Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Energy Input Analysis
2.3. Biomass Processing
2.4. Energy Output Analysis
2.5. Energy Gain and the Energy Efficiency Ratio
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Energy Inputs
3.3. Biomass Yield
3.4. Energy Output
3.5. Energy Gain and the Energy Efficiency Ratio
4. Discussion
4.1. Energy Inputs
4.2. Biomass Yield
4.3. Energy Output
4.4. Energy Gain and the Energy Efficiency Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatma, S.; Hameed, A.; Noman, M.; Ahmed, T.; Shahid, M.; Tariq, M.; Sohail, I.; Tabassum, R. Lignocellulosic biomass: A sustainable bioenergy source for the future. Protein Pept. Lett. 2018, 25, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A review of thermochemical conversion of waste biomass to biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Silwadi, M.; Mousa, H.; AL-Hajji, B.Y.; A-LWahaibi, S.S.; AL-Harrasi, Z.Z. Enhancing biogas production by anaerobic digestion of animal manure. Int. J. Green Energy 2022, 20, 257–264. [Google Scholar] [CrossRef]
- Azni, M.A.; Khalid, R.M.; Hasran, U.A.; Kamarudin, S.K. Review of the effects of fossil fuels and the need for a hydrogen fuel cell policy in Malaysia. Sustainability 2023, 15, 4033. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef]
- Von Cossel, M.; Pereira, L.A.; Lewandowski, I. Deciphering substrate-specific methane yields of perennial herbaceous wild plant species. Agronomy 2021, 11, 451. [Google Scholar] [CrossRef]
- Lewandowski, I.; Bahrs, E.; Dahmen, N.; Hirth, T.; Rausch, T.; Weidtmann, A. Biobased value chains for a growing bioeconomy. GCB Bioenergy 2019, 11, 4–8. [Google Scholar] [CrossRef]
- Von Cossel, M.; Amarysti, C.; Wilhelm, H.; Priya, N.; Winkler, B.; Hoerner, L. The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuels Bioprod. Biorefining 2020, 14, 152–179. [Google Scholar] [CrossRef]
- Von Cossel, M.; Mangold, A.; Iqbal, Y.; Hartung, J.; Lewandowski, I.; Kiesel, A. How to generate yield in the first year—A three-year experiment on miscanthus (Miscanthus × giganteus (Greef et Deuter)) establishment under maize (Zea mays L.). Agronomy 2019, 9, 237. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Lues, R. Anaerobic digestion of lignocellulosic biomass: Substrate characteristics (challenge) and innovation. Fermentation 2023, 9, 755. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Sanjukta, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Shadangi, K.P.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling towards circular bioeconomy. Environ. Sci. Pollut. Res. 2023, 30, 8526–8539. [Google Scholar] [CrossRef]
- Haberzettl, J.; Hilgert, P.; von Cossel, M. A Critical review on lignocellulosic biomass yield modeling and the bioenergy potential from marginal land. Agronomy 2021, 11, 2397. [Google Scholar] [CrossRef]
- Kamperidou, V.; Terzopoulou, P. Anaerobic digestion of lignocellulosic waste materials. Sustainability 2021, 13, 12810. [Google Scholar] [CrossRef]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production—Yields, energy input and costs in cultivation using digestate and mineral fertilization. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Purdy, S.J.; Maddison, A.L.; Nunn, C.P.; Winters, A.; Timms-Taravella, E.; Jones, C.M.; Clifton-Brown, J.C.; Donnison, I.S.; Gallagher, J.A. Could Miscanthus replace maize as the preferred substrate for anaerobic digestion in the United Kingdom? Future breeding strategies. GCB Bioenergy 2017, 9, 1122–1139. [Google Scholar] [CrossRef]
- Kiesel, A.; Lewandowski, I. Miscanthus as biogas substrate—Cutting tolerance and potential for anaerobic digestion. GCB Bioenergy 2017, 9, 153–167. [Google Scholar] [CrossRef]
- Gustafsson, M.; Ammenberg, J. IEA Bionergy Task 37—A Perspective on the State of the Biogas Industry from Selected Member Countries. 2022. Available online: https://www.ieabioenergy.com/blog/publications/a-perspective-on-the-state-of-the-biogas-industry-from-selected-member-countries-of-iea-bioenergy-task-37/ (accessed on 5 April 2024).
- Brémond, U.; Bertrandias, A.; Steyer, J.P.; Bernet, N.; Carrere, H. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021, 287, 125065. [Google Scholar] [CrossRef]
- FNR. Anbau und Verwendung Nachwachsender Rohstoffe in Deutschland. 2022. Available online: https://www.fnr.de/ftp/pdf/berichte/22004416.pdf (accessed on 5 April 2024).
