Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review
Abstract
:1. Introduction
2. Classification of Seawater Desalination Technology
2.1. Thermal Methods
2.1.1. Multi-Stage Flash (MSF)
2.1.2. Multi-Effect Distillation (MED)
2.1.3. Freezing Desalination (FD)
2.1.4. Adsorption Desalination (AD)
2.1.5. Humidification Dehumidification (HDH)
2.2. Membrane Methods
2.2.1. Reverse Osmosis (RO)
2.2.2. Electrodialysis (ED)
2.2.3. Forward Osmosis (FO)
2.2.4. Membrane Distillation (MD)
2.3. Emerging Methods
3. Classification and Application of Sustainable Energy
3.1. Seawater Desalination Process with Wind Energy
3.2. Seawater Desalination Process with Solar Energy
3.2.1. Solar Thermal
3.2.2. Solar PV
3.2.3. The Auxiliary Equipment of Solar Energy
3.3. Seawater Desalination with Nuclear Energy
3.4. Seawater Desalination with Ocean Energy
3.4.1. Seawater Desalination with Tidal Energy
3.4.2. Seawater Desalination with Wave Energy
3.4.3. Seawater Desalination with Ocean Thermal Energy
4. Cost, Efficiency, and Energy Consumption of Seawater Desalination Driven by Sustainable Energy
5. Small-Scale Desalination Technologies
6. Conclusions
Funding
Conflicts of Interest
References
- Somoye, O.A. Energy crisis and renewable energy potentials in Nigeria: A review. Renew. Sustain. Energy Rev. 2023, 188, 113794. [Google Scholar] [CrossRef]
- Yokuş, T. Early Warning Systems for World Energy Crises. Sustainability 2024, 16, 2284. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Yang, H.; Ciais, P.; Wada, Y. Global Water Scarcity Assessment Incorporating Green Water in Crop Production. Water Resour. Res. 2022, 58, e2020WR028570. [Google Scholar] [CrossRef]
- Xie, J.; You, J.; Ma, Z.; Deng, X.; Lin, P.; Gao, J. Methodology for including reservoir regulation in water scarcity evaluation. J. Clean. Prod. 2022, 365, 132657. [Google Scholar] [CrossRef]
- Xevgenos, D.; Moustakas, K.; Malamis, D.; Loizidou, M. An overview on desalination & sustainability: Renewable energy-driven desali-nation and brine management. Desalin. Water Treat. 2016, 57, 2304–2314. [Google Scholar]
- Jones, E.; Qadir, M.; van Vliet, M.T.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2018, 657, 1343–1356. [Google Scholar] [CrossRef]
- Foster, V.; Trotter, P.A.; Werner, S.; Niedermayer, M.; Mulugetta, Y.; Achakulwisut, P.; Brophy, A.; Dubash, N.K.; Fankhauser, S.; Hawkes, A.; et al. Development transitions for fossil fuel-producing low and lower–middle income countries in a carbon-constrained world. Nat. Energy 2024, 9, 242–250. [Google Scholar] [CrossRef]
- Hansen, T.A. Stranded assets and reduced profits: Analyzing the economic underpinnings of the fossil fuel industry’s resistance to climate stabilization. Renew. Sustain. Energy Rev. 2022, 158, 112144. [Google Scholar] [CrossRef]
- Tumala, M.M.; Salisu, A.; Nmadu, Y.B. Climate change and fossil fuel prices: A GARCH-MIDAS analysis. Energy Econ. 2023, 124, 106792. [Google Scholar] [CrossRef]
- Lakkanawanit, P.; Dungtripop, W.; Suttipun, M.; Madi, H. Energy Conservation and Firm Performance in Thailand: Comparison between Energy-Intensive and Non-Energy-Intensive Industries. Energies 2022, 15, 7532. [Google Scholar] [CrossRef]
- Shi, D.; Wang, L.; Wang, Z. What affects individual energy conservation behavior: Personal habits, external conditions or values? An empirical study based on a survey of college students. Energy Policy 2019, 128, 150–161. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, B.; Li, C.Z. Analysis of critical factors and their interactions influencing individual’s energy conservation behavior in the workplace: A case study in China. J. Clean. Prod. 2021, 286, 124955. [Google Scholar] [CrossRef]
- ESCWA. Economic and Social Commission for Western Asia. 2009. Available online: https://www.unescwa.org/publications/escwa-annual-report-2009 (accessed on 23 September 2024).
