Classifying the Percentage of Broken Magnets in Permanent Magnet Synchronous Motors Using Combined Short-Time Fourier Transform and a Pre-Trained Convolutional Neural Network
Abstract
:1. Introduction
2. Fundamentals of PMSMs and STFT Analysis for Evaluating Impact of Broken Magnets on Stator Phase Current
3. Dataset Rearrangement Process Using Finite Element Method and Short Time Fourier Transform Analysis
3.1. FEM Simulation Model
3.2. STFT Spectrogram of Stator Phase Current in Healthy and Broken Magnet PMSM
4. Motivation for Developing the New Pre-Trained AlexNet CNN Model and Utilization of Robust Transfer Learning Techniques for Detecting and Classifying Broken Magnets
5. Discussion and Experimental Case Studies for Model Performance Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waide, P.; Brunner, C.U. Energy-efficiency policy opportunities for electric motor-driven systems. Energy Policy 2011, 39, 6444–6454. [Google Scholar] [CrossRef]
- Sheikh-Ghalavand, B.; Vaez-Zadeh, S.; Isfahani, A.H. An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors. IEEE Trans. Magn. 2009, 46, 112–120. [Google Scholar] [CrossRef]
- Rosero, J.A.; Cusido, J.; Garcia, A.; Ortega, J.; Romeral, L. Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor. In Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 964–969. [Google Scholar] [CrossRef]
- Usman, A.; Joshi, B.M.; Rajpurohit, B.S. Review of fault modeling methods for permanent magnet synchronous motors and their comparison. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017; pp. 141–146. [Google Scholar] [CrossRef]
- Romero-Troncoso, R.J. Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors. IEEE Trans. Ind. Inform. 2016, 13, 1291–1300. [Google Scholar] [CrossRef]
- Niu, G.; Son, J.D.; Yang, B.S. Performance Evaluation of Multi-sensors Signals and Classifiers for Faults Diagnosis of Induction Motor. In Proceedings of the Korean Society for Noise and Vibration Engineering Conference; Korea Institute of Science and Technology Information: Daejeon, Republic of Korea, 2006; pp. 411–416. [Google Scholar]
- Seera, M.; Lim, C.P.; Nahavandi, S.; Loo, C.K. Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models. Expert Syst. Appl. 2014, 41, 4891–4903. [Google Scholar] [CrossRef]
- Gherabi, Z.; Toumi, D.; Benouzza, N.; Boudinar, A.H.; Koura, M.B. Discrimination between demagnetization and eccentricity faults in PMSMs using real and imaginary components of stator current spectral analysis. J. Power Electron. 2021, 21, 153–163. [Google Scholar] [CrossRef]
- Krichen, M.; Elbouchikhi, E.; Benhadj, N.; Chaieb, M.; Benbouzid, M.; Neji, R. Motor current signature analysis-based permanent magnet synchronous motor demagnetization characterization and detection. Machines 2020, 8, 35. [Google Scholar] [CrossRef]
- Strangas, E.G.; Aviyente, S.; Zaidi, S.S.H. Time-Frequency Analysis for Efficient Fault Diagnosis and Failure Prognosis for Interior Permanent-Magnet AC Motors. IEEE Trans. Ind. Electron. 2008, 55, 4191–4199. [Google Scholar] [CrossRef]
- Zanardelli, W.G.; Strangas, E.G.; Aviyente, S. Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis. IEEE Trans. Ind. Appl. 2007, 43, 971–980. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Chen, Z. Incipient Stator Insulation Fault Detection of Permanent Magnet Synchronous Wind Generators Based on Hilbert-Huang Transformation. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Rosero, J.A.; Romeral, L.; Ortega, J.A.; Rosero, E. Short-Circuit Detection by Means of Empirical Mode Decomposition and Wigner-Ville Distribution for PMSM Running Under Dynamic Condition. IEEE Trans. Ind. Electron. 2009, 56, 4534–4547. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J. Feature Extraction for Short-Circuit Fault Detection in Permanent-Magnet Synchronous Motors Using Stator-Current Monitoring. IEEE Trans. Power Electron. 2010, 25, 2673–2682. [Google Scholar] [CrossRef]