- Yang, X.; Liu, Y.; Thrän, D.; Bezama, A.; Wang, M. Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change. Energy Sustain. Soc. 2021, 11, 6. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Amalevičiūtė-Volungė, K.; Volungevičius, J.; Šlepetys, J. The effect of digestate fertilisation on grass biogas yield and soil properties in field-biomass-biogas-field renewable energy production approach in Lithuania. Biomass Bioenergy 2021, 153, 106211. [Google Scholar] [CrossRef]
- Mayer, F.; Gerin, P.A.; Noo, A.; Lemaigre, S.; Stilmant, D.; Schmit, T.; Leclech, N.; Ruelle, L.; Gennen, J.; von Francken-Welz, H.; et al. Assessment of energy crops alternative to maize for biogas production in the greater region. Bioresour. Technol. 2014, 166, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy maize and soil erosion—Risk assessment and erosion control concepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- Matías, J.; Encinar, J.M.; González, J.; González, J.F. Optimisation of ethanol fermentation of Jerusalem artichoke tuber juice using simple technology for a decentralised and sustainable ethanol production. Energy Sustain. Dev. 2015, 25, 34–39. [Google Scholar] [CrossRef]
- Piskier, T. A method of estimation of the caloric value of the biomass. Part I. Biomass energy potential. J. Mech. Energy Eng. 2017, 1, 189–194. [Google Scholar]
- Epie, K.E.; Santanen, A.; Mäkelä, P.S.A.; Stoddard, F.L. Fertilizer and intercropped legumes as nitrogen source for Jerusalem artichoke (Helianthus tuberosus L.) tops for bioenergy. Agric. Food Sci. 2018, 27, 199–205. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ruggeri, R. Jerusalem artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Kozak, M. Sewage sludge and the energy balance of Jerusalem artichoke production. A six-year field experiment in Poland. Energy 2021, 276, 127478. [Google Scholar] [CrossRef]
- Bogucka, B.; Jankowski, K.J. The effect of harvest strategy on the energy potential of Jerusalem artichoke. Ind. Crops Prod. 2022, 177, 114473. [Google Scholar] [CrossRef]
- Long, X.H.; Zhao, J.; Liu, Z.P.; Rengel, Z.; Liu, L.; Shao, H.B.; Tao, Y. Applying geostatistics to determine the soil quality improvement by Jerusalem artichoke in coastal saline zone. Ecol. Eng. 2014, 70, 319–326. [Google Scholar] [CrossRef]
- Yang, L.; He, Q.S.; Corscadden, K.; Udenigwe, C.C. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 2015, 5, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Bogucka, B.; Pszczółkowska, A.; Okorski, A.; Jankowski, K. The effects of potassium fertilization and irrigation on the yield and health status of Jerusalem artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 234. [Google Scholar] [CrossRef]
- Piskier, T. Energy potential of Jerusalem artichoke. Probl. Inżynierii Rol. 2009, 1, 133–136. (In Polish) [Google Scholar]
- Krochmal-Marczak, B.; Sawicka, B.; Barbaś, P. Utility meaning of Jerusalem Artichoke. In Jerusalem Artichoke Food Science and Technology: Helianthus tuberosus; Sawicka, B., Krochmal-Marczak, B., Eds.; Springer: Singapore, 2022; pp. 91–138. [Google Scholar]
- Kim, S.; Kim, C.H. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production. Renew. Energy 2014, 65, 83–91. [Google Scholar] [CrossRef]
- Qiu, Y.; Lei, P.; Zhang, Y.; Sha, Y.; Zhan, Y.; Xu, Z.; Li, S.; Xu, H.; Ouyang, P. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol. Biofuels 2018, 11, 151. [Google Scholar] [CrossRef]
- Sawicka, B.; Skiba, D. The influence of diversified mineral fertilization on potassium, phosphorus, and magnesium content in Helianthus tuberosus L. tubers. Pol. J. Environ. Stud. 2007, 16, 231–234. [Google Scholar]
- Izsáki, Z.; Kádi, G.N. Biomass accumulation and nutrient uptake of Jerusalem artichoke (Helianthus tuberosus L.). Am. J. Plant Sci. 2013, 4, 1629–1640. [Google Scholar] [CrossRef]
- Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: London, UK, 2008; p. 478. [Google Scholar]
- Liu, Z.X.; Han, L.P.; Steinberger, Y.; Xie, G.H. Genetic variation and yield performance of Jerusalem artichoke germplasm collected in China. Agric. Sci. China 2011, 10, 668–678. [Google Scholar] [CrossRef]
- Sawicka, B. Jerusalem artichoke (Helianthus tuberosus L.). Biology, Culture, the Importance of Utility; Publishing House of the University of Life Sciences: Lublin, Poland, 2016; p. 241. (In Polish) [Google Scholar]
- Dybek, B.; Anders, D.; Hołaj-Krzak, J.T.; Hałasa, Ł.; Maj, G.; Kapłan, M.; Klimek, K.; Filipczak, G.; Wałowski, G. Assessment of the prospects of Polish non-food energy agriculture in the context of a renewable energy source. Energies 2023, 16, 3315. [Google Scholar] [CrossRef]
- Fang, Y.R.; Liu, J.A.; Steinberger, Y.; Xie, G.H. Energy use efficiency and economic feasibility of Jerusalem artichoke production on arid and coastal saline lands. Ind. Crops Prod. 2018, 117, 131–139. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Galic, M.; Mesic, M.; Zgorelec, Z. Influence of organic and mineral fertilization on soil greenhouse gas emissions. A review. Agric. Conspec. Sci. 2019, 85, 1–8. [Google Scholar]