- Reddy, K.; Ghaffour, N. Overview of the cost of desalinated water and costing methodologies. Desalination 2007, 205, 340–353. [Google Scholar] [CrossRef]
- Becker, N.; Lavee, D.; Katz, D. Desalination and Alternative Water-Shortage Mitigation Options in Israel: A Comparative Cost Analysis. J. Water Resour. Prot. 2010, 2, 1042–1056. [Google Scholar] [CrossRef]
- Raluy, R.G.; Serra, L.; Uche, J. Life Cycle Assessment of Water Production Technologies—Part 1: Life Cycle Assessment of Different Commercial Desalination Technologies (MSF, MED, RO) (9 pp). Int. J. Life Cycle Assess. 2004, 10, 285–293. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, Y.; Li, L.; Hao, Y. Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model. Appl. Energy 2024, 363, 123071. [Google Scholar] [CrossRef]
- Jędrzejczak-Gas, J.; Wyrwa, J.; Barska, A. Sustainable Energy Development and Sustainable Economic Development in EU Countries. Energies 2024, 17, 1775. [Google Scholar] [CrossRef]
- Nastasi, B.; Markovska, N.; Puksec, T.; Duić, N.; Foley, A. Ready solutions for today and tomorrow—Renewable and sustainable energy systems. Renew. Sustain. Energy Rev. 2024, 196, 114341. [Google Scholar] [CrossRef]
- Bilton, A.M.; Wiesman, R.; Arif, A.F.M.; Zubair, S.M.; Dubowsky, S. On the feasibility of community-scale photovoltaic-powered reverse osmosis de-salination systems for remote locations. Renew. Energy 2011, 36, 3246–3256. [Google Scholar] [CrossRef]
- Wu, W.; Shi, Y.; Liu, G.; Fan, X.; Yu, Y. Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination 2020, 491, 114452. [Google Scholar] [CrossRef]
- Qian, Z.; Miedema, H.; de Smet, L.C.; Sudhölter, E.J. Permeation selectivity in the electro-dialysis of mono- and divalent cations using supported liquid membranes. Desalination 2022, 521, 115398. [Google Scholar] [CrossRef]
- Omar, N.M.A.; Othman, M.H.D.; Tai, Z.S.; Kurniawan, T.A.; Puteh, M.H.; Jaafar, J.; Rahman, M.A.; Bakar, S.A.; Abdullah, H. A review of superhydrophobic and omniphobic membranes as innovative solutions for enhancing water desalination performance through membrane distillation. Surf. Interfaces 2024, 46, 104035. [Google Scholar] [CrossRef]
- Xing, W.; Liang, J.; Tang, W.; He, D.; Yan, M.; Wang, X.; Luo, Y.; Tang, N.; Huang, M. Versatile applications of capacitive deionization (CDI)-based technologies. Desalination 2020, 482, 114390. [Google Scholar] [CrossRef]
- Mabrouk, A.N.A. Technoeconomic analysis of once through long tube MSF process for high capacity desalination plants. Desalination 2013, 317, 84–94. [Google Scholar] [CrossRef]
- Franchini, G.; Padovan, L.E.; Perdichizzi, A. Design and Construction of a Desalination Prototype Based on HD (Humidifica-tion-Dehumidification) Process. Energy Procedia 2015, 81, 472–481. [Google Scholar] [CrossRef]
- Rostamzadeh, H.; Ghiasirad, H.; Amidpour, M.; Amidpour, Y. Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles. Desalination 2020, 477, 114261. [Google Scholar] [CrossRef]
- Lan, W.; Liu, X.; Xie, M.; Ye, K.; Chen, L. Experimental analysis of freezing desalination using gravity and centrifugal methods with economic evaluation of coupled freezing desalination and ice storage system. Energy Convers. Manag. 2024, 315, 118743. [Google Scholar] [CrossRef]
- Ali, E.S.; Alsaman, A.S.; Tawfik, M.H.M.; Askalany, A.A.; El-Maghlany, W.M.; Zohir, A.E.; Farid, A.M.; Ghazy, M. Solar-powered hybrid adsorption desalination/humidification-dehumidification system. Therm. Sci. Eng. Prog. 2024, 51, 102598. [Google Scholar] [CrossRef]
- Basiony, M.G.; Nada, S.; Mori, S.; Hassan, H. Performance evaluation of standalone new solar energy system of hybrid PV/electrolyzer/fuel cell/MED-MVC with hydrogen production and storage for power and freshwater building demand. Int. J. Hydrogen Energy 2024, 77, 1217–1234. [Google Scholar] [CrossRef]
- Ghadamyari, M.; Nejad, A.A.; Mehregan, M.; Mohammadkhani, M. Thermodynamic and environmental analysis on a CCHP system based on MCFC-GT integrated with MED-TVC desalination system. Energy Rep. 2024, 11, 1925–1944. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Han, M.; Zhang, J. Embodied water consumption between typical desalination projects: Reverse osmosis versus low-temperature multi-effect distillation. J. Clean. Prod. 2021, 295, 126340. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Toth, A.J. Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources. Membranes 2020, 10, 265. [Google Scholar] [CrossRef]
- Tareemi, A.A.; Sharshir, S.W. A state-of-art overview of multi-stage flash desalination and water treatment: Principles, challenges, and heat recovery in hybrid systems. Sol. Energy 2023, 266, 112457. [Google Scholar] [CrossRef]
- Zouli, N.; Yousef, A.; Al-Dahhan, M. Enhancement of heat transfer coefficient of water desalination in multi-stage flushing using hematite nanofluid. Desalination 2024, 576, 117323. [Google Scholar] [CrossRef]
