-Wesley: Boston, MA, USA, 1985. [Google Scholar]
- Tyurenkova, V.V.; Stamov, L.I. Flame propagation in weightlessness above the burning surface of material. Acta Astronaut. 2019, 159, 342–348. [Google Scholar] [CrossRef]
- Kushnirenko, A.; Stamov, L.; Tyurenkova, V.; Smirnova, M.; Mikhalchenko, E. Three-dimensional numerical modeling of a rocket engine with solid fuel. Acta Astronaut. 2021, 181, 544–551. [Google Scholar] [CrossRef]
- Lackner, M.; Palotás, Á.; Winter, F. Combustion: From Basics to Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Kennedy, L.A. Turbulent Combustion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1978. [Google Scholar]
- Barwey, S.; Hassanaly, M.; Raman, V.; Steinberg, A. Using Machine Learning to Construct Velocity Fields from OH-PLIF Images. Combust. Sci. Technol. 2022, 194, 93–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Jiang, H. Review of Challenges and Opportunities in Turbulence Modeling: A Comparative Analysis of Data-Driven Machine Learning Approaches. J. Mar. Sci. Eng. 2023, 11, 1440. [Google Scholar] [CrossRef]
- Pitsch, H. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 2006, 38, 453–482. [Google Scholar] [CrossRef]
- Vervisch, L.; Hauguel, R.; Domingo, P.; Rullaud, M. Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J. Turbul. 2004, 5, 004. [Google Scholar] [CrossRef]
- Gicquel, L.Y.; Staffelbach, G.; Poinsot, T. Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 2012, 38, 782–817. [Google Scholar] [CrossRef]
- Nikitin, V.; Karandashev, I.; Malsagov, M.Y.; Mikhalchenko, E. Approach to combustion calculation using neural network. Acta Astronaut. 2022, 194, 376–382. [Google Scholar] [CrossRef]
- Mal’sagov, M.Y.; Mikhal’chenko, E.V.; Karandashev, I.; Nikitin, V.F. Simulation of hydrogen combustion at different pressures using a neural network. Combust. Explos. Shock Waves 2023, 59, 145–150. [Google Scholar] [CrossRef]
- An, J.; Wang, H.; Liu, B.; Luo, K.H.; Qin, F.; He, G.Q. A deep learning framework for hydrogen-fueled turbulent combustion simulation. Int. J. Hydrogen Energy 2020, 45, 17992–18000. [Google Scholar] [CrossRef]
- Bhuiyan, S.M.Y.; Mostafa, T.; Schoen, M.P.; Mahamud, R. Assessment of Machine Learning Approachs for the Predictive Modeling of Plasma-Assisted Ignition Karnal Growth. In Proceedings of the ASME, International Mechanical Engineering Congress and Exposition, Portland, OR, USA, 17–21 November 2024. [Google Scholar]
- Peters, N. Turbulent combustion. Meas. Sci. Technol. 2001, 12, 2022. [Google Scholar] [CrossRef]
- Ren, J.; Wang, H.; Chen, G.; Luo, K.; Fan, J. Predictive models for flame evolution using machine learning: A priori assessment in turbulent flames without and with mean shear. Phys. Fluids 2021, 33, 055113. [Google Scholar] [CrossRef]
- Yao, S.; Wang, B.; Kronenburg, A.; Stein, O. Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods. Phys. Fluids 2020, 32, 115124. [Google Scholar] [CrossRef]
- Seltz, A.; Domingo, P.; Vervisch, L.; Nikolaou, Z.M. Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combust. Flame 2019, 210, 71–82. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. Modeling of combustion and turbulent jet diffusion flames in fractal dimensions. Contin. Mech. Thermodyn. 2022, 34, 1219–1235. [Google Scholar] [CrossRef]
- Blurock, E.; Battin-Leclerc, F. Modeling combustion with detailed kinetic mechanisms. In Cleaner Combustion: Developing Detailed Chemical Kinetic Models; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–57. [Google Scholar]
- Eigentler, F.; Gerlinger, P. A detailed PAH and soot model for complex fuels in CFD applications. Flow Turbul. Combust. 2022, 109, 225–251. [Google Scholar] [CrossRef]
- Law, C.K. Combustion in two-phase flows. In Combustion Physics; Cambridge University Press: Cambridge, UK, 2006; pp. 559–633. [Google Scholar]