- Park, J.K.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [Google Scholar] [CrossRef]
- Goktas, T.; Zafarani, M.; Akin, B. Discernment of broken magnet and static eccentricity faults in permanent magnet synchronous motors. IEEE Trans. Energy Convers. 2016, 31, 578–587. [Google Scholar] [CrossRef]
- Abdellatif, S.; Aissa, C.; Hamou, A.A.; Chawki, S.; Oussama, B.S. A Deep Learning Based on Sparse Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis. In Proceedings of the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria, 28–31 October 2018; pp. 1–6. [Google Scholar]
- Abid, F.B.; Sallem, M.; Braham, A. Robust interpretable deep learning for intelligent fault diagnosis of induction motors. IEEE Trans. Instrum. Meas. 2020, 69, 3506–3515. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access 2020, 8, 29857–29881. [Google Scholar] [CrossRef]
- Bhadra, R.; Dutta, S.; Kedia, A.; Gupta, S.; Panigrahy, P.S.; Chattopadhyay, P. Applied machine learning for bearing fault prognostics. In Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 December 2018; pp. 158–162. [Google Scholar]
- Yu, Y.; Gao, H.; Zhou, S.; Pan, Y.; Zhang, K.; Liu, P.; Madyira, D.M. Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning. Actuators 2023, 12, 145. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, H.; Kim, S.W. Classification and detection of demagnetization and inter-turn short circuit faults in IPMSMs by using convolutional neural networks. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 3249–3254. [Google Scholar] [CrossRef]
- Kao, I.H.; Wang, W.J.; Lai, Y.H.; Perng, J.W. Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Trans. Instrum. Meas. 2018, 68, 310–324. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H.; Kim, S.W. Detection of interturn short-circuit fault and demagnetization fault in IPMSM by 1-D convolutional neural network. In Proceedings of the 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 1–4 December 2019; pp. 1–5. [Google Scholar]
- Hang, J.; Shu, X.; Ding, S.; Huang, Y. Robust Open-Circuit Fault Diagnosis for PMSM Drives Using Wavelet Convolutional Neural Network With Small Samples of Normalized Current Vector Trajectory Graph. IEEE Trans. Ind. Electron. 2023, 70, 7653–7663. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M.; Orlowska-Kowalska, T. PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network. IEEE Trans. Ind. Electron. 2023, 70, 5192–5202. [Google Scholar] [CrossRef]
- Park, Y.; Fernandez, D.; Lee, S.B.; Hyun, D.; Jeong, M.; Kommuri, S.K.; Briz, F. Online detection of rotor eccentricity and demagnetization faults in PMSMs based on hall-effect field sensor measurements. IEEE Trans. Ind. Appl. 2018, 55, 2499–2509. [Google Scholar] [CrossRef]
- Ruiz, J.R.R.; Rosero, J.A.; Espinosa, A.G.; Romeral, L. Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Ríos, R.A.; Diaz-Saldaña, G.; Trejo-Hernández, M.; Antonino-Daviu, J.A. STFT-based induction motor stray flux analysis for the monitoring of cutting tool wearing in CNC machines. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 2511–2516. [Google Scholar]
- Schafer, R.W.; Oppenheim, A.V. Discrete-Time Signal Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system. IEEE Trans. Ind. Electron. 2017, 65, 4080–4091. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Stator Winding Fault Detection of Permanent Magnet Synchronous Motors Based on the Short-Time Fourier Transform. Power Electron. Drives 2022, 7, 112–133. [Google Scholar] [CrossRef]
- ANSYS. Ansys Maxwell: Low Frequency Electromagnetic Field Simulation. Available online: https://www.ansys.com/Products/Electronics/ANSYS-Maxwell (accessed on 25 November 2023).