- Hasan, H.; Alsadaie, S.; Al-Obaidi, M.A.; Mujtaba, I.M. Dynamic modelling and simulation of industrial scale multistage flash desalination process. Desalination 2023, 553, 116453. [Google Scholar] [CrossRef]
- Mehtari, N.; Kahani, M.; Zamen, M. Energy, environmental, and economic analysis of a new configuration multi-stage flash distillation unit coupled with steam power plant. Case Stud. Therm. Eng. 2023, 50, 103456. [Google Scholar] [CrossRef]
- Lawal, D.U.; Antar, M.A.; Ismaila, K.G.; Khalifa, A.; Alawad, S.M. Hybrid multi-stage flash (MSF) and membrane distillation (MD) desalination system for energy saving and brine minimization. Desalination 2023, 548, 116231. [Google Scholar] [CrossRef]
- Ali, E.; Orfi, J.; AlAnsary, H.; Baakeem, S.; Alsaadi, A.S.; Ghaffour, N. Advanced structures of reversal multi-stage flash desalination. Desalination 2024, 571, 117095. [Google Scholar] [CrossRef]
- Hafiz, M.; Alfahel, R.; Altaee, A.; Hawari, A.H. Techno-economic assessment of forward osmosis as a pretreatment process for mitigation of scaling in multi-stage flash seawater desalination process. Sep. Purif. Technol. 2022, 309, 123007. [Google Scholar] [CrossRef]
- El-Ashmawy, W.M.; El-Maghlany, W.M.; Elhelw, M. Thermo-economic analysis of potential desalination processes utilized by no greenhouse gas emissions power plant. Alex. Eng. J. 2024, 109, 191–200. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. Advances in seawater desalination technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Alawad, S.M.; Mansour, R.B.; Al-Sulaiman, F.A.; Rehman, S. Renewable energy systems for water desalination applications: A com-prehensive review. Energy Convers. Manag. 2023, 286, 117035. [Google Scholar] [CrossRef]
- Fergani, Z.; Triki, Z.; Menasri, R.; Tahraoui, H.; Kebir, M.; Amrane, A.; Moula, N.; Zhang, J.; Mouni, L. Analysis of Desalination Performance with a Thermal Vapor Compression System. Water 2023, 15, 1225. [Google Scholar] [CrossRef]
- Shahouni, R.; Abbasi, M.; Kord, M.; Akrami, M. Modelling and optimising of MED-TVC seawater desalination plants assisted with electric heaters. Water Resour. Ind. 2024, 32, 100262. [Google Scholar] [CrossRef]
- Lv, J.; Chen, Z.L.; Tang, J.; Chen, L.; Xie, W.J.; Sun, M.X.; Huang, X.J. Study on the superhydrophilic modification and enhanced corrosion resistance method of aluminum alloy distillation desalination tubes. Surf. Coat. Technol. 2022, 446, 128770. [Google Scholar] [CrossRef]
- Xue, Y.; Du, X.; Yang, L. Optimization of parallel/cross flow multi-effect desalination system with flue gas pre-heating considering thermo-vapor compression coupling. Desalination 2021, 506, 114998. [Google Scholar] [CrossRef]
- Elhefny, A.; Shabgard, H.; Cai, J.; Kaviani, R.; Parthasarathy, R.N. Thermochemical modeling and performance evaluation of freeze desalination systems. Desalination 2024, 578, 117423. [Google Scholar] [CrossRef]
- Shishiny, A.M.; Kader, A.; Ahmed, S.; Rashad, M.I. An investigation of a proposed freezing desalination system integrating sweating effect and a Centrifugal-Based brine rejection technique. Sep. Purif. Technol. 2025, 353, 128390. [Google Scholar] [CrossRef]
- Kalista, B.; Shin, H.; Cho, J.; Jang, A. Current development and future prospect review of freeze desalination. Desalination 2018, 447, 167–181. [Google Scholar] [CrossRef]
- Maher, H.; Ghazy, M.; Ali, E.S.; Askalany, A.A.; Saha, B.B. 2D materials for adsorption desalination applications: A state of the art. Therm. Sci. Eng. Prog. 2024, 49, 102455. [Google Scholar] [CrossRef]
- Han, B.; Chakraborty, A. Ligand extension of aluminum fumarate metal-organic framework in transferring higher water for adsorption desalination. Desalination 2024, 592, 118135. [Google Scholar] [CrossRef]
- Han, B.; Chakraborty, A. Synergistic ionic liquid encapsulated MIL-101 (Cr) metal-organic frameworks for an innovative ad-sorption desalination system. J. Clean. Prod. 2024, 474, 143565. [Google Scholar] [CrossRef]
- Kim, J.S.; Woo, S.Y.; Lee, J.G.; Kim, Y.D. Effect of adsorption isotherm and kinetics on the performance of silica gel-based adsorption desalination system with heat and mass recovery. Desalination 2024, 577, 117375. [Google Scholar] [CrossRef]
- Shouman, L.A.; Fadel, D.A.; Samad, S.A.; Abdelaziz, M. Effect of nanofluid on the performance of humidification-dehumidification (HDH) desalination system. Heat Mass Transf. 2024, 60, 1251–1265. [Google Scholar] [CrossRef]
- Raj, P.R.; Jayakumar, J.S.; Ajith Kumar, R. On the selection of humidification dehumidification desalination system cycle for high productivity, low energy consumption and low capital cost. Desalination 2024, 586, 117876. [Google Scholar] [CrossRef]
- Khalili, B.; Kargarsharifabad, H.; Rahbar, N.; Esfahlani, A.A.; Jamshidi, E. Performance evaluation of a CGS gas heater-powered HDH desalination sys-tem using thermosyphon heat pipes: An experimental study with economic and environmental assessment. Int. Commun. Heat Mass Transf. 2024, 152, 107300. [Google Scholar] [CrossRef]
