Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Aims and Contributions
- The ACO algorithm has been adapted for the generation of scenarios, which supposes a novel algorithm in the area. It can generate new scenarios from historical data that accurately represent the range of the case under study.
- The algorithm takes a specific number of scenarios as input to generate them, specified by the user. Those scenarios are spread over the space according to the historical dataset. Subsequently, post-processing for scenario reduction is unnecessary, as is common in this field. Moreover, the necessity for a probability distribution study is negated by this approach.
1.4. Structure
2. Materials and Methods
2.1. Data: Pre-Processing and Clustering
2.2. ACO Algorithm
Algorithm 1: Pseudocode for a Classic ACO |
While the objective is not satisfied do For n from 1 to ant N do Ant state ← Initialize randomly For p from 1 to point P do Compute heuristic Ant n chooses point p in the space S End for Update best solution End for Update pheromone End While |
2.3. Problem Adaptation
Algorithm 2: Pseudocode for the Proposed ACO-SG |
Clusters = KMeans_algorithm(historical_dataset) While the objective is not satisfied do For n from 1 to ant N do Ant state ← Initialize to point zero For t from 1 to time T do For p from 1 to point P(t) do Compute heuristic Ant n chooses point p at time t End for End for Update best solution End for Update pheromone End While |
3. Case Study
3.1. Pre-Processing and Clustering of Case Study
3.2. Algorithm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European-Comission. A European Green Deal. January 2020. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 24 September 2024).
- Hewitt, M.; Ortmann, J.; Rei, W. Decision-based scenario clustering for decision-making under uncertainty. Ann. Oper. Res. 2021, 315, 747–771. [Google Scholar] [CrossRef]
- Bounitsis, G.L.; Papageorgiou, L.G.; Charitopoulos, V.M. Data-driven scenario generation for two-stage stochastic programming. Chem. Eng. Res. Des. 2022, 187, 206–224. [Google Scholar] [CrossRef]
- Di Somma, M.; Buonanno, A.; Caliano, M.; Graditi, G.; Piazza, G.; Bracco, S.; Delfino, F. Stochastic Operation Optimization of the Smart Savona Campus as an Integrated Local Energy Community Considering Energy Costs and Carbon Emissions. Energies 2022, 15, 8418. [Google Scholar] [CrossRef]
- Bracco, S.; Delfino, F.; Laiolo, P.; Morini, A. Planning & Open-Air Demonstrating Smart City Sustainable Districts. Sustainability 2018, 10, 4636. [Google Scholar] [CrossRef]
- University of Genoa Energia 2020 Project. Available online: http://www.energia2020.unige.it/en/home/ (accessed on 15 September 2024).
- Li, J.; Zhou, J.; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020, 280, 115992. [Google Scholar] [CrossRef]
- Bilici, S.; Kamislioglu, M.; Guclu, E.E.A. A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials. Eur. Phys. J. Plus 2023, 138, 80. [Google Scholar] [CrossRef]
- Bourcet, J.; Kubilay, A.; Derome, D.; Carmeliet, J. Representative meteorological data for long-term wind-driven rain obtained from Latin Hypercube Sampling—Application to impact analysis of climate change. Build. Environ. 2023, 228, 109875. [Google Scholar] [CrossRef]
- Jun, H.; Wei, J.; Wenjie, P.; Haoyuan, C.; Jia, Z.; Chao, C.; Zhenjian, X.; Jian, D.; Na, W. A Data-driven Distribution System Scenario Generation Method with Probabilistic Assessment of PV Station Generation. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020. [Google Scholar] [CrossRef]
- Singh, B.; Pozo, D. A Guide to Solar Power Forecasting using ARMA Models. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J. Synthetic Wind Speed Scenarios Generation using Artificial Neural Networks for Probabilistic Analysis of Hybrid Energy Systems. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021. [Google Scholar] [CrossRef]
- Dong, W.; Chen, X.; Yang, Q. Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. Appl. Energy 2022, 308, 118387. [Google Scholar] [CrossRef]
- Ji, X.; Li, C.; Xie, B.; Wang, Y.; Wang, Q. A Wind Power Scenario Simulation Method Considering Trend and Randomness. In The Proceedings of the 16th Annual Conference of China Electrotechnical Society; Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2022; pp. 1043–1050. [Google Scholar] [CrossRef]
- Bode, A.; Lamasigi, Z.Y.; Drajana, I.C.R. The K-Nearest Neighbor Algorithm using Forward Selection and Backward Elimination in Predicting the Student’s Satisfaction Level of University Ichsan Gorontalo toward Online Lectures during the COVID-19 Pandemic. Ilk. J. Ilm. 2023, 15, 118–123. [Google Scholar] [CrossRef]
- Gruffaz, S.; Kim, K.; Durmus, A.O.; Gardner, J.R. Stochastic Approximation with Biased MCMC for Expectation Maximization. arXiv 2024. [Google Scholar] [CrossRef]
- Cai, D.; Shi, D.; Chen, J. Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling. IET Gener. Transm. Distrib. 2013, 7, 474–482. [Google Scholar] [CrossRef]
