Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat
Abstract
:1. Introduction
2. Reverse Electrodialysis Reactor
3. Degradation Technology in REDR
3.1. Cathodic Pollutant Removal
3.1.1. Cathodic Reduction
3.1.2. Electro-Fenton
- In situ and continuous electrogeneration of hydrogen peroxide (H2O2): At the carbonaceous cathode, supplied with pure oxygen or air, hydrogen peroxide is electrogenerated continuously through the reduction of oxygen (O2), as described by Equation (16). This step is critical for the initiation of the Fenton reaction.
- Introduction of Fe2+ catalyst: In the solution, ferrous ions (Fe2+) are added to act as a catalyst, facilitating the Fenton reaction by promoting the production of hydroxyl radicals (•OH) from hydrogen peroxide.
- Cathodic reduction of Fe3+ to Fe2+: The reduction of ferric ions (Fe3+) to ferrous ions (Fe2+) at the cathode, as shown in Equation (17), ensures the continuous regeneration of the Fenton’s reagent. This crucial stage is fundamental to sustaining the efficacy of the reaction dedicated to the breakdown of organic substances.
3.2. Anodic Pollutant Removal
3.2.1. Anodic Oxidation
3.2.2. Electro-Oxidation with Active Chlorine
3.2.3. Electrocoagulation
3.3. Other Methods
4. Operational Mode
4.1. Current Density
4.2. Degradation Circulation Mode
- (1)
- Upon wastewater transit through both anodic and cathodic channels, residual oxidants may interact and mutually consume each other, thus reducing their effectiveness in contaminant removal. The relevant reaction equations are:
- (2)
- In the context of EF processes, Fe2+, serving as essential catalysts, can undergo oxidation to Fe3+ at the anode. This transformation reduces the concentration of active Fe2+ ions, thereby diminishing their catalytic role and weakening the overall EF reaction efficiency.
4.3. Multi-Stage REDR-Series System
5. Conclusions
- Developing new materials and membrane technologies to enhance SGE conversion efficiency and durability.
- Investigating design and optimization strategies for integrated systems to maximize energy conversion efficiency while minimizing operational costs.
- Evaluating the economic feasibility of SGE in various applications, including comparisons with conventional energy and desalination technologies.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Nomenclature | a | cathode | |
ele | electrode | ||
Symbols | in | inlet | |
width of spacer compartment [m] | M | mixture solution | |
concentration [mol·m−3] | outlet | ||
thickness of spacer compartment [m] | |||
E | electromotive force [V] | Acronyms | |
faraday’s constant [C·mol−1] | AD | adsorption desalination | |
Gibbs free energy [W] | AEM | anion exchange membrane | |
membrane resistance correction factor | AGDD | air gap diffusion distillation | |
shading coefficient | AO | anodic oxidation | |
current [A] | AO7 | Acid Orange 7 | |
osmotic flux [mol·m−2·s−1] | BDD | boron-doped diamond | |
branch current [A] | CEM | cation exchange membrane | |
height of spacer compartment [m] | COD | chemical oxygen demand | |
Number power [W] | EAOPs | electrochemical advanced oxidation processes | |
volume flow [m3·s−1] | EF | electro-Fenton | |
resistance/universal gas constant [8.314 kJ·kg−1·K−1] | EC | electrocoagulation/electricity consumption | |
temperature [°C] | HC | high-concentration solution | |
voltage [V] | ICE | instantaneous current efficiency | |
volume [m3] | LC | low-concentration solution | |
MD | membrane distillation | ||
Greek letters | MED | multi-effect distillation | |
membrane permeability coefficient | MO | methyl orange | |
average ion activity coefficients | RED | reverse electrodialysis | |
