Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems
Abstract
:1. Introduction
- Reduced capacitance/km as opposed to very high capacitance/km in HVAC and thus lower power losses.
- The interconnection of asynchronous systems, i.e., systems with different frequencies and voltage levels, is possible.
- Unlike HVAC, there is no technical limit for HVDC transmission; therefore, it is a preferred choice for the underwater transmission of electrical power from offshore wind power systems to onshore AC networks.
- An economically viable solution for transmitting power for distances above 50–70 km.
- It involves a lesser number of conductors as compared to a three-phase HVAC system, which requires three conductors for the transmission of electrical power in the electrical power system.
- In contrast to AC cables, DC wires have neither the skin effect nor proximity impact.
2. HVDC Converter Topologies
2.1. Current Source Converter (CSC)
2.2. Voltage Source Converter (VSC)
2.3. Modular Multilevel Converter (MMC)
2.4. Challenges and Future Trends in Offshore Converter Stations
3. Wind Turbine (WT) Technologies
- Rotor components: include the blades for converting the kinetic energy of wind to low-speed rotational energy.
- Drivetrain components: usually include a gearbox or adjustable speed drive to increase the rotational speed from the low-speed rotor shaft to the high-speed generator shaft.
- Generator components: consist of a generator and the associated power electronic control systems.
- Structural support components: consist of a yaw system that orients the WT’s rotor towards the wind direction and a tower.
3.1. Type I WT Technology
3.2. Type II WT Technology
3.3. Type III WT Technology
3.4. Type IV WT Technology
4. FRT Strategies for OWF MMC-HVDC System
4.1. Fault at Onshore Side
- Grid-side faults: This type of fault often happens closer to the converter transformer’s grid side and is outside the onshore converter station [44];
- Valve-side faults: This type of fault occurs inside the converter station in between the converter station and converter transformer [45]. This section describes grid-side faults.
4.1.1. Dissipation of Excessive Power
4.1.2. Reduction of Offshore Wind Power
- OWF’s Power Reduction through AC Voltage Control: In this method, the DC link voltage is taken as a reference rather than taking the maximum transferrable power of the REC (as was the case for the communication-based power reduction method). In the occurrence of a fault at the onshore AC side, the DC link voltage exceeds the threshold value. This reduces the offshore AC grid’s voltage, which in turn causes a reduction in the active power. A local controller needs to be added at the MMC-HVDC converter station that proportionally decreases the AC voltage in response to the rise in the DC link voltage [62]:
- OWF’s Power Reduction through Frequency Control: Similar to the AC voltage control method, the DC link voltage is taken as a reference in this method. When a fault occurs on the onshore side, the offshore frequency is increased, which results in the power reduction. To achieve that, a local controller is added at the offshore MMC-HVDC converter station that proportionally increases the AC grid frequency in response to the rise in the DC link voltage [62]:
4.1.3. Storage of Excessive Power in a Flywheel
4.1.4. Coordination Between Converter Stations
4.1.5. Storage of Excessive Energy in SM Capacitance
4.1.6. Valve-Side Fault
4.2. Fault at Offshore Side
4.3. Economic and Size Challenges of FRT
5. Control Schemes for OWF MMC-HVDC Systems
5.1. Master-Slave Control
5.2. Voltage Margin Control
5.3. Voltage Droop Control
5.4. Grid-Following (GFL) and Grid-Forming (GFM) Control
6. Stability Analysis of OWF Integration in MMC-HVDC Systems
6.1. Small Signal Stability Analysis
6.1.1. Eigenvalue-Based Analysis
6.1.2. Impedance-Based Analysis
6.2. Large Disturbance Stability Analysis
7. Future Research Trends and Recommendations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MMC | Modular Multilevel Converter |
HVDC | High-voltage Direct Current |
HVAC | High-voltage Alternating Current |
OWF | Offshore Wind Farm |
LCC | Line-commutated Converter |
VSC | Voltage Source Converter |
VSG | Virtual Synchronous Generator |
FRT | Fault Ride Through |
RES | Renewable Energy Source |
PMSG | Permanent Magnet Synchronous Generator |
WRIG | Wound Rotor Induction Generator |
DFIG | Doubly-fed Induction Generator |
B2B | Back to Back |
CSC | Current Source Converter |
LOS | Loss of Synchronism |
IBR | Inverter-based Resource |
GFM | Grid Forming |
GFL | Grid Following |
WT | Wind Turbine |
References
- Teske, S.; Pregger, T.; Simon, S.; Naegler, T.; Pagenkopf, J.; Deniz, Ö.; van den Adel, B.; Dooley, K.; Meinshausen, M. It is still possible to achieve the paris climate agreement: Regional, sectoral, and land-use pathways. Energies 2021, 14, 2103. [Google Scholar] [CrossRef]
- Kumar, G.V.B.; Sarojini, R.K.; Palanisamy, K.; Padmanaban, S.; Holm-Nielsen, J.B. Large scale renewable energy integration: Issues and solutions. Energies 2019, 12, 1996. [Google Scholar] [CrossRef]
- Renewables 2023—Analysis—IEA. Available online: https://www.iea.org/reports/renewables-2023 (accessed on 8 June 2024).