- Sarghini, H.; Ibn-elhaj, S.; Ennaciri, Y.; Elghardouf, N.; Ladouy, S.; Khabbazi, A.; Kabouri, A. Primarily experimental study of the energy performances of a humidification-dehumidification seawater desalination system coupled with a heat pump. Desalin. Water Treat. 2024, 320, 100643. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, H.; Ma, X.; Liang, S.; Zhu, Z. Experimental study on a compact solar driven two-stage humidification-dehumidification de-salination system with shared dehumidifier. Appl. Therm. Eng. 2024, 249, 123423. [Google Scholar] [CrossRef]
- Enayatollahi, R.; Anderson, T.; Nates, R. A parametric analysis of a solar humidification/dehumidification desalination system using a bio-inspired cascade humidifier. J. R. Soc. N. Z. 2024, 1–22. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Valipour, M.S.; Rashidi, S. Performance Enhancement Techniques in Humidification–Dehumidification Desalination Systems: A Detailed Review. J. Therm. Anal. Calorim. 2024, 1–30. [Google Scholar] [CrossRef]
- Mokhtar, R.Y.; Shouman, M.A.; Elmarghany, M.R.; Hamed, A.M. Rethinking HDH desalination: A comprehensive review beyond energy towards, exergoeconomic, and renewable-based multigeneration evaluation. Desalination 2024, 575, 117286. [Google Scholar] [CrossRef]
- Yuan, M.; Li, Y.-Q.; Zhao, M.; Li, W.; Qu, Y. Efficient desalination in fluorinated multilayered covalent organic framework: Tunning the energy landscape inside the nanochannel. Desalination 2024, 583, 117723. [Google Scholar] [CrossRef]
- Hosseinipour, E.; Davies, P. Direct experimental comparison of batch reverse osmosis (RO) technologies. Desalination 2024, 583, 117717. [Google Scholar] [CrossRef]
- Beni, A.N.; Alnajdi, S.M.; Garcia-Bravo, J.; Warsinger, D.M. Semi-batch and batch low-salt-rejection reverse osmosis for brine concentration. Desalination 2024, 583, 117670. [Google Scholar] [CrossRef]
- Yalamanchili, R.; Rodriguez-Roda, I.; Galizia, A.; Blandin, G. Can a forward osmosis-reverse osmosis hybrid system achieve 90% wastewater recovery and desalination energy below 1 kWh/m3? A design and simulation study. Desalination 2024, 585, 117767. [Google Scholar] [CrossRef]
- Moon, J.; Kim, D.Y.; Kim, J.H. Cost-based optimization, feasibility study, and sensitivity analysis of forward osmosis/crystallization/reverse osmosis with high-temperature operation for high-salinity seawater desalination. Desalination 2024, 580, 117531. [Google Scholar] [CrossRef]
- Patel, D.; Mudgal, A.; Patel, V.; Patel, J.; Park, K.; Davies, P.; Dhakal, N. Exergy analysis for enhanced performance of integrated batch reverse osmosis–Forward osmosis system for brackish water treatment. Desalination 2024, 580, 117548. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, X.; Wang, H.; Yuan, Y.; Li, Z.; Zhu, W.; Liu, L.; Jin, G.; Liu, Y. A simultaneous energy self-sufficient desalination and energy output process based on a novel membrane stack design. Sep. Purif. Technol. 2025, 354, 129200. [Google Scholar] [CrossRef]
- Mu, J.; Yao, Y.; Wang, J.; Lu, Y.; Liao, J.; Sotto, A.; Shen, J. Advancing electrodialysis: Harnessing the potential of spiral-wound membrane stacks for improved desalination-efficiency and cost-efficiency. Desalination 2024, 586, 117846. [Google Scholar] [CrossRef]
- Dybowski, K.; Romaniak, G.; Kula, P.; Sobczyk-Guzenda, A.; Januszewicz, B.; Jędrzejczak, A.; Kaczmarek, Ł.; Burnat, B.; Krzyczmonik, P.; Kaźmierczak, T.; et al. Composite carbon electrode with a coating of nanostructured, reduced graphene oxide for water electrodialysis. J. Appl. Electrochem. 2024, 1–15. [Google Scholar] [CrossRef]
- Jonoush, Z.A.; Mostafaei, M.A. Enhanced desalination performance of an electrodialysis stack in over-limiting current by adding AC/Fe3O4 nanocomposite as a flow electrode. J. Water Process. Eng. 2024, 61, 105304. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Feng, Z.; Liu, J.; Li, X.; Yu, Y. Effects of di-ions structure of the core layer ionomer on anion exchange membrane characteristics of anti-protein fouling and electrodialysis desalination. Desalination 2024, 576, 117334. [Google Scholar] [CrossRef]
- Alrashidi, A.; Aleisa, E.; Alshayji, K. Life cycle assessment of hybrid electrodialysis and reverse osmosis seawater desalination systems. Desalination 2024, 578, 117448. [Google Scholar] [CrossRef]
- Fu, C.; Li, F.; Li, H.; Yi, X. Performance Study on Brackish Water Desalination Efficiency Based on a Novel Coupled Electrodialysis–Reverse Osmosis (EDRO) System. Water 2024, 16, 794. [Google Scholar] [CrossRef]
- Gulave, P.R.; Guhe, S.Y. An Overview of Recent Advances in Inorganic Nanomaterials and MOFs in Modification of Forward Osmosis Membranes for Industrial Wastewater Treatment. J. Inorg. Organomet. Polym. Mater. 2024, 1–24. [Google Scholar] [CrossRef]