over-potential | REDHE | reverse electrodialysis heat engine | |
equivalent conductivity [S·cm2·mol−1] | REDR | reverse electrodialysis reactor | |
SGE | salinity gradient energy | ||
Superscripts and subscripts | TEC | total energy consumption | |
An | anode | TOC | total organic carbon |
References
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Q.Q.; Zhang, Y. Research Progress on Zero Discharge and Resource Utilization of Industrial High-Salt Wastewater. CLEAN-Soil. Air Water 2021, 49, 2000410. [Google Scholar] [CrossRef]
- Martinez-Huitle, C.A.; Rodrigo, M.A.; Sires, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B 2015, 166–167, 603–643. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martinez-Huitle, C.A.; Rodrigo, M.A. Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Appl. Catal. B 2020, 270, 118857. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martinez-Huitle, C.A.; Oturan, M.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Malpass, G.R.P.; Motheo, A.D. Recent advances on the use of active anodes in environmental electrochemistry. Curr. Opin. Electrochem. 2021, 27, 100689. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Su, X.; Suss, M.E.; Tian, H.; Guyes, E.N.; Shocron, A.N.; Conforti, K.M.; de Souza, J.P.; Kim, N.; Tedesco, M.; et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022, 122, 13547–13635. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical oxidation remediation of real wastewater effluents—A review. Process Saf. Environ. Prot. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Micari, M.; Cipollina, A.; Giacalone, F.; Kosmadakis, G.; Papapetrou, M.; Zaragoza, G.; Micale, G.; Tamburini, A. Towards the first proof of the concept of a Reverse ElectroDialysis—Membrane Distillation Heat Engine. Desalination 2019, 453, 77–88. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wu, X.; Sun, D.X.; Wang, S.X.; Xu, S.M. Techno-economic analysis of conversing the low-grade heat to hydrogen by using reverse electrodialysis-Air gap diffusion distillation coupled method for iron and steel industry. Energy 2023, 283, 128508. [Google Scholar] [CrossRef]
- Zimmermann, P.; Solberg, S.B.B.; Tekinalp, O.; Lamb, J.J.; Wilhelmsen, O.; Deng, L.Y.; Burheim, O.S. Heat to Hydrogen by RED-Reviewing Membranes and Salts for the RED Heat Engine Concept. Membranes 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Lu, D.; Dong, Y.M.; Bai, Y.; Shen, T.; Chen, H.; Gong, M.Q. Performance improvement of LiBr-H2O reverse electrodialysis unit for heat to power conversion with finite solution flowrate and large concentration change. Energy Convers. Manag. 2022, 270, 116263. [Google Scholar] [CrossRef]
- Giacalone, F.; Vassallo, F.; Griffin, L.; Ferrari, M.C.; Micale, G.; Scargiali, F.; Tamburini, A.; Cipollina, A. Thermolytic reverse electrodialysis heat engine: Model development, integration and performance analysis. Energy Convers. Manag. 2019, 189, 1–13. [Google Scholar] [CrossRef]
- Palenzuela, P.; Micari, M.; Ortega-Delgado, B.; Giacalone, F.; Zaragoza, G.; Alarcon-Padilla, D.-C.; Cipollina, A.; Tamburini, A.; Micale, G. Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies 2018, 11, 3385. [Google Scholar] [CrossRef]
- Micari, M.; Bevacqua, M.; Cipollina, A.; Tamburini, A.; Van Baak, W.; Putts, T.; Micale, G. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Membr. Sci. 2018, 551, 315–325. [Google Scholar] [CrossRef]
- Kwon, K.; Lee, S.J.; Li, L.; Han, C.; Kim, D. Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track-etch membranes. Int. J. Energy Res. 2014, 38, 530–537. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant. ACS ES&T 2010, 44, 9207–9212. [Google Scholar] [CrossRef]