- Soomro, J.B.; Kumar, D.; Chachar, F.A.; Isik, S.; Alharbi, M. An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System. Sustainability 2023, 15, 8922. [Google Scholar] [CrossRef]
- Ørsted. Making Green Energy Affordable at Ørsted, Our Vision Is a World That Runs Entirely on Green Energy. 2018. Available online: https://orsted.com/-/media/www/docs/corp/com/explore/making-green-energy-affordable-june-2019.pdf (accessed on 15 April 2024).
- GWC. Global Wind Report. 2024. Available online: https://gwec.net/global-wind-report-2024/ (accessed on 20 July 2024).
- Wu, D.; Seo, G.-S.; Xu, L.; Su, C.; Kocewiak, L.; Sun, Y.; Qin, Z. Grid Integration of Offshore Wind Power: Standards, Control, Power Quality and Transmission. IEEE Open J. Power Electron. 2024, 5, 583–604. [Google Scholar] [CrossRef]
- Ryndzionek, R.; Sienkiewicz, Ł. Evolution of the HVDC link connecting offshore wind farms to onshore power systems. Energies 2020, 13, 1914. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, F.; Yao, L.; Xu, J.; Mao, B.; Li, X.; Chen, R. A review of system topologies, key operation and control technologies for offshore wind power transmission based on HVDC. IET Gener. Transm. Distrib. 2023, 17, 3345–3363. [Google Scholar] [CrossRef]
- Keindorf, C. Offshore Wind Energy. Green Energy Technol. 2023, F670, 491–563. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Sarasúa, J.I.; Chazarra, M.; Vigueras-Rodríguez, A.; Fernández-Muñoz, D.; Molina-García, Á. Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. Int. J. Electr. Power Energy Syst. 2020, 121, 106044. [Google Scholar] [CrossRef]
- Liang, X.; Abbasipour, M. HVDC Transmission and Its Potential Application in Remote Communities: A Review. In Proceedings of the 2021 IEEE Industry Applications Society Annual Meeting (IAS), Vancouver, BC, Canada, 10–14 October 2021; pp. 1706–1719. [Google Scholar] [CrossRef]
- Imdadullah; Alamri, B.; Hossain, A.; Asghar, M.S.J. Electric power network interconnection: A review on current status, future prospects and research direction. Electronics 2021, 10, 2179. [Google Scholar] [CrossRef]
- Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar] [CrossRef]
- Rehman, B.; Rehman, A.; Khan, W.A.; Sami, I. Applied sciences Operation and Challenges of Multi-Infeed LCC—HVDC System: Commutation Failure, AC/DC Power Flow, and Voltage Stability. Appl. Sci. 2021, 11, 8637. [Google Scholar] [CrossRef]
- Watson, N.R.; Watson, J.D. An overview of HVDC technology. Energies 2020, 13, 4342. [Google Scholar] [CrossRef]
- Ludin, G.A.; Nakadomari, A.; Yona, A.; Mikkili, S.; Rangarajan, S.S.; Collins, E.R.; Senjyu, T. Technical and Economic Analysis of an HVDC Transmission System for Renewable Energy Connection in Afghanistan. Sustainability 2022, 14, 1468. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, H.; Yao, W.; Zong, Q.; Wen, J. Multi-Stage Sequential Network Energy Control for offshore AC asymmetric fault ride-through of MMC-HVDC system integrated offshore wind farms. Int. J. Electr. Power Energy Syst. 2023, 151, 109180. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Wei, X.; Qi, L.; Ji, K.; Gao, C.; He, Z. Improved Control Strategy of Current-source- Converter for HVDC System application. CSEE J. Power Energy Syst. 2022, 1–11. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, K.; Pan, J.; Li, Y.; Liu, Y. Review of hybrid HVDC systems combining line communicated converter and voltage source converter. Int. J. Electr. Power Energy Syst. 2021, 129, 106713. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, K.; Pan, J.; Xiao, L.; Gan, C.; Liu, Y. International Journal of Electrical Power and Energy Systems Coordinated frequency regulation among asynchronous AC grids with an MTDC system. Int. J. Electr. Power Energy Syst. 2020, 126, 106604. [Google Scholar] [CrossRef]
- Garciarivas, R.S.; Gonzalez, D.R.; Navarro, J.A.; Soriano, L.A.; Rubio, J.D.J.; Gomez, M.V.; Garcia, V.; Pacheco, J. Vsc-hvdc and its applications for black start restoration processes. Appl. Sci. 2021, 11, 5648. [Google Scholar] [CrossRef]
- Guo, D. Modelling of MMC-HVDC System for EMT Study. 2020. Available online: https://stax.strath.ac.uk/concern/parent/v405s938k/file_sets/9z9030184 (accessed on 25 April 2024).