- Edokali, M.; Bocking, R.; Massey, A.; Al Hinai, A.; Harbottle, D.; Menzel, R.; Hassanpour, A. Effect of polymer-entwined reduced graphene oxide laminates on the performance and stability of forward osmosis membranes for water desalination. Polymer 2024, 312, 127644. [Google Scholar] [CrossRef]
- Tang, B.; Gao, S.; Gui, C.; Luo, Q.; Wang, T.; Huang, K.; Huang, L.; Jiang, H. Osmotic pressure regulated sodium alginate-graphene oxide hydrogel as a draw agent in forward osmosis desalination. Desalination 2024, 586, 117863. [Google Scholar] [CrossRef]
- Mohamed, M.; Tagliabue, M.; Tiraferri, A. Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration. Membranes 2024, 14, 107. [Google Scholar] [CrossRef]
- Tashtoush, B.; Al Ghadi, M.; Tashtoush, N. Advancing solar-powered hybrid FO-MD desalination: Integrating PVT collectors and PCM for sustainable water production in residential building. Energy Build. 2024, 313, 114246. [Google Scholar] [CrossRef]
- Ali, A.S.; Bounahmidi, T. Coupling of photovoltaic thermal with hybrid forward osmosis-membrane distillation: Energy and water production dynamic analysis. J. Water Process Eng. 2024, 64, 105710. [Google Scholar] [CrossRef]
- Shekari, R.; Dehban, A.; Kargari, A. Fabrication of PVDF membranes via VIPS-NIPS technique for water desalination: Effect of preparation condition. Desalin. Water Treat. 2024, 319, 100447. [Google Scholar] [CrossRef]
- Elboughdiri, N.; Cosma, R.; Amari, A.; Spalevic, V.; Dudic, B.; Skataric, G. Evaluating the feasibility of direct contact membrane distillation and nanofiltration in ground water treatment through a techno-economic analysis. Appl. Water Sci. 2024, 14, 130. [Google Scholar] [CrossRef]
- Hafiz Al Hariri, A.; Khalifa, A.E. Heat recovery of multistage circulated permeate gap membrane distillation for energy-efficient water production. Sep. Purif. Technol. 2025, 352, 128284. [Google Scholar] [CrossRef]
- Ahmed, M. A study on the influence of feed and draw solution concentrations on the performance of the pilot-scale forward osmosis-membrane distillation system. Desalin. Water Treat. 2024, 317, 100225. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, F.; Wang, S.; Ru, Q.; He, Q.; Hou, X.; Su, C.-Y.; Shi, Y. An organic flow desalination battery. Energy Storage Mater. 2019, 20, 203–207. [Google Scholar] [CrossRef]
- Xu, D.; Wang, W.; Zhu, M.; Li, C. Recent Advances in Desalination Battery: An Initial Review. ACS Appl. Mater. Interfaces 2020, 12, 57671–57685. [Google Scholar] [CrossRef]
- Maclean, S.A.; Raza, S.; Wang, H.; Igbomezie, C.; Liu, J.; Makowski, N.; Ma, Y.; Shen, Y.; Röhr, J.A.; Weng, G.M.; et al. Investigation of flow rate in symmetric four-channel redox flow desalination system. Cell Rep. Phys. Sci. 2024, 5, 101761. [Google Scholar] [CrossRef]
- Xie, R.; Schrage, B.R.; Jiang, J.; Ziegler, C.J.; Peng, Z. Ferrocene Bis (Sulfonate) Salt as Redoxmer for Fast and Steady Redox Flow Desalination. Molecules 2024, 29, 2506. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, H.; Li, M.; He, Q.; Oo, T.Z.; Zaw, M.; Lwin, N.W.; Hui, K.N.; Luo, M.; Tang, D.; et al. Ionic liquid redox flow desalination of seawater. Desalination 2024, 574, 117284. [Google Scholar] [CrossRef]
- Khodadousti, S.; Kolliopoulos, G. Batteries in desalination: A review of emerging electrochemical desalination technologies. Desalination 2023, 573, 117202. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Shetwi, A.Q.; Mollik, M.S.; Ker, P.J.; Mannan, M.; Mansor, M.; Al-Masri, H.; Mahlia, T.M.I. Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions. Sustainability 2023, 15, 3986. [Google Scholar] [CrossRef]
- Pourasl, H.H.; Barenji, R.V.; Khojastehnezhad, V.M. Solar energy status in the world: A comprehensive review. Energy Rep. 2023, 10, 3474–3493. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Rej, S.; Villanthenkodath, M.A.; Mahalik, M.K. The role of nuclear energy consumption in abatement of ecological footprint: Novel insights from quantile-on-quantile regression. J. Clean. Prod. 2022, 358, 132052. [Google Scholar] [CrossRef]
- Rezaei, T.; Javadi, A. Environmental impact assessment of ocean energy converters using quantum machine learning. J. Environ. Manag. 2024, 362, 121275. [Google Scholar] [CrossRef]
- Nguyen, T.K.C.; Toan, N.Q. Developing biomass energy from agricultural by-products in the context of trade development. Energy Strategy Rev. 2024, 54, 101417. [Google Scholar] [CrossRef]
- Yi, Z.; Meng, S.; Abdolhosseinzadeh, S. Optimal hydroelectric energy utilization with ATDOA: A case study of the Bumbuna Dam. Water Supply 2024, 24, 3295–3313. [Google Scholar] [CrossRef]
- Li, Y.; Ali, G.; Akbar, A.R. Advances in geothermal energy prospectivity mapping research based on machine learning in the age of big data. Sustain. Energy Technol. Assess. 2023, 60, 103550. [Google Scholar] [CrossRef]
- Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W. Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev. 2022, 156, 111855. [Google Scholar] [CrossRef]
- Shi, X.; Liang, B.; Li, S.; Zhao, J.; Wang, J.; Wang, Z. Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering. Energy 2024, 299, 131454. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.; Zeng, H.; Peng, J.; Ge, Y.; Liu, W. Theoretical and experimental study on the secondary heat recovery cycle of the mixed working fluid in ocean thermal energy conversion. Renew. Energy 2024, 227, 120142. [Google Scholar] [CrossRef]
- Epp, C.; Papapetrou, M. Co-ordination action for autonomous desalination units based on renewable energy systems–ADU-RES. Desalination 2004, 168, 89–93. [Google Scholar] [CrossRef]
- Carta, J.; González, J.; Subiela, V. The SDAWES project: An ambitious R&D prototype for wind-powered desalination. Desalination 2004, 161, 33–48. [Google Scholar] [CrossRef]
- Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007, 203, 346–365. [Google Scholar] [CrossRef]
- Plantikow, U. Wind-powered MVC seawater desalination—Operational results. Desalination 1999, 122, 291–299. [Google Scholar] [CrossRef]
- Carta, J.; González, J.; Gómez, C. Operating results of a wind–diesel system which supplies the full energy needs of an isolated village community in the Canary Islands. Sol. Energy 2003, 74, 53–63. [Google Scholar] [CrossRef]
- Carta, J.; González, J.; Subiela, V. Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands. Sol. Energy 2003, 75, 153–168. [Google Scholar] [CrossRef]
- Paulsen, K.; Hensel, F. Introduction of a new Energy Recovery System—Optimized for the combination with renewable energy. Desalination 2005, 184, 211–215. [Google Scholar] [CrossRef]
- Paulsen, K.; Hensel, F. Design of an autarkic water and energy supply driven by renewable energy using commercially available components. Desalination 2007, 203, 455–462. [Google Scholar] [CrossRef]
- Pestana, I.d.l.N.; Latorre, F.J.G.; Espinoza, C.A.; Gotor, A.G. Optimization of RO desalination systems powered by renewable energies. Part I: Wind energy. Desalination 2004, 160, 293–299. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Mohn, J.; Müller, A. Wind and solar-powered reverse osmosis desalination units—Description of two demonstration projects. Desalination 1979, 31, 501–509. [Google Scholar] [CrossRef]
- Libert, J.; Maurel, A. Desalination and renewable energies-a few recent developments. Desalination 1981, 39, 363–372. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Al Radi, M.; Mahmoud, M.; Sayed, E.T.; Salameh, T.; Alqadi, R.; Kais, E.-C.A.; Olabi, A. Recent progress in wind energy-powered desalination. Therm. Sci. Eng. Prog. 2024, 47, 102286. [Google Scholar] [CrossRef]
- Feng, H.D.; Yao, A.L.; Han, Q.Y.; Zhang, H.L.; Sun, W.X. Effect of droplets in the primary flow on ejector performance of MED-TVC systems. Energy 2024, 293, 130741. [Google Scholar] [CrossRef]
- Liu, C.C.; Jae-Woo, P.; Migita, R.; Gang, Q. Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control. Desalination 2002, 150, 277–287. [Google Scholar] [CrossRef]
- Liu, S.; Song, D.; Han, M.; Ai, C.; Shan, Q.; Liu, Z.; Zhang, G. Multi-dimensional low-carbon assessments of wind-driven seawater desalination system via hybrid life cycle modeling. Environ. Impact Assess. Rev. 2024, 106, 107475. [Google Scholar] [CrossRef]
- Fernández-López, C.; Viedma, A.; Herrero, R.; Kaiser, A. Seawater integrated desalination plant without brine discharge and powered by renewable energy systems. Desalination 2009, 235, 179–198. [Google Scholar] [CrossRef]
- Karameldin, A.; Lotfy, A.; Mekhemar, S. The Red Sea area wind-driven mechanical vapor compression desalination system. Desalination 2003, 153, 47–53. [Google Scholar] [CrossRef]
- Kariman, H.; Shafieian, A.; Khiadani, M. Small scale desalination technologies: A comprehensive review. Desalination 2023, 567, 116985. [Google Scholar] [CrossRef]
- Farwati, M.A. Theoretical study of multi-stage flash distillation using solar energy. Energy 1997, 22, 1–5. [Google Scholar] [CrossRef]
- García-Rodríguez, L.; Gómez-Camacho, C. Conditions for economical benefits of the use of solar energy in multi-stage flash distillation. Desalination 1999, 125, 133–138. [Google Scholar] [CrossRef]
- Shaaban, S. Performance optimization of an integrated solar combined cycle for the cogeneration of electricity and fresh water. Renew. Energy 2024, 227, 120482. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mondal, B.; Jana, A.K. A Carbon-Neutral Highly Productive Solar-Powered Desalination Process: Improving Economic Performance with Carbon Pricing. Ind. Eng. Chem. Res. 2024, 63, 9107–9123. [Google Scholar] [CrossRef]
- Al-Addous, M.; Bdour, M.; Rabaiah, S.; Boubakri, A.; Schweimanns, N.; Barbana, N.; Wellmann, J. Innovations in Solar-Powered Desalination: A Comprehensive Review of Sustainable Solutions for Water Scarcity in the Middle East and North Africa (MENA) Region. Water 2024, 16, 1877. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, Y. Theoretical study on multi-effect solar distillation system driven by tidal energy. Desalination 2009, 249, 566–570. [Google Scholar] [CrossRef]