- Xu, S.M.; Leng, Q.; Wu, X.; Xu, Z.J.; Hu, J.Y.; Wu, D.B.; Jing, D.X.; Wang, P.; Dong, F.J. Influence of output current on decolorization efficiency of azo dye wastewater by a series system with multi-stage reverse electrodialysis reactors. Energy Convers. Manag. 2021, 228, 113639. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, S.; Feng, D.; Chen, S.; Du, R.; Su, C.; Shen, B. A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine. Desalination 2017, 404, 112–120. [Google Scholar] [CrossRef]
- Gonzalez, D.; Amigo, J.; Suarez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Zhu, X.; Wei, Y.; Sun, D.; Xu, S. Experimental performance of a low-grade heat driven hydrogen production system by coupling the reverse electrodialysis and air gap diffusion distillation methods. Energy Convers. Manag. 2024, 301, 117994. [Google Scholar] [CrossRef]
- Hu, J.; Xu, S.; Wu, X.; Wu, D.; Jin, D.; Wang, P.; Xu, L.; Leng, Q. Exergy analysis for the multi-effect distillation—Reverse electrodialysis heat engine. Desalination 2019, 467, 158–169. [Google Scholar] [CrossRef]
- Long, R.; Li, B.; Liu, Z.; Liu, W. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. J. Membr. Sci. 2017, 525, 107–115. [Google Scholar] [CrossRef]
- Luo, X.; Cao, X.; Mo, Y.; Xiao, K.; Zhang, X.; Liang, P.; Huang, X. Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat. Electrochem. Commun. 2012, 19, 25–28. [Google Scholar] [CrossRef]
- Scialdone, O.; D’Angelo, A.; Pastorella, G.; Sabatino, S.; Galia, A. Electrochemical Processes and Apparatuses for the Abatement of Acid Orange 7 in Water. Chem. Eng. Trans. 2014, 41, 31–36. [Google Scholar] [CrossRef]
- Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Early detection of preferential channeling in reverse electrodialysis. Electrochim. Acta 2014, 117, 9–17. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, H.; Hwang, K.S.; Jeong, N.; Kim, C.S. Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis. J. Electrochem. Sci. Technol. 2019, 10, 302–312. [Google Scholar] [CrossRef]
- Sires, I.; Brillas, E. Upgrading and expanding the electro-Fenton and related processes. Curr. Opin. Electrochem. 2021, 27, 100686. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- He, D.; Hu, H.; Jiao, F.; Zuo, W.; Liu, C.; Xie, H.; Dong, L.; Wang, X. Thermal separation of heavy metals from municipal solid waste incineration fly ash: A review. Chem. Eng. J. 2023, 467, 143344. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Nazif, A.; Karkhanechi, H.; Saljoughi, E.; Mousavi, S.M.; Matsuyama, H. Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review. J. Water Process Eng. 2022, 47, 102706. [Google Scholar] [CrossRef]
- Chae, S.; Kim, H.; Hong, J.G.; Jang, J.; Higa, M.; Pishnamazi, M.; Choi, J.Y.; Walgama, R.C.; Bae, C.; Kim, I.S.; et al. Clean power generation from salinity gradient using reverse electrodialysis technologies: Recent advances, bottlenecks, and future direction. Chem. Eng. J. 2023, 452, 139482. [Google Scholar] [CrossRef]
- Pattle, R.E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660. [Google Scholar] [CrossRef]
- Li, J.B.; Zhang, C.; Wang, Z.H.; Wang, H.; Bai, Z.C.; Kong, X.Q. Power harvesting from concentrated seawater and seawater by reverse electrodialysis. J. Power Sources 2022, 530, 231314. [Google Scholar] [CrossRef]
- Long, R.; Li, B.; Liu, Z.; Liu, W. Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization. Energy 2018, 151, 1–10. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Choi, J.; Kim, H.; Jeong, N.; Kwak, R. Numerical analysis of real-scale reverse electrodialysis with microscale structures and electrode segmentation. Chem. Eng. J. 2022, 446, 137357. [Google Scholar] [CrossRef]