- Perez, M.A.; Ceballos, S.; Konstantinou, G.; Pou, J.; Aguilera, R.P. Modular Multilevel Converters: Recent Achievements and Challenges. IEEE Open J. Ind. Electron. Soc. 2021, 2, 224–239. [Google Scholar] [CrossRef]
- Zhu, J.; Booth, C. Future multi-terminal HVDC transmission systems using voltage source converters. In Proceedings of the 45th International Universities Power Engineering Conference UPEC2010, Cardiff, UK, 31 August–3 September 2010; pp. 1–6. [Google Scholar]
- Rao, H.; Zhou, Y.; Zou, C.; Xu, S.; Li, Y.; Yang, L.; Huang, W. Design aspects of hybrid HVDC system. CSEE J. Power Energy Syst. 2020, 7, 644–653. [Google Scholar] [CrossRef]
- Xu, L.; Member, S.; Yao, L.; Sasse, C. Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission. IEEE Trans. Power Syst. 2007, 22, 976–984. [Google Scholar] [CrossRef]
- Li, G.; Liang, J. Modular Multilevel Converters: Recent Applications [History]. IEEE Electrif. Mag. 2022, 10, 85–92. [Google Scholar] [CrossRef]
- Tian, Y.; Wickramasinghe, H.R.; Li, Z.; Pou, J.; Konstantinou, G. Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications. Energies 2022, 15, 1985. [Google Scholar] [CrossRef]
- Xiao, H.; Gan, H.; Huang, Y.; Cai, Z. Capacitor Voltage Ripple Control Strategy of Lightweight Modular Multilevel Converter for Offshore Wind Power Transmission. IEEE Trans. Ind. Appl. 2024, 60, 5398–5406. [Google Scholar] [CrossRef]
- Li, G.; An, T.; Liang, J.; Liu, W.; Joseph, T.; Lu, J.; Szechtman, M.; Andersen, B.R.; Lan, Y. Power reversal strategies for hybrid LCC/MMC HVDC systems. CSEE J. Power Energy Syst. 2020, 6, 203–212. [Google Scholar] [CrossRef]
- Ramachandran, R. Control and Power Management of an Offshore Wind Power Plant with a Diode Rectifier Based HVDC Transmission. Available online: https://l2ep.univ-lille.fr/pagesperso/francois/These_Ragavendran_RAMACHANDRAN.pdf (accessed on 18 July 2023).
- Carrasco, J.M.; Galván, E.; Portillo, R. Wind Turbine Applications, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Jin, X.; Ju, W.; Zhang, Z.; Guo, L.; Yang, X. System safety analysis of large wind turbines. Renew. Sustain. Energy Rev. 2016, 56, 1293–1307. [Google Scholar] [CrossRef]
- García-Sánchez, T.; Muñoz-Benavente, I.; Gómez-Lázaro, E.; Fernández-Guillamón, A. Modelling types 1 and 2 wind turbines based on IEC 61400-27-1: Transient response under voltage dips. Energies 2020, 13, 4078. [Google Scholar] [CrossRef]
- Ali, S.W.; Sadiq, M.; Terriche, Y.; Naqvi, S.A.R.; Hoang, L.Q.N.; Mutarraf, M.U.; Hassan, M.A.; Yang, G.; Su, C.-L.; Guerrero, J.M. Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions. IEEE Access 2021, 9, 102811–102827. [Google Scholar] [CrossRef]
- Davidson, I.E.; Amaambo, N.K. Comparative Analysis of Wind Turbine Technologies for Harsh Environments. In Proceedings of the 13th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Berlin, Germany, 11–13 November 2014; pp. 1–7. [Google Scholar]
- Lamsal, D.; Sreeram, V.; Mishra, Y.; Kumar, D. Output power smoothing control approaches for wind and photovoltaic generation systems: A review. Renew. Sustain. Energy Rev. 2019, 113, 109245. [Google Scholar] [CrossRef]
- Walling, R.A.; Gursoy, E.; English, B. Current contributions from Type 3 and Type 4 wind turbine generators during faults. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Orlando, FL, USA, 7–10 May 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, C. Control, Stability Analysis and Grid Integration of Wind Turbines. Ph.D. Thesis, Imperial College, London, UK, 2008. [Google Scholar]
- Honrubia-Escribano, A.; Jiménez-Buendía, F.; Sosa-Avendaño, J.L.; Gartmann, P.; Frahm, S.; Fortmann, J.; Sørensen, P.E.; Gómez-Lázaro, E. Fault-ride trough validation of IEC 61400-27-1 type 3 and type 4 models of different wind turbine manufacturers. Energies 2019, 12, 3039. [Google Scholar] [CrossRef]
- Mansouri, A.; El Magri, A.; Lajouad, R.; El Myasse, I.; Younes, E.K.; Giri, F. Wind energy based conversion topologies and maximum power point tracking: A comprehensive review and analysis. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 6, 100351. [Google Scholar] [CrossRef]