- Kalogirou, S. Survey of solar desalination systems and system selection. Energy 1997, 22, 69–81. [Google Scholar] [CrossRef]
- Peng, G.; Sharshir, S.W. Progress and performance of multi-stage solar still—A review. Desalination 2023, 565, 116828. [Google Scholar] [CrossRef]
- Adhikari, R.; Kumar, A. Cost optimization studies on a multi-stage stacked tray solar still. Desalination 1999, 125, 115–121. [Google Scholar] [CrossRef]
- Adhikari, R.; Kumar, A.; Garg, H. Techno-economic analysis of a multi-stage stacked tray (MSST) solar still. Desalination 2000, 127, 19–26. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, X.; Zhang, J.; Wu, Y. A group of improved heat and mass transfer correlations in solar stills. Energy Convers. Manag. 2002, 43, 2469–2478. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, J.; Chen, G.; Hou, L.; Yu, T.; Yao, Y.; Zheng, H. Analysis of heat and mass transferring mechanism of multi-stage stacked-tray solar seawater desalination still and experimental research on its performance. Sol. Energy 2017, 142, 278–287. [Google Scholar] [CrossRef]
- Kharabsheh, A.S.; Goswami, D.Y. Theoretical Analysis of a Water Desalination System Using Low Grade Solar Heat. J. Sol. Energy Eng. 2004, 126, 774–780. [Google Scholar] [CrossRef]
- Kharabsheh, A.S.; Yogi Goswami, D. Analysis of an innovative water desalination system using low-grade solar heat. Desalination 2003, 156, 323–332. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, H. Mathematical modeling of a closed circulation solar desalination unit with humidification–dehumidification. Desalination 2007, 205, 156–162. [Google Scholar] [CrossRef]
- Barrena, F.; Montero, I.; Miranda, M.; Arranz, J.; Sepúlveda, F. Experimental performance evaluation of self-consumption photovoltaic system with energy storage using TRNSYS. J. Energy Storage 2024, 92, 112147. [Google Scholar] [CrossRef]
- Benalcazar, P.; Kalka, M.; Kamiński, J. From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems. Energy Policy 2024, 191, 114167. [Google Scholar] [CrossRef]
- Koholé, Y.W.; Ngouleu, C.A.W.; Fohagui, F.C.V.; Tchuen, G. A comprehensive comparison of battery, hydrogen, pumped-hydro and thermal energy storage technologies for hybrid renewable energy systems integration. J. Energy Storage 2024, 93, 112299. [Google Scholar] [CrossRef]
- Özcan, Ö.; Duman, A.C.; Gönül, Ö.; Güler, Ö. Techno-economic analysis of grid-connected PV and second-life battery systems for net-zero energy houses. J. Build. Eng. 2024, 89, 109324. [Google Scholar] [CrossRef]
- Miles, R.W.; Zoppi, G.; Forbes, I. Inorganic photovoltaic cells. Mater. Today 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Zekry, A.; Shaker, A.; Salem, M. Chapter 1—Solar Cells and Arrays: Principles, Analysis, and Design. In Advances in Renewable Energies and Power Technologies; Yahyaoui, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–56. [Google Scholar]
- Abbas, K.J.; Bahrami, A. Investigating the potential of WO3 and WS2 as Cd-free buffer layers in Sb2Se3-Based thin-film solar cells: A numerical study with SCAPS-1D software. Sol. Energy Mater. Sol. Cells 2024, 272, 112891. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.K.; Khan, A.; Bibi, S.; Bououdina, M.; Usman, M.; Khan, N.A.; Pirzado, A.A.A.; Abumousa, R.A.; Humayun, M. State-of-the-art electrochromic thin films devices, fabrication techniques and applications: A review. Nanocomposites 2024, 10, 1–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Cong, J.; Hao, X. CuSb: The dominant defect in Cu-rich CuSbS2 solar cells fabricated by sulfurizing co-sputtered Cu–Sb precursor. Sol. Energy Mater. Sol. Cells 2024, 273, 112935. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Macharg, J.; Truby, R. West Coast researchers seek to demonstrate SWRO affordability. Desalination Water Reuse 2004, 14, 10–18. [Google Scholar]
- Najafi, P.; Aghaei, M. Real options analysis of seawater desalination with solar photovoltaic energy systems: A least-squares stochastic perspective. Desalination 2024, 586, 117823. [Google Scholar] [CrossRef]
- Ali, H.; Siddiqui, M.U.; Ammar; Aswani, M.A.; Umer, M.; Khan, M.I. Techno-economic analysis of various configurations of stand-alone PV-RO systems for Pakistan. Renew. Energy 2024, 225, 120262. [Google Scholar] [CrossRef]
- Tourab, A.E.; Blanco-Marigorta, A.M.; Elharidi, A.M.; Suárez-López, M.J. A Novel Configuration of Hybrid Reverse Osmosis, Humidification–Dehumidification, and Solar Photovoltaic Systems: Modeling and Exergy Analysis. J. Mar. Sci. Eng. 2023, 12, 19. [Google Scholar] [CrossRef]
- Hay, J.E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol. Energy 1979, 23, 301–307. [Google Scholar] [CrossRef]