- Zlotorowicz, A.; Strand, R.V.; Burheim, O.S.; Wilhelmsen, O.; Kjelstrup, S. The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. J. Membr. Sci. 2017, 523, 402–408. [Google Scholar] [CrossRef]
- Rijnaarts, T.; Huerta, E.; van Baak, W.; Nijmeijer, K. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities. ACS ES&T 2017, 51, 13028–13035. [Google Scholar] [CrossRef]
- Dlugolecki, P.; Dabrowska, J.; Nijmeijer, K.; Wessling, M. Ion conductive spacers for increased power generation in reverse electrodialysis. J. Membr. Sci. 2010, 347, 101–107. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem. 2010, 40, 1461–1474. [Google Scholar] [CrossRef]
- Xu, S.M.; Leng, Q.; Jin, D.X.; Wu, X.; Xu, Z.J.; Wang, P.; Wu, D.B.; Dong, F.J. Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy. Desalination 2020, 495, 114541. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, X.; Xu, S.M.; Zhang, Y.W.; Wang, S.X. Experimental investigation on dyeing wastewater treatment and by-product hydrogen with a reverse electrodialysis flocculator. Int. J. Hydrogen Energy 2023, 48, 19022–19032. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, K.; Hu, C.; Liu, H.; Wang, Y.; Qu, J. Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochim. Acta 2018, 269, 128–135. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chem. Eng. Res. Des. 2015, 93, 441–456. [Google Scholar] [CrossRef]
- Giacalone, F.; Catrini, P.; Tamburini, A.; Cipollina, A.; Piacentino, A.; Micale, G. Exergy analysis of reverse electrodialysis. Energy Convers. Manag. 2018, 164, 588–602. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; van Baak, W.; Micale, G. Modelling the Reverse ElectroDialysis process with seawater and concentrated brines. Desalin. Water Treat. 2012, 49, 404–424. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Peiper, J.C.; Busey, R.H. Thermodynamic Properties of Aqueous Sodium Chloride Solutions. J. Phys. Chem. Ref. Data 1984, 13, 1–102. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: A validated process model for design and optimization. Chem. Eng. J. 2011, 166, 256–268. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, B.H.; Kwon, K.; Li, L.; Kim, D. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery. Appl. Energy 2017, 189, 201–210. [Google Scholar] [CrossRef]
- Leng, Q.; Wu, X.; Xu, S.; Wang, S.; Jin, D.; Wang, P.; Dong, F.; Wu, D. Numerical simulation of dyeing wastewater treated by a multi-stage reverse electrodialysis reactor series system. Energy Environ. 2022, 34, 2497–2520. [Google Scholar] [CrossRef]
- Tedesco, M.; Brauns, E.; Cipollina, A.; Micale, G.; Modica, P.; Russo, G.; Helsen, J. Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up. J. Membr. Sci. 2015, 492, 9–20. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.X.; Zhang, Y.L.; Wang, Y.M.; Xu, T.W. Storable hydrogen production by Reverse Electro-Electrodialysis (REED). J. Membr. Sci. 2017, 544, 397–405. [Google Scholar] [CrossRef]
- Scialdone, O.; Guarisco, C.; Galia, A. Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments. Electrochim. Acta 2011, 58, 463–473. [Google Scholar] [CrossRef]
- Mousset, E.; Pechaud, Y.; Oturan, N.; Oturan, M.A. Charge transfer/mass transport competition in advanced hybrid electrocatalytic wastewater treatment: Development of a new current efficiency relation. Appl. Catal. B 2019, 240, 102–111. [Google Scholar] [CrossRef]
- Brillas, E.; Sires, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef]
- Abdessamad, N.; Akrout, H.; Hamdaoui, G.; Elghniji, K.; Ksibi, M.; Bousselmi, L. Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse. Chemosphere 2013, 93, 1309–1316. [Google Scholar] [CrossRef]