- Jankowski, K.J.; Nogalska, A. Meat and bone meal and the energy balance of winter oilseed rape—A case study in north-eastern Poland. Energies 2022, 15, 3853. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Kołodziej, B.; Dubis, B.; Sugier, D.; Antonkiewicz, J.; Szatkowski, A. The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland. Energy 2023, 276, 127478. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Obaisi, A.I.; Elghandour, M.M.M.Y.; Oyebamiji, K.J.; Salem, A.Z.M.; Morakinyo-Fasipe, O.T.; Cipriano-Salazar, M.; Camacho-Díaz, L.M. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations—An overview. J. Clean Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Barbosa, D.B.P.; Nabel, M.; Jablonowski, N.D. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea mays L. and Medicago sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Lee, M.S.; Urgun-Demirtas, M.; Shen, Y.; Zumpf, C.; Anderson, E.K.; Rayburn, A.L.; Lee, D.K. Effect of digestate and digestate supplemented with biochar on switchgrass growth and chemical composition. Biomass Bioenergy 2021, 144, 105928. [Google Scholar] [CrossRef]
- Dubis, B.; Szatkowski, A.; Jankowski, K.J. Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Ind. Crops Prod. 2022, 175, 114235. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef]
- Ramirez, J.; McCabe, B.; Jensen, P.D.; Speight, R.; Harrison, M.; van den Berg, L.; O’Hara, I. Wastes to profit: A circular economy approach to value-addition in livestock industries. Anim. Prod. Sci. 2021, 61, 541–550. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate management and processing practices: A review. Appl. Sci. 2022, 128, 9216. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasc, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 42, 119–128. [Google Scholar] [CrossRef]
- Šimon, T.; Kunzová, E.; Friedlová, M. The effect of digestate, cattle slurry, and mineral fertilization on the winter wheat yield and soil quality parameters. Plant Soil Environ. 2015, 61, 522–527. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani, F. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Grzebisz, W. Biogas digestate—Benefits and risks for soil fertility and crop quality—An evaluation of grain maize response. Open Chem. 2018, 16, 258–271. [Google Scholar] [CrossRef]
- Brtnicky, M.; Kintl, A.; Holatko, J.; Hammerschmiedt, T.; Mustafa, A.; Kucerik, J.; Vitez, T.; Prichystalova, J.; Baltazar, T.; Elbl, J. Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chem. Biol. Technol. Agric. 2022, 9, 43. [Google Scholar] [CrossRef]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilisers—Effect on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land application of organic waste—Effects on the soil ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Hupfauf, S.; Bachmann, S.; Juárez, M.F.D.; Insam, H.; Eichler-Löbermann, B. Biogas digestates affect crop P uptake and soil microbial community composition. Sci. Total Environ. 2016, 542 Pt B, 1144–1154. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Romeo, F.; Mallamaci, C.; Muscolo, A. Digestate application on two different soils: Agricultural benefit and risk. Waste Biomass Valoriz. 2021, 12, 4341–4353. [Google Scholar] [CrossRef]
- Galvez, A.; Sinicco, T.; Cayuela, M.L.; Mingorance, M.D.; Fornasier, F.; Mondini, C. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric. Ecosyst. Environ. 2012, 160, 3–14. [Google Scholar] [CrossRef]
- Różyło, K.; Oleszczuk, P.; Jośko, I.; Kraska, P.; Kiecińska-Poppe, E.; Andruszczak, S. An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ. Sci. Pollut. Res. 2015, 22, 7833–7842. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F.; El-Hoz, M.; Mersky, R.L. How collection efficiency and legal constraints on digestate management can affect the effectiveness of anaerobic digestion of bio-waste: An analysis of the Italian context in a life cycle perspective. Sci. Total Environ. 2020, 726, 138555. [Google Scholar] [CrossRef]
- Deng, L.; Liu, Y.; Wang, W. Utilization of digestate. In Biogas Technology; Deng, L., Liu, Y., Wang, W., Eds.; Springer Nature: Singapore, 2020; pp. 319–363. [Google Scholar]
- Egene, C.E.; Sigurnjak, I.; Regelink, I.C.; Schoumans, O.F.; Adani, F.; Michels, E.; Sleutel, S.; Tack, F.M.G.; Meers, E. Solid fraction of separated digestate as soil improver: Implications for soil fertility and carbon sequestration. J. Soils Sediments 2021, 121, 678–688. [Google Scholar] [CrossRef]
- Plana, P.V.; Noche, B. A review of the current digestate distribution models: Storage and transport. In WIT Transactions on Ecology and the Environment; Brebbia, C.A., Itoh, H., Eds.; WIT Press: Southampton, UK, 2016; p. 346. [Google Scholar]
- Baştabak, B.; Koçar, G. A review of the biogas digestate in agricultural framework. J. Mater. Cycles Waste. Manag. 2020, 22, 1318–1327. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The effectiveness of digestate use for fertilization in an agricultural cropping system. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
- Fuchs, W.; Drosg, B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 2013, 67, 1984–1993. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Ehmann, A.; Thumm, U.; Lewandowski, I. Fertilizing potential of separated biogas digestates in annual and perennial biomass production systems. Front. Sustain. Food. Syst. 2018, 2, 12. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warminski, K.; Tworkowski, J.; Szczukowski, S. Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilizers versus biomass yield and efficient nitrogen utilization. Ind. Crops Prod. 2017, 107, 244–259. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Tworkowski, J.; Szczukowski, S.; Olba-Zięty, E.; Gołaszewski, J. Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers. Energy 2017, 134, 50–60. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Sokólski, M. The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 2020, 206, 118189. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2022. FAO: Rome, Italy, 2022. Available online: https://eurasian-soil-portal.info/wp-content/uploads/2022/07/wrb_fourth_edition_2022-3.pdf (accessed on 10 April 2024).
