Empirical Evaluation of the Replacement of Conventionally Powered Vehicles with Hybrid and Electric Vehicles on the Example of the Poznań Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Test Route
2.3. Measurement Equipment
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, Q.; Tian, S.; Cai, W. Powertrain hybridization and parameter optimization design of a conventional fuel vehicle based on the multi-objective particle swarm optimization algorithm. SAE Int. J. Pass. Veh. Syst. 2022, 15, 151–168. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle (accessed on 21 May 2023).
- Available online: https://climate.ec.europa.eu/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles_en (accessed on 17 June 2023).
- Available online: https://stat.gov.pl (accessed on 14 July 2023).
- Available online: https://cepik.gov.pl (accessed on 15 July 2023).
- Available online: https://www.iea.org/reports/electric-vehicles (accessed on 4 July 2023).
- Kowalska-Pyzalska, A.; Kott, M.; Kott, J. How much polish consumers know about alternative fuel vehicles? Impact of knowledge on the willingness to buy. Energies 2021, 14, 1438. [Google Scholar] [CrossRef]
- Raport European Automobile Manufacturers Association: Vehicles in use Europe 2022. Available online: https://www.acea.auto/files/ACEA-report-vehicles-in-use-europe-2022.pdf (accessed on 11 July 2023).
- Goetzel, N.; Hasanuzzaman, M. An empirical analysis of electric vehicle cost trends: A case study in Germany. Res. Transp. Bus. Manag. 2022, 43, 100825. [Google Scholar] [CrossRef]
- Zhuge, C.; Shao, C.; Li, X. Empirical analysis of parking behaviour of conventional and electric vehicles for parking modelling: A case study of Beijing, China. Energies 2019, 12, 3073. [Google Scholar] [CrossRef]
- Kucukvar, M.; Onat, N.C.; Kutty, A.A.; Abdella, G.M.; Bulak, M.E.; Ansari, F.; Kumbaroglu, G. Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios. J. Clean. Prod. 2022, 335, 130291. [Google Scholar] [CrossRef]
- Plötz, P.; Moll, C.; Bieker, G.; Mock, P. From lab-to-road: Real-world fuel consumption and CO2 emissions of plug-in hybrid electric vehicles. Environ. Res. Lett. 2021, 16, 054078. [Google Scholar] [CrossRef]
- Feinauer, M.; Ehrenberger, S.; Epple, F.; Schripp, T.; Grein, T. Investigating Particulate and Nitrogen Oxides Emissions of a Plug-In Hybrid Electric Vehicle for a Real-World Driving Scenario. Appl. Sci. 2022, 12, 1404. [Google Scholar] [CrossRef]
- Prati, M.V.; Costagliola, M.A.; Giuzio, R.; Corsetti, C.; Beatrice, C. Emissions and energy consumption of a plug-in hybrid passenger car in Real Driving Emission (RDE) test. Transp. Eng. 2021, 4, 100069. [Google Scholar] [CrossRef]
- Alvarez, R.; Weilenmann, M. Effect of low ambient temperature on fuel consumption and pollutants and CO2 emissions of hybrid electric vehicles in real-world conditions. Fuel. 2012, 97, 119–124. [Google Scholar] [CrossRef]
- Conway, G.; Joshi, A.; Leach, F.; García, A.; Senecal, P.K. A review of current and future powertrain technologies and trends in 2020. Transp. Eng. 2021, 5, 100080. [Google Scholar] [CrossRef]
- Fathabadi, H. Hybrydowy pojazd elektryczny z ogniwami paliwowymi (FCHEV): Nowy hybrydowy system wytwarzania energii z ogniwami paliwowymi. Energy Convers. Manag. 2018, 156, 192–201. [Google Scholar] [CrossRef]