- Wang, S.X.; Wu, X.; Xu, S.M.; Leng, Q.; Lv, Y.B. Overall evaluation of a multi-stage reverse electrodialysis reactor series system for organic wastewater treatment and power generation. Energy Convers. Manag. 2023, 292, 117413. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 2009, 327, 136–144. [Google Scholar] [CrossRef]
- Scialdone, O.; D’Angelo, A.; De Lume, E.; Galia, A. Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochim. Acta 2014, 137, 258–265. [Google Scholar] [CrossRef]
- Leng, Q.; Xu, S.; Wu, X.; Wang, S.; Jin, D.; Wang, P.; Wu, D.; Dong, F. Electrochemical removal of synthetic methyl orange dyeing wastewater by reverse electrodialysis reactor: Experiment and mineralizing model. Environ. Res. 2022, 214, 114064. [Google Scholar] [CrossRef] [PubMed]
- He, H.Q.; Zhou, Z. Electro-Fenton process for water and wastewater treatment. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2100–2131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.H.; Martinez-Huitle, C.A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Gumus, D.; Akbal, F. Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf. Environ. Prot. 2016, 103, 252–258. [Google Scholar] [CrossRef]
- D’Angelo, A.; Tedesco, M.; Cipollina, A.; Galia, A.; Micale, G.; Scialdone, O. Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater. Water Res. 2017, 125, 123–131. [Google Scholar] [CrossRef]
- Labiadh, L.; Barbucci, A.; Carpanese, M.P.; Gadri, A.; Ammar, S.; Panizza, M. Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes. J. Electroanal. Chem. 2016, 766, 94–99. [Google Scholar] [CrossRef]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Keller, J.; Brillas, E.; Radjenovic, J. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J. Hazard. Mater. 2015, 283, 551–557. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Picos, A.R.; Bravo-Yumi, N.; Pacheco-Alvarez, M.; Martinez-Huitle, C.A.; Peralta-Hernandez, J.M. Electrochemical oxidation technology to treat textile wastewaters. Curr. Opin. Electrochem. 2021, 29, 100806. [Google Scholar] [CrossRef]
- Leng, Q.; Xu, S.M.; Wu, X.; Wang, S.X.; Jin, D.X.; Wang, P.; Wu, D.B.; Dong, F.J. Degrade Methyl Orange by a Reverse Electrodialysis Reactor Coupled with Electrochemical Direct Oxidation and Electro-Fenton Processes. Electrocatalysis 2022, 13, 242–254. [Google Scholar] [CrossRef]
- Wang, S.X.; Wu, X.; Xu, S.M.; Leng, Q.; Jin, D.X.; Wang, P.; Dong, F.J.; Wu, D.B. Energetic evaluation of phenol wastewater treatment by reverse electrodialysis reactor using different anodes. J. Environ. Manag. 2023, 329, 117089. [Google Scholar] [CrossRef] [PubMed]
- Zayas, T.; Moreno, A.; Salgado, L. Electrochemical oxidation of wastewater generated from a dyeing and stamping process of a textile factory in chloride-containing aqueous media. Desalin. Water Treat. 2018, 123, 179–187. [Google Scholar] [CrossRef]
- Mandal, P.; Yadav, M.K.; Gupta, A.K.; Dubey, B.K. Chlorine mediated indirect electro-oxidation of ammonia using non-active PbO<sub>2</sub> anode: Influencing parameters and mechanism identification. Sep. Purif. Technol. 2020, 247, 116910. [Google Scholar] [CrossRef]
- Yan, W.; Chen, J.; Wu, J.; Li, Y.; Liu, Y.; Yang, Q.; Tang, Y.; Jiang, B. Investigation on the adverse impacts of electrochemically produced ClOx- on assessing the treatment performance of dimensionally stable anode (DSA) for Cl- -containing wastewater. Chemosphere 2023, 310, 136848. [Google Scholar] [CrossRef]
- Scialdone, O.; Galia, A.; Sabatino, S. Abatement of Acid Orange 7 in macro and micro reactors. Effect of the electrocatalytic route. Appl. Catal. B 2014, 148, 473–483. [Google Scholar] [CrossRef]
- Ma, P.F.; Hao, X.G.; Proietto, F.; Galia, A.; Scialdone, O. Assisted reverse electrodialysis for CO2 electrochemical conversion and treatment of wastewater: A new approach towards more eco-friendly processes using salin2ity gradients. Electrochim. Acta 2020, 354, 136733. [Google Scholar] [CrossRef]