- Bardsley, C.E.; Lancaster, J.D. Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Am. J. 1960, 24, 265–268. [Google Scholar] [CrossRef]
- Houba, V.J.G.; van der Lee, J.J.; Novozamsky, I. Part 5A: Soil analysis procedures, other procedures. In Soil and Plant Analysis; Department of Soil Science and Plant Nutrition, Agricultural University: Wageningen, The Netherlands, 1995. [Google Scholar]
- Muzalewski, A. Operating Costs of Agricultural Machines, No. 24; IBMER: Warszawa, Poland, 2009; p. 52. (In Polish) [Google Scholar]
- Muzalewski, A. Operating Costs of Agricultural Machines, No. 25; Institute of Technology and Life Sciences Publishing House: Falenty–Warszawa, Poland, 2010; p. 56. (In Polish) [Google Scholar]
- Wójcicki, Z. Equipment, Materials and Energy Inputs in Growth-Oriented Farms; IBMER: Warszawa, Poland, 2000. (In Polish) [Google Scholar]
- Kopetz, H.; Jossart, J.; Ragossnig, H.; Metschina, C. European Biomass Statistics; European Biomass Association (AEBIOM): Brussels, Belgium, 2007. [Google Scholar]
- TIBCO Software, Inc. STATISTICA (Data Analysis Software System); TIBCO Software, Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Budzyński, W.; Szempliński, W.; Parzonka, A.; Sałek, T. Agricultural productivity, energy efficiency and costs associated with growing selected energy crops for biogas production. In Production and Processing of Agricultural and Aquatic Biomass for Biogas Plants and Gasification Units; Gołaszewski, J., Ed.; Publishing House of the University Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2014; pp. 11–282. (In Polish) [Google Scholar]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Sokolski, M.; Załuski, D.; Borawski, P.; Szempliński, W. Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland. Renew. Energy 2020, 154, 813–825. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.M.; Dubis, B.; Załuski, D.; Szempliński, W. Sweet sorghum—Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. Eur. J. Agron. 2020, 119, 126119. [Google Scholar] [CrossRef]
- Kyttä, V.; Helenius, J.; Tuomisto, H.L. Carbon footprint and energy use of recycled fertilizers in arable farming. J. Clean. Prod. 2021, 287, 125063. [Google Scholar] [CrossRef]
- Plöchl, M.; Heiermann, M.; Linke, B.; Schelle, H. Biogas crops—Part II: Balance of greenhouse gas emissions and energy from using field crops for anaerobic digestion. Agric. Eng. Int. 2009, 11, 1–11. [Google Scholar]
- Denoroy, P. The crop physiology of Helianthus tuberosus L.: A model orientated view. Biomass Bioenergy 1996, 11, 11–32. [Google Scholar] [CrossRef]
- Baldini, M.; Danuso, F.; Monti, A.; Amaducci, M.T.; Stevanato, P.; De Mastro, G. Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Ital. J. Agron. 2006, 1, 291–308. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Sousa, L.; Cabanas, J.E.; Arrobas, M. Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J. Agric. Res. 2007, 5, 545–553. [Google Scholar] [CrossRef]
- Monti, A.; Amaducci, M.T.; Venturi, G. Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur. J. Agron. 2005, 23, 136–145. [Google Scholar] [CrossRef]
- Sawicka, B.; Skiba, D.; Kiełtyka-Dadasiewicz, A.; Danilčenko, H. Jerusalem artichoke (Helianthus tuberosus L.) as energy raw material. In Proceedings of the 9th International Scientific Conference Rural Development, Kovno, Lithuania, 26–28 September 2019; pp. 336–342. [Google Scholar]
- Liu, Z.X.; Spiertz, J.H.J.; Sha, J.; Xue, S.; Xie, G.H. Growth and yield performance of Jerusalem artichoke clones in a semiarid region of China. Agron. J. 2012, 104, 1538–1546. [Google Scholar] [CrossRef]
- Skiba, D. Variability in Yield and Quality of Selected Features of Several Cultivars of Helianthus tuberosus L. under Different Fertilization. Ph.D. Thesis, University of Life Sciences in Lublin, Lublin, Poland, 2014; p. 234. (In Polish). [Google Scholar]
- Matías, J.; González, J.; Cabanillas, J.; Royano, L. Influence of NPK fertilisation and harvest date on agronomic performance of Jerusalem artichoke crop in the Guadiana Basin (Southwestern Spain). Ind. Crops Prod. 2013, 48, 191–197. [Google Scholar] [CrossRef]
- Liu, Z.X.; Steinberger, Y.; Chen, X.; Wang, J.S.; Xie, G.H. Chemical composition and potential ethanol yield of Jerusalem artichoke in a semi-arid region of China. Ital. J. Agron. 2015, 10, 603. [Google Scholar] [CrossRef]
- Long, X.H.; Shao, H.B.; Liu, L.; Liu, L.P.; Liu, Z.U. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 1382–1388. [Google Scholar] [CrossRef]