- Warnatz, J.; Maas, U.; Dibble, R.W. Combustion of liquid and solid fuels. In Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 239–258. [Google Scholar]
- Sakurai, A.; Maruyama, S.; Matsubara, K.; Miura, T.; Behnia, M. An efficient method for radiative heat transfer applied to a turbulent channel flow. J. Heat Transf. 2010, 132, 1–7. [Google Scholar] [CrossRef]
- Paul, S.C.; Paul, M.C. Radiative heat transfer during turbulent combustion process. Int. Commun. Heat Mass Transf. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Viskanta, R. Radiative transfer in turbulent flames. In Thermopedia; Begel House Inc.: Danbury, CT, USA, 2011. [Google Scholar]
- De, S.; Agarwal, A.K.; Chaudhuri, S.; Sen, S. Modeling and Simulation of Turbulent Combustion; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ge, H.-W.; Zhu, M.-M.; Chen, Y.-L.; Gutheil, E. Hybrid unsteady RANS and PDF method for turbulent non-reactive and reactive flows. Flow Turbul. Combust. 2007, 78, 91–109. [Google Scholar] [CrossRef]
- Da Ronch, A.; Panzeri, M.; Drofelnik, J.; d’Ippolito, R. Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties. CEAS Aeronaut. J. 2020, 11, 33–47. [Google Scholar] [CrossRef]
- Echekki, T.; Mastorakos, E. Turbulent Combustion Modeling: Advances, New Trends and Perspectives; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bilger, R. Turbulent jet diffusion flames. In Energy and Combustion Science; Elsevier: Amsterdam, The Netherlands, 1979; pp. 109–131. [Google Scholar]
- Saha, A. Spatio-Temporal Analysis of Highly Dynamic Flows. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2023. [Google Scholar]
- Libby, P.; Williams, F. Fundamental aspects. In Turbulent Reacting Flows; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–43. [Google Scholar]
- Salunkhe, A.; Deighan, D.; DesJardin, P.E.; Chandola, V. Physics informed machine learning for chemistry tabulation. J. Comput. Sci. 2023, 69, 102001. [Google Scholar] [CrossRef]
- Shrivastava, S.; Gohel, S.; Srinivasa, M.; Patil, H.; Nakod, P. Accuracy Improvement of Flamelet Generated Manifold (FGM) Model in Modeling Partially Premixed Combustion Systems by Combining Machine Learning. In Proceedings of the ASME 2023 Gas Turbine India Conference, Bangalore, India, 7–8 December 2023. [Google Scholar]
- Bilger, R. Conditional moment closure for turbulent reacting flow. Phys. Fluids A Fluid Dyn. 1993, 5, 436–444. [Google Scholar] [CrossRef]
- de Frahan, M.T.H.; Yellapantula, S.; King, R.; Day, M.S.; Grout, R.W. Deep learning for presumed probability density function models. Combust. Flame 2019, 208, 436–450. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Klimenko, A.Y.; Pope, S.B. The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 2003, 15, 1907–1925. [Google Scholar] [CrossRef]
- Cleary, M.; Klimenko, A.Y. Multiple mapping conditioning: A new modelling framework for turbulent combustion. In Turbulent Combustion Modeling: Advances, New Trends and Perspectives; Springer: Berlin/Heidelberg, Germany, 2011; pp. 143–173. [Google Scholar]
- Kerstein, A.R. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 1991, 231, 361–394. [Google Scholar] [CrossRef]
- Sen, B.A.; Menon, S. Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame 2010, 157, 62–74. [Google Scholar] [CrossRef]
- Ranjan, R.; Panchal, A.; Karpe, S.; Menon, S. Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation. In Machine Learning and Its Application to Reacting Flows: ML and Combustion; Springer International Publishing: Cham, Switzerland, 2023; pp. 175–208. [Google Scholar]
- Kerstein, A.R. One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 1999, 392, 277–334. [Google Scholar] [CrossRef]