- Zeng, Y.; Zou, G.; Zhang, X.; Wei, X.; Jiang, L.; Sun, C. Faulty feeder selection and segment location method for SPTG fault in radial MMC-MVDC distribution grid. IET Gener. Transm. Distrib. 2020, 14, 223–233. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, W.; Sun, K.; Ai, X.; Wen, J.; Cheng, S. Characteristic Investigation and Overvoltage Suppression of MMC-HVDC Integrated Offshore Wind Farms under Onshore Valve-Side SPG Fault. IEEE Trans. Power Syst. 2024, 39, 1346–1359. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Liang, J.; Ugalde-Loo, C.E.; Li, C.; Guillaud, X. Protection of single-phase fault at the transformer valve side of FB-MMC-based bipolar HVdc systems. IEEE Trans. Ind. Electron. 2020, 67, 8416–8427. [Google Scholar] [CrossRef]
- Krneta, N.; Sano, K. AC Fault Ride-Through Method of HVDC Interconnector for Islanded AC Grid with Offshore Wind Farm and Loads. IEEE Access 2024, 12, 62099–62106. [Google Scholar] [CrossRef]
- Badar, J.; Akhtar, F.; Kumar, D.; Munir, H.M.; Ali, K.H.; Alsaif, F.; Alsulamy, S. An MMC based HVDC system with optimized AC fault ride-through capability and enhanced circulating current suppression control. Front. Energy 2023, 11, 1190975. [Google Scholar] [CrossRef]
- Cui, S.; Lee, H.J.; Jung, J.J.; Lee, Y.; Sul, S.K. A Comprehensive AC-Side Single-Line-to-Ground Fault Ride Through Strategy of an MMC-Based HVDC System. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1021–1031. [Google Scholar] [CrossRef]
- Guo, Y. Enhanced Voltage Control of VSC-HVDC-Connected Offshore Wind Farms Based on Model Predictive Control. IEEE Trans. Sustain. Energy 2018, 9, 474–487. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, W.; Sun, K.; Zhao, H.; Zong, Q.; Wen, J. Two-Level Suppressing Controller of Offshore DC Overvoltage Using Zero-Sequence Voltage. IEEE Trans. Power Deliv. 2023, 38, 3991–4003. [Google Scholar] [CrossRef]
- Wu, S.; Qi, L.; Jin, M.; He, Z.; Zhang, X. An MMC With Integrated Energy Dissipation Function Using Thyristor-Based Chopper Modules for the Offshore Wind VSC-HVDC System. IEEE Trans. Power Electron. 2024, 39, 1609–1623. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Teodorescu, R.; Rodriguez, P.; Kjær, P.C. Chopper controlled resistors in VSC-HVDC transmission for WPP with full-scale converters. In Proceedings of the 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), Valencia, Spain, 28–30 September 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Thesis, A. Control Strategies of MMC-HVDC Connected to Large Offshore Wind Farms for Improving Fault Ride-Through Capability. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2020. [Google Scholar]
- Wu, S.; Qi, L.; Jia, W.; Zhu, Y.; Zhang, X.; Guo, X.; Pan, X. A Modular Multilevel Converter with Integrated Energy Dissipation Equipment for Offshore Wind VSC-HVDC System. IEEE Trans. Sustain. Energy 2022, 13, 353–362. [Google Scholar] [CrossRef]
- Qi, L.; Wu, S.; Zhang, X.; Zhang, M.; Liu, C.; Wang, H.; Wu, L. A Low-Cost DC Chopper with Coupling Transformer for Offshore Wind VSC-HVdc System. IEEE Trans. Power Electron. 2022, 37, 4979–4984. [Google Scholar] [CrossRef]
- Xu, B.; Gao, C.; Zhang, J.; Yang, J.; Xia, B.; He, Z. A Novel DC Chopper Topology for VSC-Based Offshore Wind Farm Connection. IEEE Trans. Power Electron. 2021, 36, 3017–3027. [Google Scholar] [CrossRef]
- Giddani, O.A.; Adam, G.P.; Anaya-Lara, O.; Burt, G.; Lo, K.L. Control strategies of VSC-HVDC transmission system for wind power integration to meet GB Grid Code requirements. In Proceedings of the 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2010), Pisa, Italy, 14–16 June 2010; pp. 385–390. [Google Scholar] [CrossRef]
- Kirakosyan, A.; El Moursi, M.S.; Khadkikar, V. Fault ride through and grid support topology for the VSC-HVDC connected offshore wind farms. IEEE Trans. Power Deliv. 2017, 32, 1592–1604. [Google Scholar] [CrossRef]
- Pinto, R.T.; Bauer, P.; Rodrigues, S.F.; Wiggelinkhuizen, E.J.; Pierik, J.; Ferreira, B. A Novel Distributed Direct-Voltage Control Strategy for Grid Integration of Offshore Wind Energy Systems through MTDC Network. IEEE Trans. Ind. Electron. 2011, 60, 2429–2441. [Google Scholar] [CrossRef]
- Adam, G.P.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. AC fault ride-through capability of a VSC-HVDC transmission systems. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 12–16 September 2010; pp. 3739–3745. [Google Scholar] [CrossRef]