- Leng, Q.; Xu, S.; Wu, X.; Wang, S.; Wu, D.; Dong, F.; Jin, D.; Wang, P. Decolorization efficiency of methyl orange simulative wastewater by a reverse electrodialysis reactor: Experiments and kinetics models. Desalin. Water Treat. 2022, 258, 72–84. [Google Scholar] [CrossRef]
- Jwa, E.; Jeong, N.; Nam, J.Y.; Han, J.I. Sustainable energy harvesting and on-site disinfection of natural seawater using reverse electrodialysis. Water Res. 2022, 220, 118681. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Huang, G.; Yao, Y.; Zhao, S. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Sci. Total Environ. 2017, 579, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, X.; Xu, S.M.; Zhang, Y.W.; Leng, Q. Methyl orange degradation and hydrogen production simultaneously by a reverse electrodialysis-electrocoagulation coupling system powered by salinity gradient energy. Energy Convers. Manag. 2023, 276, 116550. [Google Scholar] [CrossRef]
- Zhang, W.H.; Zhou, Y.; Hu, C.Z.; Qu, J.H. Electricity generation from salinity gradient to remove chromium using reverse electrodialysis coupled with electrocoagulation. Electrochim. Acta 2021, 379, 138153. [Google Scholar] [CrossRef]
- Li, X.H.; Jin, X.D.; Zhao, N.N.; Angelidaki, I.; Zhang, Y.F. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour. Technol. 2017, 228, 322–329. [Google Scholar] [CrossRef]
- Tian, H.L.; Wang, Y.; Pei, Y.S. Energy capture from thermolytic solutions and simulated sunlight coupled with hydrogen peroxide production and wastewater remediation. Water Res. 2020, 170, 115318. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.L.; Wang, Y. A reverse electrodialysis cell-modified photocatalytic fuel cell for efficient electricity and hydrogen generation from the degradation of refractory organic pollutants. J. Hazard. Mater. 2023, 444, 130443. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Li, B.; Liu, Z.; Liu, W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy 2018, 158, 427–436. [Google Scholar] [CrossRef]
- Kang, S.; Li, J.; Wang, Z.; Zhang, C.; Kong, X. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants. J. Power Sources 2022, 519, 230806. [Google Scholar] [CrossRef]
- Scialdone, O.; D’Angelo, A.; Galia, A. Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients. J. Electroanal. Chem. 2015, 738, 61–68. [Google Scholar] [CrossRef]
- Ma, P.; Hao, X.; Galia, A.; Scialdone, O. Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack. Chemosphere 2020, 248, 125994. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Micale, G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 2017, 522, 226–236. [Google Scholar] [CrossRef]
- Tedesco, M.; Scalici, C.; Vaccari, D.; Cipollina, A.; Tamburini, A.; Micale, G. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J. Membr. Sci. 2016, 500, 33–45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, Q.; Li, F.; Tao, Z.; Wang, Z.; Wu, X. Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat. Energies 2024, 17, 5362. https://doi.org/10.3390/en17215362
Leng Q, Li F, Tao Z, Wang Z, Wu X. Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat. Energies. 2024; 17(21):5362. https://doi.org/10.3390/en17215362
Chicago/Turabian StyleLeng, Qiang, Feilong Li, Zhenxin Tao, Zhanwei Wang, and Xi Wu. 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat" Energies 17, no. 21: 5362. https://doi.org/10.3390/en17215362
APA StyleLeng, Q., Li, F., Tao, Z., Wang, Z., & Wu, X. (2024). Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat. Energies, 17(21), 5362. https://doi.org/10.3390/en17215362