- Varella, R.A.; Giechaskiel, B.; Sousa, L.; Duarte, G. Comparison of Portable Emissions Measurement Systems (PEMS) with Laboratory Grade Equipment. Appl. Sci. 2018, 8, 1633. [Google Scholar] [CrossRef]
- Morales, V.V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Bonnel, P. On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe; SAE Technical Paper, 2020-01-2219; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Merkisz, J.; Pielecha, J.; Bielaczyc, P.; Woodburn, J.; Szalek, A. A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car; SAE Technical Paper, 2020-01-2217; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Pielecha, I.; Szwajca, F. Współpraca ogniwa paliwowego PEM i akumulatora NiMH przy różnych stanach jego naładowania w napędzie FCHEV. Eksploat. Niezawodn. 2021, 23, 468–475. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J. Power Sources 2006, 159, 2. [Google Scholar] [CrossRef]
- Stępień, Z. A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Zhu, Q.; Luo, J.; Yang, Z.; Su, S.; Wang, X.; Hao, L.; Tan, J.; Yin, H.; et al. Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes. Energy 2022, 244, 123076. [Google Scholar]
- Pielecha, J.; Skobiej, K.; Kurtyka, K. Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid and Electric Vehicles in Real Driving Cycles. Energies 2020, 13, 6423. [Google Scholar] [CrossRef]
- Huang, R.; Ni, J.; Zheng, T.; Wang, Q.; Shi, X.; Cheng, Z. Characterizing and assessing the fuel economy, particle number and gaseous emissions performance of hybrid electric and conventional vehicles under different driving modes. Atmos. Pollut. Res. 2022, 13, 101597. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Woźniak, K.; Daszkiewicz, P.; Andrzejewski, M. Research on Energy Consumption by Vehicles in Real-Time Conditions. Napędy I Sterow. 2020, 1, 74–79. [Google Scholar]
- Rymaniak, Ł.; Woźniak, K.; Andrzejewski, M. Pomiary zużycia paliwa i energii elektrycznej pojazdów. Pojazdy Szyn. 2019, 4, 53–61. [Google Scholar]
- Fuc, P.; Rymaniak, L.; Ziolkowski, A.; Andrzejewski, M.; Daszkiewicz, P. Pollutant emissions analysis of a hybrid drive bus in a SORT 2 test. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 042020. [Google Scholar] [CrossRef]
- Selleri, T.; Melas, A.D.; Franzetti, J.; Ferrarese, C.; Giechaskiel, B.; Suarez-Bertoa, R. On-Road and Laboratory Emissions from Three Gasoline Plug-In Hybrid Vehicles—Part 1: Regulated and Unregulated Gaseous Pollutants and Greenhouse Gases. Energies 2022, 15, 2401. [Google Scholar] [CrossRef]
- Ziolkowski, A.; Daszkiewicz, P.; Rymaniak, Ł.; Fuć, P.; Ukleja, P. Analysis of the exhaust emissions from a hybrid vehicle during RDE tests. MATEC Web. Conf. 2019, 294, 02002. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, I. Alternatywne Źródła Napędowe; Wydawnistwo Politechniki Poznańskiej: Poznań, Poland, 2006. [Google Scholar]
- Li, C.; Sato, S.; Ma, T.; Johnson, K.C.; Durbin, T.; Karavalakis, G. Real-Word Evaluation of Pollutant Emissions from a Light-Duty DI-Gasoline Hybrid Electric Vehicle (HEV) Using PEMS. Emiss. Control Sci. Technol. 2023, 9, 1–11. [Google Scholar] [CrossRef]
Vehicle A | Vehicle B | Vehicle C | |