- Krneta, N. Low-Voltage Ride-Through Method of the HVDC Transmission System for Feeding Islanded Offshore AC Loads. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 698–703. [Google Scholar] [CrossRef]
- Silva, B.; Moreira, C.L.; Leite, H.; Lopes, J.A.P. Control strategies for AC fault ride through in multiterminal HVDC grids. IEEE Trans. Power Deliv. 2014, 29, 395–405. [Google Scholar] [CrossRef]
- Feltes, C.; Wrede, H.; Koch, F.W.; Erlich, I. Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission. IEEE Trans. Power Syst. 2009, 24, 1537–1546. [Google Scholar] [CrossRef]
- Ma, H.; Ping, M.; Li, D.; Yang, M.; Liu, X.; Zhou, Y. Optimized AC fault ride-through strategy for back-to-back VSC-HVDC system. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 794–799. [Google Scholar] [CrossRef]
- Choudhury, S. Flywheel energy storage systems: A critical review on technologies, applications, and future prospects. Int. Trans. Electr. Energy Syst. 2021, 31, e13024. [Google Scholar] [CrossRef]
- Hossain, M.I.; Hamanah, W.M.; Alam, M.S.; Shafiullah, M.; Abido, M.A. Fault Ride Through and Intermittency Improvement of Renewable Energy Integrated MMC-HVDC System Employing Flywheel Energy Storage. IEEE Access 2023, 11, 50528–50546. [Google Scholar] [CrossRef]
- Wang, X.; Yang, R.; Shi, Z.; Cai, X.; Shi, X.; Chen, Y. Coordinated Low Voltage Ride-Through of MMC-HVDC Transmission System and Wind Farm With Distributed Braking Resistors. IEEE Access 2022, 10, 87860–87869. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, Y.; Li, G.; Xin, Y.; Wang, L. Coordinated Control Strategy of Receiving-End Fault Ride-Through for DC Grid Connected Large-Scale Wind Power. IEEE Trans. Power Deliv. 2022, 37, 2673–2683. [Google Scholar] [CrossRef]
- HosseiniKordkheili, S.F. AC Fault ride-through strategy for MMC-based HVDC systems with short lines. In Proceedings of the 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Babol, Iran, 31 January–2 February 2023. [Google Scholar]
- Oguma, K.; Akagi, H. Low-Voltage-Ride-Through (LVRT) Control of an HVDC Transmission System Using Two Modular Multilevel DSCC Converters. IEEE Trans. Power Electron. 2017, 32, 5931–5942. [Google Scholar] [CrossRef]
- Jia, K.; Member, S.; Dong, X.; Member, G.S.; Wen, Z. Harmonic Injection Based Fault Ride-through Control of MMC-HVDC Connected Offshore Wind Farms. IEEE Trans. Sustain. Energy 2023, 14, 1796–1806. [Google Scholar] [CrossRef]
- Tavakoli, S.D.; Prieto-araujo, E.; Member, S. AC Fault Ride Through in MMC-Based HVDC Systems. IEEE Trans. Power Deliv. 2022, 37, 2775–2786. [Google Scholar] [CrossRef]
- Xiao, F.; Yin, X.; Tang, J.; He, Q.; Zhou, K.; Tang, C. A fault ride-through strategy for accurate energy optimization of offshore wind VSC—HVDC system without improved fault ride-through strategy of wind turbines. Comput. Electr. Eng. 2024, 118, 109292. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, W.; Zhou, M.; Ai, X.; Wen, J.; Cheng, S. Active Energy Control for Enhancing AC Fault Ride-Through Capability of MMC-HVDC Connected. IEEE Trans. Power Syst. 2023, 38, 2705–2718. [Google Scholar] [CrossRef]
- Zhou, H.; Member, S.; Yao, W.; Member, S.; Sun, K. Dynamic Reactive Current Optimization Based Onshore AC Fault Ride-Through Strategy for MMC-HVDC Integrated Offshore Wind Farms. IEEE Trans. Sustain. Energy 2024, 15, 735–746. [Google Scholar] [CrossRef]
- Zhou, H.; Member, S.; Yao, W.; Member, S.; Sun, K. Enhancing Fault Ride-Through and Voltage Support Capability for MMC-HVDC Integrated Offshore Wind Farms Based on Multi-Mode Matching. IEEE Trans. Sustain. Energy 2024, 15, 1256–1268. [Google Scholar] [CrossRef]
- Sun, P.; Li, G.; Wang, H.; Liang, J.; Konstantinou, G. Valve-side Single-phase-to-ground Fault Analysis in Bipolar MMC-HVDC Systems with Hybrid SMs. IEEE Trans. Power Deliv. 2024, 39, 1–4. [Google Scholar] [CrossRef]
- Li, H.; Deng, F.; Tian, J.; Lu, Y.; Li, G.; Lin, J. Grounded Thyristor Loop-Based Hybrid MMCs for Valve-Side Single-Phase-to-Ground Faults in Bipolar HVdc Systems. IEEE Trans. Power Electron. 2024, 39, 6298–6311. [Google Scholar] [CrossRef]