- Sutherland, J.C.; Punati, N.; Kerstein, A.R. A Unified Approach to the Various Formulations of the One-Dimensional Turbulence Model; University of Utah, Institute for Clean and Secure Energy: Salt Lake City, UT, USA, 2010. [Google Scholar]
- Schmidt, R.C.; Kerstein, A.R.; McDermott, R. ODTLES: A multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling. Comput. Methods Appl. Mech. Eng. 2010, 199, 865–880. [Google Scholar] [CrossRef]
- El-Asrag, H.A.; Ghoniem, A.F. Unsteady Flame Embedding. In Turbulent Combustion Modeling: Advances, New Trends and Perspectives; Springer: Berlin/Heidelberg, Germany, 2011; pp. 277–300. [Google Scholar]
- El-Asrag, H.; Nave, J.-C.; Ghoniem, A. Unsteady flame embedding (UFE) subgrid model for turbulent premixed combustion simulations. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 201. [Google Scholar]
- Vasilev, I.; Slater, D.; Spacagna, G.; Roelants, P.; Zocca, V. Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with Pytorch, Keras, and TensorFlow; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Kalogirou, S.A. Artificial intelligence for the modeling and control of combustion processes: A review. Prog. Energy Combust. Sci. 2003, 29, 515–566. [Google Scholar] [CrossRef]
- Pulga, L.; Bianchi, G.; Falfari, S.; Forte, C. A machine learning methodology for improving the accuracy of laminar flame simulations with reduced chemical kinetics mechanisms. Combust. Flame 2020, 216, 72–81. [Google Scholar] [CrossRef]
- Shabanian, S.R.; Edrisi, S.; Khoram, F.V. Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels. Korean J. Chem. Eng. 2017, 34, 2188–2197. [Google Scholar] [CrossRef]
- Janakiraman, V.M. Machine Learning for Identification and Optimal Control of Advanced Automotive Engines. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2013. [Google Scholar]
- Petzold, L.; Zhu, W. Model reduction for chemical kinetics: An optimization approach. AIChE J. 1999, 45, 869–886. [Google Scholar] [CrossRef]
- Zhou, L.; Song, Y.; Ji, W.; Wei, H. Machine learning for combustion. Energy AI 2022, 7, 100128. [Google Scholar] [CrossRef]
- Aliramezani, M.; Koch, C.R.; Shahbakhti, M. Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Prog. Energy Combust. Sci. 2022, 88, 100967. [Google Scholar] [CrossRef]
- Takbiri-Borujeni, A.; Ayoobi, M. Application of physics-based machine learning in combustion modeling. In Proceedings of the 11th US National Combustion Meeting, Pasadena, CA, USA, 24–27 March 2019. [Google Scholar]
- Alipour, E.; Akhtardanesh, M.; Malaek, S. Application of Machine Learning to Bring Efficiency to Costly Experiments; Case of Flame-Extinction. Fuel Combust. 2024, 17, 20–36. [Google Scholar]
- Malpica Galassi, R.; Ciottoli, P.P.; Valorani, M.; Im, H.G. Local combustion regime identification using machine learning. Combust. Theory Model. 2022, 26, 135–151. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Nasteski, V. An overview of the supervised machine learning methods. Horizons B 2017, 4, 56. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- Srinivas, S.; Babu, R.V. Deep learning in neural networks: An overview. Comput. Sci. 2015, 61, 85–117. [Google Scholar]
- Lapeyre, C.J.; Misdariis, A.; Cazard, N.; Veynante, D.; Poinsot, T. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combust. Flame 2019, 203, 255–264. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Cai, W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning. J. Fluid Mech. 2019, 875, R2. [Google Scholar] [CrossRef]
- Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.-L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access 2019, 7, 65579–65615. [Google Scholar] [CrossRef]
- Dike, H.U.; Zhou, Y.; Deveerasetty, K.K.; Wu, Q. Unsupervised learning based on artificial neural network: A review. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 322–327. [Google Scholar]