- Farzinmehr, S.; Rezaei, J.H.; Fazaeli, H. Effect of harvesting frequency and maturity stage of Jerusalem artichoke forage on yield, chemical composition and in vitro fermentation of the tubers and forage. Span. J. Agric. Res. 2020, 18, e0602. [Google Scholar] [CrossRef]
- Labergh, C.; Sackston, W.E. Adaptability and diseases of Jerusalem artichoke (Helianthus tuberosus) in Quebec. Can. J. Plant. Sci. 1987, 67, 349–353. [Google Scholar] [CrossRef]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Growing and Processing Technologies of Energy Crops, Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; Rivža, P., Rivža, S., Eds.; Latvia University of Agriculture: Jelgava, Latvia, 2012; pp. 66–72. [Google Scholar]
- Chupina, M.P.; Stepanov, A.F. Assessment of photosynthetic productivity of new perennial forage crops in forest-steppe conditions of Western Siberia. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012121. [Google Scholar] [CrossRef]
- Cepl, J.; Kasal, P.; Souckova, H.; Svobodova, A.; Bucher, P. Non-food production of Jerusalem artichoke (Helianthus tuberosus) and possibilities of its energetic utilization. In Actual Tasks on Agricultural Engineering, Proceedings of the 40th International Symposium on Agricultural Engineering, Opatija, Croatia, 21–24 February 2012; University of Zagreb Faculty of Agriculture: Zagreb, Croatia, 2012; pp. 517–526. [Google Scholar]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of bioactive phytochemicals in leaf protein concentrate of Jerusalem artichoke (Helianthus tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Faber, A.; Stasiak, M.; Kuś, J. Preliminary evaluation of productivity of the selected energy crops. Prog. Plant Protect. 2007, 47, 339–346. (In Polish) [Google Scholar]
- Baldini, M.; Danuso, F.; Turi, M.; Vannozzi, G.P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind. Crops Prod. 2004, 19, 25–40. [Google Scholar] [CrossRef]
- Englert, H.; Lewandowski, I.; Böhmel, C.; Vetter, A.; Hartmann, H. Angebaute Biomasse. In Energie aus Biomasse; Kaltschmitt, M., Hartmann, H., Hofbauer, H., Eds.; Springer: Berlin-Heidelberg, Germany, 2009; pp. 75–134. (In German) [Google Scholar]
- Liebhard, P.; Zeitlhofer, C.; Kaul, H.P.; Amon, T. Methanbildungsvermögen und Biogasqualität bei der Vergärung von Topinamburkraut. In Topinambur-eine Pflanze mit vielen Verwendungsmöglichkeiten; Landwirtschaftliches Technologiezentrum Augustenberg (LTZ): Karlsruhe, Germany, 2009; pp. 2.11–2.17. Available online: https://www.topinambur-verein.de/Download/Wissenswertes/Workshop-Tagungsband.pdf (accessed on 5 April 2024). (In German)
- Kai, G.; Tie-Xia, X.; Qi-Bing, W. Nitrogen fertilization, irrigation, and harvest times affect biomass and energy value of Helianthus tuberosus L. J. Plant Nutr. 2016, 39, 1906–1914. [Google Scholar] [CrossRef]
- Gao, K.; Zhu, T.; Han, G. Water and nitrogen interactively increased the biomass production of Jerusalem artichoke (Helianthus tuberosus L.) in semi-arid area. Afr. J. Biotechnol. 2011, 10, 6466–6472. [Google Scholar]
- Mays, D.A.; Buchanan, W.; Bradford, B.N.; Giordano, P.M. Fuel production potential of several agricultural crops. In Advances in New Crops, Proceedings of the First National Symposium “New Crops: Research, Development, Economics”, Indianapolis, IN, USA, 23–26 October 1990; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 260–263. [Google Scholar]
- Solé-Bundó, M.; Cucina, M.; Folch, M.; Tàpias, J.; Gigliotti, G.; Garfi, M.; Ferrer, I. Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Sci. Total Environ. 2017, 586, 1–9. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Mata-Alvarez, J.; Chimenos Rivera, J.M.; Garcia, S.A. Nutrient recovery technologies for anaerobic digestion systems: An overview. Rev. Ion 2016, 29, 7–26. [Google Scholar] [CrossRef]
- Cavalli, D.; Cabassi, G.; Borrelli, L.; Geromel, G.; Degano, L.; Gallina, P.M. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur. J. Agron. 2016, 73, 34–41. [Google Scholar] [CrossRef]
- Lošák, T.; Hlušek, J.; Válka, T.; Elbl, J.; Vitěz, T.; Běliková, H.; von Bennewitz, E. The effect of fertilization with digestate on kohlrabi yields and quality. Plant Soil Environ. 2016, 62, 274–278. [Google Scholar] [CrossRef]
- Szymańska, M.; Szara, E.; Sosulski, T.; Stępień, W.; Pilarski, K.; Pilarska, A.A. Chemical properties and fertilizer value of ten different anaerobic digestates. Fresenius Environ. Bull. 2018, 27, 3425–3432. [Google Scholar]