- Goyal, M.K.; Ojha, C.S.P. Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin. J. Hydrol. Eng. 2014, 19, 828–835. [Google Scholar] [CrossRef]
- Yadav, K.; Kumar, B.; Guerrero, J.M.; Lashab, A. A hybrid genetic algorithm and grey wolf optimizer technique for faster global peak detection in PV system under partial shading. Comput. Inform. Syst. 2022, 35, 100770. [Google Scholar] [CrossRef]
- Ruan, Y.; Qian, F.; Sun, K.; Meng, H. Optimization on building combined cooling, heating, and power system considering load uncertainty based on scenario generation method and two-stage stochastic programming. Sustain. Cities Soc. 2023, 89, 104331. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Carravilla, M.A.; Oliveira, J.F. A diversity-based genetic algorithm for scenario generation. Eur. J. Oper. Res. 2022, 299, 1128–1141. [Google Scholar] [CrossRef]
- Khezzane, K.; Doumbia, M.L.; Khoucha, F. Multi-objective Sizing of Hybrid Generation Energy System for Remote Area Using Genetic Algorithm. In Proceedings of the 2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 5–7 May 2021. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Fernandez, F.V.; Gielen, G.G.E. An Efficient Evolutionary Algorithm for Chance-Constrained Bi-Objective Stochastic Optimization. IEEE Trans. Evol. Comput. 2013, 17, 786–796. [Google Scholar] [CrossRef]
- Eltamaly, A.M. Musical chairs algorithm for parameters estimation of PV cells. Sol. Energy 2022, 241, 601–620. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z. Ant colony optimization for traveling salesman problem based on parameters optimization. Appl. Soft Comput. 2021, 107, 107439. [Google Scholar] [CrossRef]
- Godha, N.R.; Bapat, V.N.; Korachagaon, I. Ant colony optimization technique for integrating renewable DG in distribution system with techno-economic objectives. Evol. Syst. 2022, 13, 485–498. [Google Scholar] [CrossRef]
- Dong, B.; Luzin, A.; Gura, D. The hybrid method based on ant colony optimization algorithm in multiple factor analysis of the environmental impact of solar cell technologies. Math. Biosci. Eng. 2020, 17, 6342–6354. [Google Scholar] [CrossRef]
- Aghelpour, P.; Graf, R.; Tomaszewski, E. Coupling ANFIS with ant colony optimization (ACO) algorithm for 1-, 2-, and 3-days ahead forecasting of daily streamflow, a case study in Poland. Environ. Sci. Pollut. Res. 2023, 30, 56440–56463. [Google Scholar] [CrossRef] [PubMed]
- Mirza, N.; Cinel, J.; Noyes, H.; McKenzie, W.; Burgess, K.; Blackstock, S.; Sanderson, D. Simulated patient scenario development: A methodological review of validity and reliability reporting. Nurse Educ. Today 2020, 85, 104222. [Google Scholar] [CrossRef]
- Kaut, M. Scenario generation by selection from historical data. Comput. Manag. Sci. 2021, 18, 411–429. [Google Scholar] [CrossRef]
- Buonanno, A.; Caliano, M.; Somma, M.D.; Graditi, G.; Valenti, M. A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles. Energies 2022, 15, 8830. [Google Scholar] [CrossRef]
- Memari, M.; Karimi, A.; Hashemi-Dezaki, H. Reliability evaluation of smart grid using various classic and metaheuristic clustering algorithms considering system uncertainties. Int. Trans. Electr. Energy Syst. 2021, 31, e12902. [Google Scholar] [CrossRef]
- Cui, M.; Ke, D.; Sun, Y.; Gan, D.; Zhang, J.; Hodge, B.-M. Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method. IEEE Trans. Sustain. Energy 2015, 6, 422–433. [Google Scholar] [CrossRef]
- Islam, T.; Pruyt, E. Scenario generation using adaptive sampling: The case of resource scarcity. Environ. Model. Softw. 2016, 79, 285–299. [Google Scholar] [CrossRef]
- Bahri, R.S.; Sudirman, I.D.; Utama, I.D.; Susanto, R.H. Data Mining Techniques To Uncovering Customer Segments: K-Means Clustering Using The Elbow Method Approach In Medium-Scale Grocery. In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), Jakarta, Indonesia, 16 February 2023. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
N° of ants | 100 |
N° of iterations | 100 |
1 | |
1 | |
0.5 | |
Error | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Valderrama, D.; Guerrero Alonso, J.I.; León de Mora, C.; Robba, M. Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems. Energies 2024, 17, 5293. https://doi.org/10.3390/en17215293
Fernández Valderrama D, Guerrero Alonso JI, León de Mora C, Robba M. Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems. Energies. 2024; 17(21):5293. https://doi.org/10.3390/en17215293
Chicago/Turabian StyleFernández Valderrama, Daniel, Juan Ignacio Guerrero Alonso, Carlos León de Mora, and Michela Robba. 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems" Energies 17, no. 21: 5293. https://doi.org/10.3390/en17215293
APA StyleFernández Valderrama, D., Guerrero Alonso, J. I., León de Mora, C., & Robba, M. (2024). Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems. Energies, 17(21), 5293. https://doi.org/10.3390/en17215293