- Kaiser, E.; Noack, B.R.; Cordier, L.; Spohn, A.; Segond, M.; Abel, M.; Daviller, G.; Östh, J.; Krajnović, S.; Niven, R.K. Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 2014, 754, 365–414. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Moisy, F.; Jiménez, J. Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 2004, 513, 111–133. [Google Scholar] [CrossRef]
- He, G.; Jin, G.; Yang, Y. Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 2017, 49, 51–70. [Google Scholar] [CrossRef]
- Wiering, M.A.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729. [Google Scholar]
- Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [Google Scholar]
- Si, J.; Wang, G.; Li, P.; Mi, J. Optimization of the global reaction mechanism for MILD combustion of methane using artificial neural network. Energy Fuels 2020, 34, 3805–3815. [Google Scholar] [CrossRef]
- Ghraieb, H.; Viquerat, J.; Larcher, A.; Meliga, P.; Hachem, E. Single-step deep reinforcement learning for open-loop control of laminar and turbulent flows. Phys. Rev. Fluids 2021, 6, 053902. [Google Scholar] [CrossRef]
- Swazinna, P.; Udluft, S.; Hein, D.; Runkler, T. Comparing model-free and model-based algorithms for offline reinforcement learning. IFAC-PapersOnLine 2022, 55, 19–26. [Google Scholar] [CrossRef]
- Garg, P.; Silvas, E.; Willems, F. Potential of machine learning methods for robust performance and efficient engine control development. IFAC-PapersOnLine 2021, 54, 189–195. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, Y.; Pang, B.; Zhang, W. ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler. Eng. Appl. Artif. Intell. 2018, 74, 303–311. [Google Scholar] [CrossRef]
- Lamont, W.G.; Roa, M.; Lucht, R.P. Application of artificial neural networks for the prediction of pollutant emissions and outlet temperature in a fuel-staged gas turbine combustion rig. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Ding, T.; Readshaw, T.; Rigopoulos, S.; Jones, W.P. Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons. Combust. Flame 2021, 231, 111493. [Google Scholar] [CrossRef]
- Ge, Y.; Cleary, M.J.; Klimenko, A.Y. A comparative study of Sandia flame series (D–F) using sparse-Lagrangian MMC modelling. Proc. Combust. Inst. 2013, 34, 1325–1332. [Google Scholar] [CrossRef]
- Garmory, A.; Mastorakos, E. Capturing localised extinction in Sandia Flame F with LES–CMC. Proc. Combust. Inst. 2011, 33, 1673–1680. [Google Scholar] [CrossRef]
- Jones, W.P.; Prasad, V.N. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method. Combust. Flame 2010, 157, 1621–1636. [Google Scholar] [CrossRef]
- Chu, H.; Xiang, L.; Nie, X.; Ya, Y.; Gu, M.; E, J. Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel 2020, 269, 117451. [Google Scholar] [CrossRef]
- Freund, J.; Sirignano, J.; MacArt, J. Machine-Learning Turbulence Models for Simulations of Turbulent Combustion; Blue Waters Annual Report; NCSA—National Center for Supercomputing Applications: Chicago, IL, USA, 2019; pp. 148–149. [Google Scholar]
- Meyer, R.; Schmuck, K.S.; Hauser, A.W. Machine learning in computational chemistry: An evaluation of method performance for nudged elastic band calculations. J. Chem. Theory Comput. 2019, 15, 6513–6523. [Google Scholar] [CrossRef]
- Roncancio, R.; El Gamal, A.; Gore, J.P. Turbulent flame image classification using Convolutional Neural Networks. Energy AI 2022, 10, 100193. [Google Scholar] [CrossRef]
- Seltz, A. Application of Deep Learning to Turbulent Combustion Modeling of Real Jet Fuel for the Numerical Prediction of Particulate Emissions. Ph.D. Thesis, Normandie Université, Normandy, France, 2020. [Google Scholar]
- Gitushi, K.M.; Ranade, R.; Echekki, T. Investigation of deep learning methods for efficient high-fidelity simulations in turbulent combustion. Combust. Flame 2022, 236, 111814. [Google Scholar] [CrossRef]