- Li, G.; Liang, J.; Ma, F.; Ugalde-Loo, C.E.; Liang, H. Analysis of single-phase-to-ground faults at the valve-side of HB-MMCs in HVDC systems. IEEE Trans. Ind. Electron. 2019, 66, 2444–2453. [Google Scholar] [CrossRef]
- Li, G.; Liang, J.; Ugalde-Loo, C.E.; Ma, F.; Liang, H.; Song, Z. Protection for Submodule Overvoltage Caused by Converter Valve-Side Single-Phase-to-Ground Faults in FB-MMC Based Bipolar HVDC Systems. IEEE Trans. Power Deliv. 2020, 35, 2641–2650. [Google Scholar] [CrossRef]
- Karaagac, U.; Mahseredjian, J.; Cai, L.; Saad, H. Offshore Wind Farm Modeling Accuracy and Efficiency in MMC-Based Multiterminal HVDC Connection. IEEE Trans. Power Deliv. 2017, 32, 617–627. [Google Scholar] [CrossRef]
- Mohammadi, M.; Avendano-Mora, M.; Barnes, M.; Chan, J.Y. A study on Fault Ride-Through of VSC-connected offshore wind farms. IEEE Power Energy Soc. Gen. Meet. 2013, 1–5. [Google Scholar] [CrossRef]
- Nentwig, C.; Haubrock, J.; Renner, R.H.; Van Hertem, D. Application of DC choppers in HVDC grids. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Leuven, Belgium, 4–8 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Olowookere, O.; Skarvelis-Kazakos, S.; Habtay, Y.; Woodhead, S. AC fault ride through of modular multilevel converter VSC-HVDC transmission systems. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, X.; Wu, S.; Qi, L.; Huang, Y.; Zhao, G. Energy Control technology for MMC During Fault Ride Through. In Proceedings of the 18th International Conference on AC and DC Power Transmission (ACDC 2022), Online, 2–3 July 2022; pp. 1–7. [Google Scholar]
- Nanou, S.; Papathanassiou, S. Evaluation of a communication-based fault ride-through scheme for offshore wind farms connected through high-voltage DC links based on voltage source converter. IET Renew. Power Gener. 2015, 9, 882–891. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Kim, Y.C. Hierarchical communication network architectures for offshore wind power farms. Energies 2014, 7, 3420–3437. [Google Scholar] [CrossRef]
- Daoud, M.I.; Massoud, A.M.; Member, S. A Flywheel Energy Storage System for Fault Ride Through Support of Grid-Connected VSC HVDC-Based Offshore Wind Farms. IEEE Trans. Power Syst. 2015, 31, 1671–1680. [Google Scholar] [CrossRef]
- Daoud, M.I.; Massoud, A.; Elserougi, A.; Abdel-Khalik, A.; Ahmed, S. A dual three-phase induction machine based flywheel storage system driven by modular multilevel converters for fault ride through in HVDC systems. In Proceedings of the 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, Australia, 15–18 November 2016. [Google Scholar] [CrossRef]
- Shi, L.; Adam, G.P.; Li, R.; Xu, L. Control of Offshore MMC During Asymmetric Offshore AC Faults for Wind Power Transmission. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1074–1083. [Google Scholar] [CrossRef]
- Kong, D. Advanced HVDC Systems for Renewable Energy Integration and Power Transmission: Modelling and Control for Power System Transient Stability. Ph.D. Thesis, University of Birmingham, Birmingham, UK, June 2013. [Google Scholar]
- Jing, Y.; Li, R.; Xu, L.; Wang, Y. Enhanced AC voltage and frequency control on offshore MMC station for wind farm. J. Eng. 2017, 2017, 1264–1268. [Google Scholar] [CrossRef]
- Vidal-Albalate, R.; Beltran, H.; Rolán, A.; Belenguer, E.; Peña, R.; Blasco-Gimenez, R. Analysis of the Performance of MMC under Fault Conditions in HVDC-Based Offshore Wind Farms. IEEE Trans. Power Deliv. 2016, 31, 839–847. [Google Scholar] [CrossRef]
- Xie, X.; Quan, X.; Wu, Z.; Cao, X.; Dou, X.; Hu, Q. Adaptive Master-Slave Control Strategy for Medium Voltage DC Distribution Systems Based on a Novel Nonlinear Droop Controller. IEEE Trans. Smart Grid 2021, 12, 4765–4777. [Google Scholar] [CrossRef]
- Mohammadi, F.; Azizi, N.; Moradi, H.; Rouzbehi, K. Stability and control of VSC-based HVDC systems: A systematic review Point of Common Coupling. E-Prime—Adv. Electr. Eng. Electron. Energy 2023, 8, 100503. [Google Scholar] [CrossRef]
- Rodrigues, S.M.F.; Pinto, R.T.; Bauer, P. Dynamic Modeling and Control of VSC-based Multi-terminal DC Network. December 2011; pp. 1–110. Available online: https://fenix.tecnico.ulisboa.pt/downloadFile/395143509846/Sílvio Rodrigues 58091—Dynamic Modeling and Control of VSC-based Multi-terminal DC Networks.pdf (accessed on 13 March 2022).