- Siebielec, G.; Siebielec, S.; Lipski, D. Long-term impact of sewage sludge, digestate, and mineral fertilizers on plant yield and soil biological activity. J. Clean. Prod. 2018, 178, 372–379. [Google Scholar] [CrossRef]
- Sapp, M.; Harrison, M.; Hany, U.; Charlton, A.; Thwaites, R. Comparing the effect of digestate and chemical fertiliser on soil bacteria. Appl. Soil. Ecol. 2015, 86, 1–9. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Yield, content and nutrient uptake by winter wheat and spring barley in response to applications of digestate, cattle slurry and NPK mineral fertilizers. Arch. Agron. Soil Sci. 2020, 66, 1481–1496. [Google Scholar] [CrossRef]
- Jamison, J.; Khanal, S.K.; Nguyen, N.H.; Deenik, J.L. Assessing the effects of digestates and combinations of digestates and fertilizer on yield and nutrient use of Brassica juncea (Kai Choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Båth, B.; Elfstrand, S. Use of red clover-based green manure in leek cultivation. Biol. Agric. Hortic. 2008, 25, 269–286. [Google Scholar] [CrossRef]
- Kolář, L.; Kužel, S.; Peterka, J.; Štindl, P.; Plát, V. Agrochemical value of organic matter of fermenter wastes in biogas production. Plant Soil Environ. 2008, 54, 321–328. [Google Scholar] [CrossRef]
- Kupper, L.; Bucheli, T.D.; Brandi, R.C.; Ortelli, D.; Edder, P. Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants. Bioresour. Technol. 2008, 99, 7988–7994. [Google Scholar] [CrossRef]
- Kolář, L.; Kužel, S.; Peterka, J.; Borová-Batt, J. Agrochemical value of the liquid phase of wastes from fermenters during biogas production. Plant Soil Environ. 2010, 56, 23–27. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Ferrer-Costa, A.; Carrasco, L.; Cegarra, J.; Abad, M.; Bernal, M.P. Assessment of the fertiliser potential of digestate from farm and agroindustrial residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Pivato, A.; Vanin, S.; Raga, R.; Lavagnolo, M.C.; Barausse, A.; Rieple, A.; Laurent, A.; Cossu, R. Use of digestate from decentralized on-farm biogas plant as fertilizer in soil: An ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 2016, 49, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Tigini, V.; Franchino, M.; Bona, F.; Varese, G.C. Is digestate safe? A study on its ecotoxicity and environmental risk on pig manure. Sci. Total Environ. 2016, 551–552, 127–132. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, K.L.; Chong, C.; Voroney, R.P.; Liu, H.W.; Holbein, B.E. Assessing the potential phytotoxicity of digestates during processing of municipal solid waste by anaerobic digestion: Comparison to aerobic compost. Acta Hortic. 2004, 638, 225–230. [Google Scholar] [CrossRef]
- Teglia, C.; Tremier, A.; Martel, J.L. Characterization of solid digestate: Part II, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valoriz. 2011, 2, 113–126. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recyc. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef]
- Amaducci, S.; Colauzzi, M.; Battini, F.; Fracasso, A.; Perego, A. Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. Eur. J. Agron. 2016, 76, 54–65. [Google Scholar] [CrossRef]
- Garofalo, P.; D’Andrea, L.; Vonella, A.V.; Rinaldi, M.; Palumbo, A.D. Sweet sorghum in a bioethanol supply chain: Effects of different soil and nitrogen management on energy performances and greenhouse gas emissions. Ital. J. Agrometeorol. 2016, 21, 15–24. [Google Scholar]
- Ivanova, T.; Muntean, A.; Titei, V.; Havrland, B.; Kolarikova, M. Energy crops utilization as an alternative agricultural production. Agron. Res. 2015, 13, 311–317. [Google Scholar]
- Seleiman, M.F.; Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.L.; Mäkelä, P.S.A. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
Farming Operation | Specification |
---|---|
Tillage a | Skimming (5–8 cm); harrowing, fall plowing (18–22 cm); two treatments with a cultivation unit (5–8 cm) |
Planting a | 20 April 2021; cv. Medius, row spacing: 75 × 30 cm; planting depth: 6–8 cm; density: 4.4 tubers m−2; disc hilling treatments between rows |
Mineral fertilization b | 50, 75, and 100 kg N ha−1 (ammonium nitrate, 34%); 65 kg P2O5 ha−1 (enriched superphosphate, 40%); 140 kg K2O ha−1 (potash salt, 60%) (20 April 2021; 13 April 2022; 20 April 2023) |
Digestate application b | At the rates presented in Table S1 (20 April 2021; 13 April 2022; 20 April 2023) |