- An, J.; He, G.; Luo, K.; Qin, F.; Liu, B. Artificial neural network based chemical mechanisms for computationally efficient modeling of hydrogen/carbon monoxide/kerosene combustion. Int. J. Hydrogen Energy 2020, 45, 29594–29605. [Google Scholar] [CrossRef]
- Font, B.; Weymouth, G.D.; Nguyen, V.-T.; Tutty, O.R. Deep learning of the spanwise-averaged Navier–Stokes equations. J. Comput. Phys. 2021, 434, 110199. [Google Scholar] [CrossRef]
- Roncancio, R.; Kim, J.; El Gamal, A.; Gore, J.P. Data-driven Analysis of Turbulent Flame Images. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 and 19–21 January 2021. [Google Scholar]
- Lee, M.; Yoon, S.; Kim, J.; Wang, Y.; Lee, K.; Park, F.C.; Sohn, C.H. Classification of impinging jet flames using convolutional neural network with transfer learning. J. Mech. Sci. Technol. 2022, 36, 1547–1556. [Google Scholar] [CrossRef]
- Shamsudheen, F.A.; Yalamanchi, K.; Yoo, K.H.; Voice, A.; Boehman, A.; Sarathy, M. Machine Learning Techniques for Classification of Combustion Events under Homogeneous Charge Compression Ignition (HCCI) Conditions. SAE Int. 2020. [Google Scholar] [CrossRef]
- Gobyzov, O.A.; Tokarev, M.P.; Abdurakipov, S.S.; Lobasov, A.S. Flame state diagnostics using visualization and neural network analysis. AIP Conf. Proc. 2018, 2027, 040067. [Google Scholar]
- Nguyen, H.-T.; Domingo, P.; Vervisch, L.; Nguyen, P.-D. Machine learning for integrating combustion chemistry in numerical simulations. Energy AI 2021, 5, 100082. [Google Scholar] [CrossRef]
- Wan, K.; Barnaud, C.; Vervisch, L.; Domingo, P. Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects. Combust. Flame 2020, 220, 119–129. [Google Scholar] [CrossRef]
- Chen, J.Y.; Kollmann, W.; Dibble, R.W. Pdf Modeling of Turbulent Nonpremixed Methane Jet Flames. Combust. Sci. Technol. 1989, 64, 315–346. [Google Scholar] [CrossRef]
- Maas, U.; Pope, S.B. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Symp. (Int.) Combust. 1992, 24, 103–112. [Google Scholar] [CrossRef]
- Pope, S.B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1997, 1, 41–63. [Google Scholar] [CrossRef]
- Christo, F.; Masri, A.; Nebot, E.; Turányi, T. Utilising artificial neural network and repro-modelling in turbulent combustion. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 911–916. [Google Scholar]
- Christo, F.C.; Masri, A.R.; Nebot, E.M. Artificial neural network implementation of chemistry with pdf simulation of H2/CO2 flames. Combust. Flame 1996, 106, 406–427. [Google Scholar] [CrossRef]
- Christo, F.C.; Masri, A.R.; Nebot, E.M.; Pope, S.B. An integrated PDF/neural network approach for simulating turbulent reacting systems. Symp. (Int.) Combust. 1996, 26, 43–48. [Google Scholar] [CrossRef]
- Chen, J.Y.; Blasco, J.A.; Fueyo, N.; Dopazo, C. An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks. Proc. Combust. Inst. 2000, 28, 115–121. [Google Scholar] [CrossRef]
- Blasco, J.; Fueyo, N.; Dopazo, C.; Chen, J.-Y. A self-organizing-map approach to chemistry representation in combustion applications. Combust. Theory Model. 2000, 4, 61–76. [Google Scholar] [CrossRef]
- Chatzopoulos, A.K.; Rigopoulos, S. A chemistry tabulation approach via Rate-Controlled Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames. Proc. Combust. Inst. 2013, 34, 1465–1473. [Google Scholar] [CrossRef]
- Franke, L.L.C.; Chatzopoulos, A.K.; Rigopoulos, S. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L. Combust. Flame 2017, 185, 245–260. [Google Scholar] [CrossRef]
- Demir, S.; Kundu, P.; Owoyele, O. Implementation of high dimensional flamelet manifolds for supersonic combustion using deep neural networks. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3059. [Google Scholar]