- Nakajima, T.; Irokawa, S. A control system for HVDC transmission by voltage sourced converters. In Proceedings of the 199 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364), Edmonton, AB, Canada, 18–22 July 1999. [Google Scholar] [CrossRef]
- Chaudhuri, A.Y.N.R.; Chaudhuri, B.; Majumder, R. Multi-Terminal Direct-Current Grids, Modeling, Analysis, and Control; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cui, S.; Lee, H.J.; Jung, J.J.; Lee, Y.; Sul, S.K. A comprehensive AC side single line to ground fault ride through strategy of a modular multilevel converter for HVDC system. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 5378–5385. [Google Scholar] [CrossRef]
- Tavakoli, S.D.; Sanchez-Sanchez, E.; Prieto-Araujo, E.; Gomis-Bellmunt, O. DC Voltage Droop Control Design for MMC-Based Multiterminal HVDC Grids. IEEE Trans. Power Deliv. 2020, 35, 2414–2424. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, F.; Liu, G.; Lei, M.; Yang, C.; Wang, C. Adaptive Reference Power Based Voltage Droop Control for VSC-MTDC Systems. J. Mod. Power Syst. Clean Energy 2023, 11, 381–388. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhou, Z.; Chen, Z.; Wen, W.; Li, X.; Wang, C. DC voltage deviation-dependent voltage droop control method for VSC-MTDC systems under large disturbances. IET Renew. Power Gener. 2020, 14, 891–896. [Google Scholar] [CrossRef]
- Zhao, J.; Tao, Y. Hierarchical coordinated adaptive droop control for hybrid HVDC with cascaded multi-infeed MMC inverters. IET Renew. Power Gener. 2022, 16, 1148–1158. [Google Scholar] [CrossRef]
- Lin, Y.; Eto, J.H.; Johnson, B.B.; Flicker, J.D.; Lasseter, R.H.; Pico, H.N.V.; Seo, G.-S.; Pierre, B.J.; Ellis, A. Research Roadmap on Grid-Forming Inverters; NREL: Golden, CO, USA, 2020; p. 60. Available online: https://www.nrel.gov/docs/fy21osti/73476.pdf (accessed on 20 March 2022).
- Zhang, H.; Xiang, W.; Wen, J. Dual Grid-Forming Control With Energy Regulation Capability of MMC-HVDC System Integrating Offshore Wind Farms and Weak Grids. IEEE Trans. Power Syst. 2024, 39, 261–272. [Google Scholar] [CrossRef]
- Jain, A.; Sakamuri, J.N.; Cutululis, N.A. Grid-forming control strategies for black start by offshore wind power plants. Wind Energy Sci. 2020, 5, 1297–1313. [Google Scholar] [CrossRef]
- Yang, R.; Shi, G.; Zhang, C.; Li, G.; Cai, X. Internal Energy Based Grid-Forming Control for MMC-HVDC Systems With Wind Farm Integration. IEEE Trans. Ind. Appl. 2023, 59, 503–512. [Google Scholar] [CrossRef]
- DNV GL-Energy. Technical Report on the Events of 9 August 2019; National Grid: London, UK, 2019; pp. 1–95. Available online: https://www.ofgem.gov.uk/sites/default/files/docs/2019/09/eso_technical_report_-_appendices_-_final.pdf (accessed on 8 July 2024).