- Cao, Y.; Li, Q.; Yu, L. A Software for Design and Analysis of PMSM Based on ANSYS. In Proceedings of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009; pp. 78–81. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Zheng, Y.; Li, L.; Wang, W.; Wu, H. Finite Element Analysis of Permanent Magnet Synchronous Motor of Electric Vehicle. In Proceedings of the 2015 3rd International Conference on Advances in Energy and Environmental Science, Zhuhai, China, 25–26 July 2015; pp. 1127–1130. [Google Scholar]
- Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning. Information 2020, 11, 108. [Google Scholar] [CrossRef]
- Graf, L.; Bach, H.; Tiede, D. Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots. Remote Sens. 2020, 12, 3937. [Google Scholar] [CrossRef]
Parameters Name | Value |
---|---|
Number of Slots | 9 |
Number of Poles | 8 |
Rated Voltage | 220 V |
Rated Power | 0.4 kW |
Rated Speed | 3000 r/min |
Output Torque | 1.28 N·m |
Efficiency | 91% |
Label | Situation | Data Number | Training Data | Validation Data |
---|---|---|---|---|
H | Healthy PM | 200 | 160 | 40 |
B1 (0–10%) | Broken PM | 500 | 400 | 100 |
B2 (10–20%) | Broken PM | 500 | 400 | 100 |
B3 (20–30%) | Broken PM | 500 | 400 | 100 |
B4 (30–40%) | Broken PM | 500 | 400 | 100 |
B5 (40–50%) | Broken PM | 500 | 400 | 100 |
B6 (50–70%) | Broken PM | 500 | 400 | 100 |
B7 (70–90%) | Broken PM | 500 | 400 | 100 |
B8 (90–100%) | Broken PM | 500 | 400 | 100 |
No | Layer | Output Size | Kernel Size | Number of Filters |
---|---|---|---|---|
Input | Input Layer | 227 × 227 × 3 | - | - |
Conv 1 | Convolution | 55 × 55 × 96 | 11 × 11 | 96 |
Max 1 | Max Pooling | 27 × 27 × 96 | 3 × 3 | 96 |
Conv 2 | Convolution | 27 × 27 × 256 | 5 × 5 | 256 |
Max 2 | Max Pooling | 13 × 13 × 256 | 3 × 3 | 256 |
Conv 3 | Convolution | 13 × 13 × 384 | 3 × 3 | 384 |
Conv 4 | Convolution | 13 × 13 × 384 | 3 × 3 | 384 |
Conv 5 | Convolution | 13 × 13 × 256 | 3 × 3 | 256 |
Max 3 | Max Pooling | 6 × 6 × 256 | 3 × 3 | 256 |
Dense 1 | Fully Connected | 4096 | - | - |
Dense 2 | Fully Connected | 4096 | - | - |
Dense 3 | Fully Connected | rearranged for 9 | - | - |
Soft 1 | Softmax | rearranged for 9 | - | - |
Output | Output Layer | rearranged for 9 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafouri Matanagh, A.; Ozturk, S.B.; Goktas, T.; Hegazy, O. Classifying the Percentage of Broken Magnets in Permanent Magnet Synchronous Motors Using Combined Short-Time Fourier Transform and a Pre-Trained Convolutional Neural Network. Energies 2024, 17, 368. https://doi.org/10.3390/en17020368
Ghafouri Matanagh A, Ozturk SB, Goktas T, Hegazy O. Classifying the Percentage of Broken Magnets in Permanent Magnet Synchronous Motors Using Combined Short-Time Fourier Transform and a Pre-Trained Convolutional Neural Network. Energies. 2024; 17(2):368. https://doi.org/10.3390/en17020368
Chicago/Turabian StyleGhafouri Matanagh, Amin, Salih Baris Ozturk, Taner Goktas, and Omar Hegazy. 2024. "Classifying the Percentage of Broken Magnets in Permanent Magnet Synchronous Motors Using Combined Short-Time Fourier Transform and a Pre-Trained Convolutional Neural Network" Energies 17, no. 2: 368. https://doi.org/10.3390/en17020368
APA StyleGhafouri Matanagh, A., Ozturk, S. B., Goktas, T., & Hegazy, O. (2024). Classifying the Percentage of Broken Magnets in Permanent Magnet Synchronous Motors Using Combined Short-Time Fourier Transform and a Pre-Trained Convolutional Neural Network. Energies, 17(2), 368. https://doi.org/10.3390/en17020368