- Terrapon, V.; Ham, F.; Pecnik, R.; Pitsch, H. A flamelet-based model for supersonic combustion. Annu. Res. Briefs 2009, 47–58. [Google Scholar]
- Berglund, M.; Fureby, C. LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst. 2007, 31, 2497–2504. [Google Scholar] [CrossRef]
- Oevermann, M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 2000, 4, 463–480. [Google Scholar] [CrossRef]
- Saghafian, A.; Terrapon, V.E.; Pitsch, H. An efficient flamelet-based combustion model for compressible flows. Combust. Flame 2015, 162, 652–667. [Google Scholar] [CrossRef]
- Saghafian, A.; Shunn, L.; Philips, D.A.; Ham, F. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 2015, 35, 2163–2172. [Google Scholar] [CrossRef]
- Quinlan, J.; Drozda, T.G.; McDaniel, J.C.; Lacaze, G.; Oefelein, J.C. A priori analysis of a compressible flamelet model using RANS data for a dual-mode scramjet combustor. In Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June 2015; p. 3208. [Google Scholar]
- Quinlan, J. Flamelet/Progress Variable Modeling for a Dual-Mode Scramjet Combustor. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2015. [Google Scholar]
- Drozda, T.G.; Quinlan, J.R.; Drummond, J.P. Flamelet modeling for supersonic combustion. Model. Simul. Turbul. Mix. React. Power Energy Flight 2020, 127–168. [Google Scholar]
- Ladeinde, F.; Lou, Z. Improved flamelet modeling of supersonic combustion. J. Propuls. Power 2018, 34, 750–761. [Google Scholar] [CrossRef]
- Ladeinde, F.; Lou, Z.; Li, W. The effects of pressure treatment on the flamelet modeling of supersonic combustion. Combust. Flame 2019, 204, 414–429. [Google Scholar] [CrossRef]
- Aspden, A.J.; Day, M.S.; Bell, J.B. Turbulence–flame interactions in lean premixed hydrogen: Transition to the distributed burning regime. J. Fluid Mech. 2011, 680, 287–320. [Google Scholar] [CrossRef]
- Gruber, A.; Chen, J.H.; Valiev, D.; Law, C.K. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 2012, 709, 516–542. [Google Scholar] [CrossRef]
- Wang, H.; Hawkes, E.R.; Chen, J.H. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 2016, 28, 095107. [Google Scholar] [CrossRef]
- Wang, H.; Hawkes, E.R.; Chen, J.H. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 2017, 180, 110–123. [Google Scholar] [CrossRef]
- Wang, H.; Hawkes, E.R.; Zhou, B.; Chen, J.H.; Li, Z.; Aldén, M. A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proc. Combust. Inst. 2017, 36, 2045–2053. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
- Owoyele, O.; Nunno, A.C.; Pal, P.; Kundu, P. Unsteady Flamelet/Progress Variable Modeling of Spray Flames with Mixture of Experts-Based Representation of Combustion Manifold. In Proceedings of the LES for Energy Conversion in Electric and Combustion Engines Conference, Virtual, 16–18 June 2021. [Google Scholar]
- Owoyele, O.; Nunno, A.C.; Pal, P.; Kundu, P. Flamelet modeling of spray flames with mixture of experts-based learning of combustion manifolds. In Proceedings of the 2nd International Conference on Energy and AI, London, UK, 9–13 August 2021. [Google Scholar]
- Kempf, A.; Flemming, F.; Janicka, J. Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 2005, 30, 557–565. [Google Scholar] [CrossRef]
- Ihme, M.; Schmitt, C.; Pitsch, H. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proc. Combust. Inst. 2009, 32, 1527–1535. [Google Scholar] [CrossRef]
- Hansinger, M.; Ge, Y.; Pfitzner, M. Deep Residual Networks for Flamelet/progress Variable Tabulation with Application to a Piloted Flame with Inhomogeneous Inlet. Combust. Sci. Technol. 2022, 194, 1587–1613. [Google Scholar] [CrossRef]
- Prieler, R.; Moser, M.; Eckart, S.; Krause, H.; Hochenauer, C. Machine learning techniques to predict the flame state, temperature and species concentrations in counter-flow diffusion flames operated with CH4/CO/H2-air mixtures. Fuel 2022, 326, 124915. [Google Scholar] [CrossRef]