- Wang, Y.; Zhao, C.; Guo, C.; Rehman, A.U. Dynamics and small signal stability analysis of pmsg-based wind farm with an MMC-HVDC system. CSEE J. Power Energy Syst. 2020, 6, 226–235. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Moorthy, C.B. Review on Stability Analysis of Grid Connected Wind Power Generating System. Int. J. Electr. Electron. Eng. Res. Dev. 2014, 3, 2248–9282. [Google Scholar]
- Shah, R.; Sánchez, J.C.; Preece, R.; Barnes, M. Stability and control of mixed AC-DC systems with VSC-HVDC: A review. IET Gener. Transm. Distrib. 2018, 12, 2207–2219. [Google Scholar] [CrossRef]
- Elahidoost, A. Stability Improvement of MMC—Based Multiterminal HVDC Grids; NTNU Norwegian University of Science and Technology: Trondheim, Norway, 2024. [Google Scholar]
- Xue, T.; Lyu, J.; Wang, H.; Cai, X. A Complete Impedance Model of a PMSG-Based Wind Energy Conversion System and Its Effect On the Stability Analysis of MMC-HVDC Connected. IEEE Trans. Energy Convers. 2021, 36, 3449–3461. [Google Scholar] [CrossRef]
- Raza, S.A.; Rahim, A.H.M.A. An adaptive pitch control strategy for a doubly fed wind generation system. Simul. Ser. 2013, 45, 320–325. [Google Scholar]
- Gontijo, G.F.; Bakhshizadeh, M.K.; Kocewiak, L.H.; Teodorescu, R. State Space Modeling of an Offshore Wind Power Plant With an MMC-HVDC Connection for an Eigenvalue-Based Stability Analysis. IEEE Access 2022, 10, 82844–82869. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F. Harmonic Stability in Power Electronic-Based Power Systems: Concept, Modeling, and Analysis. IEEE Trans. Smart Grid 2019, 10, 2858–2870. [Google Scholar] [CrossRef]
- Lyu, J.; Cai, X.; Molinas, M. Frequency Domain Stability Analysis of MMC-Based HVdc for Wind Farm Integration. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 141–151. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, L. Impedence-based Stability Analysis of MMC-HVDC for Offshore DFIG-based Wind Farms. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 1139–1144. [Google Scholar]
- Offshore, G.W. Generic EMT Model for Real-Time Simulation of Large Disturbances in 2 GW Offshore HVAC HVDC Renewable Energy Hubs. Energies 2021, 14, 757. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, H.; You, S.; Li, H.; Pan, J.; Li, K.-J.; Liu, Y. Frequency secure control strategy for power grid with large-scale wind farms through HVDC links. Int. J. Electr. Power Energy Syst. 2020, 117, 105706. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Yang, R.; Lyu, J.; Liu, L.; Cai, X. Transient Synchronization Stability Analysis of Wind Farms with MMC-HVDC Integration Under Offshore AC Grid Fault. In Proceedings of the 2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021), Hybrid Conference, China, 28–30 December 2021; pp. 1–7. [Google Scholar]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
Project Name | Distance (km) | Capacity (MW) | Voltage (kV) | Country |
---|---|---|---|---|
In Operation | ||||
BorWin1 | 125 + 75 | 400 | ±150 | Germany |
BorWin2 | 125 + 75 | 800 | ±300 | Germany |
BorWin3 | 130 + 30 | 900 | ±320 | Germany |
DolWin1 | 75 + 90 | 800 | ±320 | Germany |
Dolwin2 | 45 + 90 | 916 | ±320 | Germany |
Dolwin3 | 80 + 80 | 900 | ±320 | Germany |
HelWin1 | 85 + 45 | 576 | ±250 | Germany |
HelWin2 | 85 + 45 | 690 | ±320 | Germany |
SylWin1 | 160 + 45 | 864 | ±320 | Germany |
Rudong | 70 | 1100 | ±400 | China |
In Construction | ||||
BorWin5 | 120 + 110 | 900 | ±320 | Germany |
Sofia | 195 | 1400 | ±320 | United Kingdom |
Sunrise Wind | 160 | 1086 | ±320 | United States |
DolWin5 | 100 + 30 | 900 | ±320 | Germany |
DolWin6 | 45 + 45 | 900 | ±320 | Germany |
BalWin1 | – | 2000 | ±525 | Germany |
BalWin2 | – | 2000 | ±525 | Germany |
BalWin3 | – | 2000 | ±525 | Germany |
Ijmuiden Ver Alpha | 120 + 60 | 2000 | ±525 | The Netherlands |
Ijmuiden Ver Beta | 120 + 60 | 2000 | ±525 | The Netherlands |
Fault Location | Challenge | Method of FRT | Communication | Limitation/Performance | References |
---|---|---|---|---|---|
Onshore Side | DC link overvoltage due to power imbalance | (i) AC/DC Chopper | No |
| [4,52,82,83,84,85] |
(ii) Power Reduction | Yes |
| [63,86,87] | ||
(iii) Flywheel Energy Storage | No |
| [66,88,89] | ||
(iv) Coordination Between Converters | No | [62,72] | |||
(v) Energy optimization of MMC converters | No |
| [73] | ||
Offshore Side | Overcurrent of offshore HVDC station/Post fault AC voltage recovery | (i) Current-voltage droop method | No |
| [81] |
(ii) Modified negative sequence voltage controller | - |
| [72,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Shireen, W.; Ram, N. Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems. Energies 2024, 17, 5308. https://doi.org/10.3390/en17215308
Kumar D, Shireen W, Ram N. Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems. Energies. 2024; 17(21):5308. https://doi.org/10.3390/en17215308
Chicago/Turabian StyleKumar, Dileep, Wajiha Shireen, and Nanik Ram. 2024. "Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems" Energies 17, no. 21: 5308. https://doi.org/10.3390/en17215308
APA StyleKumar, D., Shireen, W., & Ram, N. (2024). Grid Integration of Offshore Wind Energy: A Review on Fault Ride Through Techniques for MMC-HVDC Systems. Energies, 17(21), 5308. https://doi.org/10.3390/en17215308