Weed control b | Two disc hilling treatments between rows (after fertilization and after crop emergence) |
Pathogen control b | 200 g ha−1 azoxystrobin and 125 g ha−1 difenoconazole (25 June 2021; 30 June 2022; 3 July 2023) |
Harvest and transport of aerial biomass b | 21 September 2021, 21 September 2022, 22 September 2023 |
Source | Unit | Input | References |
---|---|---|---|
Labor | MJ h−1 | 80 | Wójcicki [88] |
Tractors | MJ kg−1 | 125 | Wójcicki [88] |
Machines | MJ kg−1 | 110 | Wójcicki [88] |
Diesel oil | MJ kg−1 | 48 | Wójcicki [88] |
Tubers | MJ kg−1 | 3.2 | Fang et al. [45] |
N | MJ kg−1 | 77 | Wójcicki [88] |
P2O5 | MJ kg−1 | 15 | Wójcicki [88] |
K2O | MJ kg−1 | 10 | Wójcicki [88] |
Digestate a | MJ kg−1 | 0.2 | Wójcicki [88] |
Pesticides | MJ kg−1 active ingredient | 300 | Wójcicki [88] |
Parameter | Year | Fertilization Strategy | Year × Fertilization Strategy |
---|---|---|---|
Fresh matter yield (Mg ha−1) | 921.301 ** | 12.993 ** | 1.688 ns |
Dry matter content (g kg−1) | 18.928 ** | 0.449 ns | 0.854 ns |
Dry matter yield (Mg ha−1) | 211.137 ** | 3.153 ** | 0.364 ns |
Lower heating value (MJ ha−1) | 2.780 ns | 2.490 ** | 1.153 ns |
Energy output (GJ ha−1) | 597.494 ** | 12.142 ** | 1.566 ns |
Energy gain (GJ ha−1) | 802.468 ** | 15.848 ** | 1.346 ns |
Energy efficiency ratio | 41.445 ** | 11.170 ** | 1.935 ns |
Month | Year | 1981–2010 | ||
---|---|---|---|---|
2021 | 2022 | 2023 | ||
Total monthly rainfall (mm) | ||||
January | 45.2 | 60.5 | 54.2 | 36.4 |
February | 9.5 | 81.2 | 38.5 | 24.2 |
March | 38.2 | 0.0 | 52.8 | 32.9 |
April | 38.5 | 26.0 | 21.2 | 33.3 |
May | 85.0 | 48.1 | 16.3 | 58.5 |
June | 69.8 | 104.4 | 48.9 | 84.0 |
July | 178.4 | 63.3 | 34.0 | 74.2 |
August | 136.4 | 29.6 | 131.7 | 59.4 |
September | 25.0 | 52.5 | 23.2 | 56.9 |
October | 24.4 | 19.9 | 59.8 | 42.6 |
November | 35.0 | 10.3 | 73.5 | 44.8 |
December | 19.2 | 41.6 | 60.1 | 38.2 |
Total | 704.6 | 537.4 | 614.2 | 581.8 |
Mean daily temperature (°C) | ||||
January | −2.0 | 0.4 | 2.1 | −2.4 |
February | −3.9 | 1.8 | 0.8 | −1.7 |
March | 1.8 | 1.8 | 2.6 | 1.8 |
April | 5.0 | 5.7 | 6.7 | 7.7 |
May | 10.9 | 11.2 | 11.8 | 13.5 |
June | 18.7 | 17.1 | 16.8 | 16.1 |
July | 20.8 | 17.4 | 17.9 | 18.7 |
August | 16.4 | 20.0 | 18.5 | 17.9 |
September | 12.4 | 10.8 | 16.3 | 12.8 |
October | 8.3 | 10.2 | 8.7 | 8.0 |
November | 4.6 | 3.7 | 2.7 | 2.9 |
December | −1.9 | −0.7 | 0.8 | −0.9 |
Average | 7.7 | 8.3 | 8.8 | 7.9 |
Operation | 2021 | 2022 | 2023 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | ||||||||||
MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | ||||
Energy inputs (MJ ha−1) | |||||||||||||||||||||
Tillage | 2257 | 2257 | 2257 | 2257 | 2257 | 2257 | 2257 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Planting | 8072 | 8072 | 8072 | 8072 | 8072 | 8072 | 8072 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fertilization | 0 | 6307 | 2539 | 8232 | 3933 | 10,157 | 5078 | 0 | 6307 | 2351 | 8232 | 3651 | 10,157 | 4702 | 0 | 6307 | 2423 | 8232 | 3757 | 10,157 | 4844 |
Weed control | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 | 1258 |
Pathogen control | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 |
Harvest and transport | 4421 | 4421 | 4421 | 4421 | 4421 | 4421 | 4421 | 2408 | 3414 | 3414 | 3020 | 3020 | 3020 | 3414 | 1474 | 2211 | 1474 | 1474 | 1474 | 1474 | 1474 |
Total | 16,166 | 22,473 | 18,705 | 24,398 | 20,100 | 26,323 | 21,244 | 3824 | 11,138 | 7182 | 12,668 | 8088 | 14,593 | 9533 | 2890 | 9934 | 5313 | 11,122 | 6647 | 13,047 | 7734 |
Energy input structure (%) | |||||||||||||||||||||
Tillage | 14.0 | 10.0 | 12.1 | 9.2 | 11.2 | 8.6 | 10.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Planting | 49.9 | 35.9 | 43.2 | 33.1 | 40.2 | 30.7 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fertilization | 0.0 | 28.1 | 13.6 | 33.7 | 19.6 | 38.6 | 23.9 | 0.0 | 56.6 | 32.7 | 65.0 | 45.1 | 69.6 | 49.3 | 0.0 | 63.5 | 45.6 | 74.0 | 56.5 | 77.8 | 62.6 |
Weed control | 7.8 | 5.6 | 6.7 | 5.2 | 6.3 | 4.8 | 5.9 | 32.9 | 11.3 | 17.5 | 9.9 | 15.6 | 8.6 | 13.2 | 43.5 | 12.7 | 23.7 | 11.3 | 18.9 | 9.6 | 16.3 |
Pathogen control | 1.0 | 0.7 | 0.8 | 0.6 | 0.8 | 0.6 | 0.7 | 4.1 | 1.4 | 2.2 | 1.2 | 2.0 | 1.1 | 1.7 | 5.5 | 1.6 | 3.0 | 1.4 | 2.4 | 1.2 | 2.0 |
Harvest and transport | 27.3 | 19.7 | 23.6 | 18.1 | 22.0 | 16.8 | 20.8 | 63.0 | 30.7 | 47.5 | 23.8 | 37.3 | 20.7 | 35.8 | 51.0 | 22.3 | 27.7 | 13.3 | 22.2 | 11.3 | 19.1 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Specification | 2021 | 2022 | 2023 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | C | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | ||||||||||
MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | MF | D | ||||
Energy inputs (MJ ha−1) | |||||||||||||||||||||
Labor | 686 | 688 | 696 | 688 | 704 | 688 | 706 | 243 | 282 | 290 | 274 | 289 | 274 | 300 | 213 | 241 | 223 | 216 | 231 | 216 | 233 |
Tractors and machines | 1956 | 2006 | 2265 | 2006 | 2497 | 2006 | 2574 | 835 | 1152 | 1412 | 1126 | 1617 | 1126 | 1721 | 640 | 872 | 949 | 689 | 1180 | 689 | 1258 |
Fuel | 6386 | 6417 | 6566 | 6417 | 6701 | 6417 | 6746 | 2648 | 3381 | 3531 | 3021 | 3306 | 3021 | 3711 | 1939 | 2498 | 2119 | 1970 | 2254 | 1970 | 2299 |
Materials: | 7138 | 13,363 | 9178 | 15,288 | 10,198 | 17,213 | 11,218 | 98 | 6323 | 1950 | 8248 | 2876 | 10,173 | 3802 | 98 | 6323 | 2022 | 8248 | 2982 | 10,173 | 3944 |
| 7040 | 7040 | 7040 | 7040 | 7040 | 7040 | 7040 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 6225 | 0 | 8150 | 0 | 10,075 | 0 | 0 | 6225 | 0 | 8150 | 0 | 10,075 | 0 | 0 | 6225 | 0 | 8150 | 0 | 10,075 | 0 |
| 0 | 0 | 2040 | 0 | 3060 | 0 | 4080 | 0 | 0 | 1852 | 0 | 2778 | 0 | 3704 | 0 | 0 | 1924 | 0 | 2884 | 0 | 3846 |
| 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
Total | 16,166 | 22,473 | 18,705 | 24,398 | 20,100 | 26,323 | 21,244 | 3824 | 11,138 | 7182 | 12,668 | 8088 | 14,593 | 9533 | 2890 | 9934 | 5313 | 11,122 | 6647 | 13,047 | 7734 |
Energy input structure (%) | |||||||||||||||||||||
Labor | 4.2 | 3.1 | 3.7 | 2.8 | 3.5 | 2.6 | 3.3 | 6.4 | 2.5 | 4.0 | 2.2 | 3.6 | 1.9 | 3.1 | 7.4 | 2.4 | 4.2 | 1.9 | 3.5 | 1.7 | 3.0 |
Tractors and machines | 12.1 | 8.9 | 12.1 | 8.2 | 12.4 | 7.6 | 12.1 | 21.8 | 10.3 | 19.7 | 8.9 | 20.0 | 7.7 | 18.1 | 22.1 | 8.8 | 17.9 | 6.2 | 17.8 | 5.3 | 16.3 |
Fuel | 39.5 | 28.6 | 35.1 | 26.3 | 33.3 | 24.4 | 31.8 | 69.2 | 30.4 | 49.2 | 23.8 | 40.9 | 20.7 | 38.9 | 67.1 | 25.1 | 39.9 | 17.7 | 33.9 | 15.1 | 29.7 |
Materials: | 44.2 | 59.5 | 49.1 | 62.7 | 50.7 | 65.4 | 52.8 | 2.5 | 56.8 | 27.1 | 65.1 | 35.6 | 69.7 | 39.9 | 3.4 | 63.6 | 38.0 | 74.2 | 44.9 | 78.0 | 51.0 |
| 43.5 | 31.3 | 37.6 | 28.9 | 35.0 | 26.7 | 33.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 27.7 | 0.0 | 33.4 | 0.0 | 38.3 | 0.0 | 0.0 | 55.9 | 0.0 | 64.3 | 0.0 | 69.0 | 0.0 | 0.0 | 62.7 | 0.0 | 73.3 | 0.0 | 77.2 | 0.0 |
| 0.0 | 0.0 | 10.9 | 0.0 | 15.2 | 0.0 | 19.2 | 0.0 | 0.0 | 25.8 | 0.0 | 34.3 | 0.0 | 38.9 | 0.0 | 0.0 | 36.2 | 0.0 | 43.4 | 0.0 | 49.7 |
| 0.6 | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | 2.5 | 0.9 | 1.4 | 0.8 | 1.2 | 0.7 | 1.0 | 3.4 | 1.0 | 1.8 | 0.9 | 1.5 | 0.7 | 1.3 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Parameter | Fertilization Strategy | ||||||
---|---|---|---|---|---|---|---|
Unfertilized Control | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | ||||
Mineral Fertilizers | Digestate | Mineral Fertilizers | Digestate | Mineral Fertilizers | Digestate | ||
Fresh matter yield (Mg ha−1) | 34.3 c | 48.1 ab | 45.3 b | 49.8 ab | 53.3 a | 46.0 b | 46.1 b |
Dry matter content (g kg−1) | 367.3 | 369.6 | 366.6 | 364.1 | 366.9 | 369.4 | 365.0 |
Dry matter yield (Mg ha−1) | 12.5 d | 17.5 bc | 16.3 c | 17.9 b | 19.4 a | 16.8 bc | 16.7 bc |
Parameter | Fertilization Strategy | ||||||
---|---|---|---|---|---|---|---|
Unfertilized Control | 50 kg N ha−1 | 75 kg N ha−1 | 100 kg N ha−1 | ||||
Mineral Fertilizers | Digestate | Mineral Fertilizers | Digestate | Mineral Fertilizers | Digestate | ||
Energy output (GJ ha−1) | 134.8 c | 208.7 ab | 191.2 b | 230.1 a | 210.7 ab | 198.1 ab | 197.0 ab |
Energy gain (MJ ha−1) | 127.2 c | 194.2 ab | 180.8 b | 194.6 ab | 218.5 a | 180.2 b | 184.2 b |
Energy efficiency ratio | 20.1 a | 13.4 bc | 17.7 ab | 12.6 c | 19.7 a | 10.2 c | 14.6 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, K.J.; Dubis, B. Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass. Energies 2024, 17, 5202. https://doi.org/10.3390/en17205202
Jankowski KJ, Dubis B. Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass. Energies. 2024; 17(20):5202. https://doi.org/10.3390/en17205202
Chicago/Turabian StyleJankowski, Krzysztof Józef, and Bogdan Dubis. 2024. "Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass" Energies 17, no. 20: 5202. https://doi.org/10.3390/en17205202
APA StyleJankowski, K. J., & Dubis, B. (2024). Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass. Energies, 17(20), 5202. https://doi.org/10.3390/en17205202