- Molana, M.; Darougheh, S.; Biglar, A.; Chamkha, A.J.; Zoldak, P. Machine Learning Approaches for Predicting Ignition Delay in Combustion Processes: A Comprehensive Review. Ind. Eng. Chem. Res. 2024, 63, 2509–2518. [Google Scholar] [CrossRef]
- Mahamud, R.; Tropina, A.A.; Shneider, M.N.; Miles, R.B. Dual-pulse laser ignition model. Phys. Fluids 2018, 30, 106104. [Google Scholar] [CrossRef]
- Mahamud, R. Mechanism of nonequilibrium plasma-enhanced ignition in the event of dual-pulse laser energy deposition. J. Phys. D Appl. Phys. 2022, 55, 435201. [Google Scholar] [CrossRef]
- Smirnov, N.N.; Betelin, V.B.; Nikitin, V.F.; Stamov, L.I.; Altoukhov, D.I. Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronaut. 2015, 117, 338–355. [Google Scholar] [CrossRef]
- Tuan, N.V.; Minh, D.Q.; Khoa, N.X.; Lim, O. A Study to Predict Ignition Delay of an Engine Using Diesel and Biodiesel Fuel Based on the ANN and SVM Machine Learning Methods. Acs Omega 2023, 8, 9995–10005. [Google Scholar] [CrossRef]
- Johnson, R.; Kaczynski, D.; Zeng, W.; Warey, A.; Grover, R.; Keum, S. Prediction of Combustion Phasing Using Deep Convolutional Neural Networks; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2020; ISSN 0148-7191. [Google Scholar]
- Yan, P.; Cao, Z.; Peng, J.; Yang, C.; Yu, X.; Qiu, P.; Zhang, S.; Han, M.; Liu, W.; Jiang, Z. A Neural Network-Based Flame Structure Feature Extraction Method for the Lean Blowout Recognition. Aerospace 2024, 11, 57. [Google Scholar] [CrossRef]
- Li, K.; Savari, C.; Sheikh, H.A.; Barigou, M. A data-driven machine learning framework for modeling of turbulent mixing flows. Phys. Fluids 2023, 35, 015150. [Google Scholar] [CrossRef]
- Sadeq, A.M.; Moghaddam, A.H.; Sleiti, A.K.; Ahmed, S.F. Development of Machine Learning Models for Studying the Premixed Turbulent Combustion of Gas-To-Liquids (GTL) Fuel Blends. Korean J. Chem. Eng. 2024, 41, 479–494. [Google Scholar] [CrossRef]
Description | Applications in Turbulent Combustion | Comments | |
---|---|---|---|
Supervised Learning | Model is trained using labeled data, meaning correct output is known for each input. The model then uses this training to predict results based on new, unseen data. | Supervised learning can be used to classify different types of turbulent combustion behavior, such as premixed vs. non-premixed flames. It can also be used to predict combustion emissions based on input parameters such as fuel type and temperature [90]. | Pros: High accuracy, direct feedback mechanism, interpretable models, and wide real-world applicability. Cons: Dependency on labeled data, potential for overfitting, time-consuming labeling, and limited to training data patterns. |
Unsupervised Learning | In the unsupervised learning process, the model is provided with unlabeled data, and it independently identifies patterns or relationships within that data. | Unsupervised learning is applied to identify clusters or patterns in data, collected from turbulent combustion processes, such as grouping the same kind of flame structures or identifying common forms of combustion instability. It can also produce high-resolution combustion images from low-resolution ones [64]. | Pros: No label dependency, data structure discovery, feature extraction capability, and anomaly detection suitability. Cons: Indeterminate outcomes, potential prediction inaccuracy, algorithmic complexity, and subjective evaluation challenges. |