---|---|---|---|
Ignition | Spark ignition | Compression ignition | Spark ignition |
Displacement | 1.2 dm3 | 2.2 dm3 | 2.5 dm3 |
Number and arrangement of cylinders | 4 in-line | 4 in-line | 4 in-line |
Maximum power output of combustion engine | 77 kW | 150 kW | 133 kW |
Maximum power output of electric engine | - | - | 105 kW |
Injection system | GDI | Common Rail | GDI |
Aftertreatment | TWC with lambda control | EGR, DPF, DOC, SCR | TWC with lambda control |
Transmission | Automatic | Automatic | Automatic |
External dimensions length/width/height | 4.06/1.69/1.45 m | 4.82/1.94/1.80 m | 4.85/1.84/1.46 m |
Unit power output index | 0.49 kW/kg | 0.53 kW/kg | 0.72 kW/kg |
Total weight | 1 540 kg | 2 950 kg | 2 235 kg |
Parameter | Measurement Method | Measurement Range | Measurement Accuracy |
---|---|---|---|
CO2 | Non-dispresive infrared (NDIR) | 0–20% | ±3% measurement range |
CO | Non-dispresive infrared (NDIR) | 0–10 % | ±3% measurement range |
NOX = NO + NO2 | Non-dispresive ultraviolet (NDUV) | NO: 0–2500 ppm NO2: 0–500 ppm | ±3% measurement range |
HC | Flame ionization (FID) | 0–1% | ±2.5% measurement range |
O2 | Electrochemical (EC) | 0–20% | ±2.5% measurement range |
Exhaust gas flow | Mass flow Tmax up to 700 °C | ± 2.5% ± 1% measurement range |
THC | ||
---|---|---|
Configuration | Emission | Decrease/Increase |
presently | 39.50 [kg/km] | 0% |
100% HEV | 37.16 [kg/km] | −5.93% |
100% EV | 11.72 [kg/km] | −70.34% |
50%/50% HEV/EV | 24.44 [kg/km] | −38.13% |
75%/25% HEV/EV | 30.80 [kg/km] | −22.03% |
NOx | ||
---|---|---|
Configuration | Emission | Decrease/Increase |
presently | 76.66 [kg/km] | 0% |
100% HEV | 61.94 [kg/km] | −19.21% |
100% EV | 19.53 [kg/km] | −74.52% |
50%/50% HEV/EV | 40.73 [kg/km] | −46.87% |
75%/25% HEV/EV | 51.33 [kg/km] | −33.04% |
CO2 | ||
---|---|---|
Configuration | Emission | Decrease/Increase |
presently | 72.55 [t/km] | 0% |
100% HEV | 67.42 [t/km] | −7.07% |
100% EV | 21.26 [t/km] | −70.70% |
50%/50% HEV/EV | 45.18 [t/km] | −37.72% |
75%/25% HEV/EV | 57.14 [t/km] | −21.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagielski, A.; Ziółkowski, A.; Bednarek, M.; Siedlecki, M. Empirical Evaluation of the Replacement of Conventionally Powered Vehicles with Hybrid and Electric Vehicles on the Example of the Poznań Agglomeration. Energies 2024, 17, 5247. https://doi.org/10.3390/en17215247
Jagielski A, Ziółkowski A, Bednarek M, Siedlecki M. Empirical Evaluation of the Replacement of Conventionally Powered Vehicles with Hybrid and Electric Vehicles on the Example of the Poznań Agglomeration. Energies. 2024; 17(21):5247. https://doi.org/10.3390/en17215247
Chicago/Turabian StyleJagielski, Aleks, Andrzej Ziółkowski, Maciej Bednarek, and Maciej Siedlecki. 2024. "Empirical Evaluation of the Replacement of Conventionally Powered Vehicles with Hybrid and Electric Vehicles on the Example of the Poznań Agglomeration" Energies 17, no. 21: 5247. https://doi.org/10.3390/en17215247
APA StyleJagielski, A., Ziółkowski, A., Bednarek, M., & Siedlecki, M. (2024). Empirical Evaluation of the Replacement of Conventionally Powered Vehicles with Hybrid and Electric Vehicles on the Example of the Poznań Agglomeration. Energies, 17(21), 5247. https://doi.org/10.3390/en17215247