Reinforcement Learning | Reinforcement Learning is a process where learning occurs through trial and error, with feedback provided in the form of rewards or penalties for specific actions. Over time and with adjustments, Reinforcement Learning models learn to make decisions that maximize rewards. | Reinforcement Learning optimizes the operation of a turbulent combustion system, such as by controlling the air/fuel ratio or adjusting the combustion chamber geometry to minimize emissions or maximize efficiency. It could also be used to develop control strategies for mitigating the turbulent combustion instability [86]. | Pros: Optimized for decision-making, environment adaptability, exploration-exploitation balance, and real-time feedback incorporation. Cons: Extended training periods, reward function intricacies, and training instability. |
Jet Velocity (m/s) | Method | RAM (Megabytes) | CPU Time (min) | CPU Ratio |
---|---|---|---|---|
50 | Look-Up Table | 13.31 | 107 | 2.9 |
Neural Model | 10.02 | 119 | 3.2 | |
80 | Look-Up Table | 13.31 | 176 | 1.9 |
Neural Model | 10.02 | 170 | 1.8 | |
130 | Look-Up Table | 13.31 | 242 | -- |
Neural Model | 10.02 | 204 | -- |
T(K) | CH | OH | ||||
---|---|---|---|---|---|---|
DT | RF | DT | RF | DT | RF | |
Mean Squared Error (MSE) | 7.06 × 102 | 8.24 × 102 | 2.53 × 10−12 | 2.68 × 10−12 | 5.25 × 10−9 | 6.44 × 10−9 |
Mean Absolute Error (MAE) | 4.04 | 4.46 | 1.20 × 10−7 | 1.32 × 10−7 | 7.14 × 10−6 | 8.26 × 10−6 |
Root Mean Sq. Error (RMSE) | 26.6 | 28.7 | 1.59 × 10−6 | 1.64 × 10−6 | 7.25 × 10−5 | 8.02 × 10−5 |
Normalized RMSE (NRMSE) | 0.0436 | 0.0471 | 4.57 | 4.71 | 0.333 | 0.369 |
Normalized MAE (NMAE) | 6.64 × 10−3 | 7.32 × 10−3 | 3.44 × 10−1 | 3.79 × 10−1 | 3.28 × 10−2 | 3.80 × 10−2 |
Minimum Absolute Error | 0 | 0 | 1.71 × 10−17 | 9.81 × 10−13 | 0 | 2.33 × 10−13 |
Maximum Absolute Error | 1.32 × 103 | 1.57 × 103 | 8.10 × 10−5 | 8.16 × 10−5 | 2.79 × 10−3 | 2.91 × 10−3 |
Correlation Coefficient | 0.999 | 0.998 | 0.929 | 0.922 | 0.998 | 0.997 |
R2 (Coeff. of Determination) | 0.997 | 0.997 | 0.859 | 0.850 | 0.996 | 0.995 |
Combustion Stage | Machine Learning Techniques | Practical Implications | References |
---|---|---|---|
Ignition | Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Decision Tree (DT), and Random Forest (RF) |
| Molana et al. [142], Tuan et al. [146], Sharif et al. [23] |
Flame Kernel Development | Decision Tree (DT), Random Forest (RF), and Convolutional Neural Network (CNN) |
| Johnson et al. [147] |
Transition to Turbulent Flame | Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) |
| Ren et al. [25] |
Flame–Turbulence Interaction | Neural Networks, SVMs, Physics-Informed Neural Networks (PINNs), Reinforced Learning |
| Yan et al. [148], Li et al. [149] |
Flame Propagation | Artificial Neural Networks (ANNs) and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) |
| Sadeq et al. [150], Ren et al. [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shejan, M.E.; Bhuiyan, S.M.Y.; Schoen, M.P.; Mahamud, R. Assessment of Machine Learning Techniques for Simulating Reacting Flow: From Plasma-Assisted Ignition to Turbulent Flame Propagation. Energies 2024, 17, 4887. https://doi.org/10.3390/en17194887
Shejan ME, Bhuiyan SMY, Schoen MP, Mahamud R. Assessment of Machine Learning Techniques for Simulating Reacting Flow: From Plasma-Assisted Ignition to Turbulent Flame Propagation. Energies. 2024; 17(19):4887. https://doi.org/10.3390/en17194887
Chicago/Turabian StyleShejan, Mashrur Ertija, Sharif Md Yousuf Bhuiyan, Marco P. Schoen, and Rajib Mahamud. 2024. "Assessment of Machine Learning Techniques for Simulating Reacting Flow: From Plasma-Assisted Ignition to Turbulent Flame Propagation" Energies 17, no. 19: 4887. https://doi.org/10.3390/en17194887
APA StyleShejan, M. E., Bhuiyan, S. M. Y., Schoen, M. P., & Mahamud, R. (2024). Assessment of Machine Learning Techniques for Simulating Reacting Flow: From Plasma-Assisted Ignition to Turbulent Flame Propagation. Energies, 17(19), 4887. https://doi.org/10.3390/en17194887