- Klein, S. Calculation of monthly average insolation on tilted surfaces. Sol. Energy 1977, 19, 325–329. [Google Scholar] [CrossRef]
- Liu BY, H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589. [Google Scholar] [CrossRef]
- Sproul, A.B. Derivation of the solar geometric relationships using vector analysis. Renew. Energy 2007, 32, 1187–1205. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Zhai, X.Q.; Wang, R.Z.; Dai, Y.J.; Wu, J.Y.; Xu, Y.X.; Ma, Q. Solar integrated energy system for a green building. Energy Build. 2007, 39, 985–993. [Google Scholar] [CrossRef]
- Roca, L.; Yebra, L.J.; Berenguel, M.; Alarcón-Padilla, D.C. Modeling of a Solar Seawater Desalination Plant for Automatic Operation Purposes. J. Sol. Energy Eng. 2008, 130, 041009. [Google Scholar] [CrossRef]
- Liu, H.W.; Sun, W.J.; Gao, S. Study on the Experimental Preparation of the SiO2 Minus Reflection Film of the Solar Spectrum Selective Absorption Coating. Adv. Mater. Res. 2012, 512–515, 182–185. [Google Scholar]
- Wang, C.; Shi, J.; Geng, Z.; Ling, X. Polychromic Al–AlN cermet solar absorber coating with high absorption efficiency and excellent durability. Sol. Energy Mater. Sol. Cells 2016, 144, 14–22. [Google Scholar] [CrossRef]
- Wu, L.; Gao, J.; Liu, Z.; Liang, L.; Xia, F.; Cao, H. Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications. Sol. Energy Mater. Sol. Cells 2013, 114, 186–191. [Google Scholar] [CrossRef]
- Price, H.; Lüpfert, E.; Kearney, D.; Zarza, E.; Cohen, G.; Gee, R.; Mahoney, R. Advances in Parabolic Trough Solar Power Technology. J. Sol. Energy Eng. 2002, 124, 109–125. [Google Scholar] [CrossRef]
- Kalogirou, S. Use of parabolic trough solar energy collectors for sea-water desalination. Appl. Energy 1998, 60, 65–88. [Google Scholar] [CrossRef]
- Sharaf Eldean, M.; Fath, H. Exergy and thermo-economic analysis of solar thermal cycles powered multi-stage flash desalination process. Desalin. Water Treat. 2013, 51, 7361–7378. [Google Scholar] [CrossRef]
- Aboelmaaref, M.M.; Zayed, M.E.; Zhao, J.; Li, W.; Askalany, A.A.; Ahmed, M.S.; Ali, E.S. Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment. Energy Convers. Manag. 2020, 220, 113103. [Google Scholar] [CrossRef]
- Dewita, E.; Ariyanto, T.; Susiati, H.; Pancoko, M. Conceptual Design of Indonesia Experimental Power Reactor Coupled with Desalination Unit. J. Phys. Conf. Ser. 2019, 1198, 022056. [Google Scholar] [CrossRef]
- Rabinowitz, O. Nuclear energy and desalination in Israel. Bull. At. Sci. 2016, 72, 32–38. [Google Scholar] [CrossRef]
- Megahed, M.M. Nuclear desalination: History and prospects. Desalination 2001, 135, 169–185. [Google Scholar] [CrossRef]
- Khamis, I.; Kavvadias, K.; Sánchez-Cervera, I. Nuclear desalination: A viable option of the future based on existing experience. Desalin. Water Treat. 2011, 33, 316–322. [Google Scholar] [CrossRef]
- Faibish, R.S.; Ettouney, H. MSF nuclear desalination. Desalination 2003, 157, 277–287. [Google Scholar] [CrossRef]
- Gowin, P.J.; Konishi, T. Nuclear seawater desalination—IAEA activities and economic evaluation for southern Europe. Desalination 1999, 126, 301–307. [Google Scholar] [CrossRef]
- Al-Othman, A.; Darwish, N.N.; Qasim, M.; Tawalbeh, M.; Darwish, N.A.; Hilal, N. Nuclear desalination: A state-of-the-art review. Desalination 2019, 457, 39–61. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Ozcan, H.; Bhattacharyya, R.; Awerbuch, L. Nuclear desalination: A sustainable route to water security. Desalination 2022, 542, 116082. [Google Scholar] [CrossRef]
- Khamis, I.; El-Emam, R. IAEA coordinated research activity on nuclear desalination: The quest for new technologies and techno-economic assessment. Desalination 2016, 394, 56–63. [Google Scholar] [CrossRef]
- Kavvadias, K.; Khamis, I. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel. Energy Policy 2014, 74, S24–S30. [Google Scholar] [CrossRef]
- Faibish, R.S.; Konishi, T. Nuclear desalination: A viable option for producing freshwater. Desalination 2003, 157, 241–252. [Google Scholar] [CrossRef]
- He, T.X.; Yan, L.J. Application of alternative energy integration technology in seawater desalination. Desalination 2009, 249, 104–108. [Google Scholar] [CrossRef]
- Ud-Din Khan, S.; Orfi, J. Computational analysis of nuclear desalination system under various configurations. Kerntechnik 2023, 88, 291–301. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S. Coupling of a nuclear reactor to hybrid RO-MSF desalination plants. Desalination 2003, 157, 259–268. [Google Scholar] [CrossRef]
- Sadeghi, K.; Ghazaie, S.H.; Sokolova, E.; Fedorovich, E.; Shirani, A. Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems. Desalination 2020, 493, 114623. [Google Scholar] [CrossRef]
- Ghazaie, S.H.; Sadeghi, K.; Sokolova, E.; Fedorovich, E.; Shirani, A. Comparative Analysis of Hybrid Desalination Technologies Powered by SMR. Energies 2020, 13, 5006. [Google Scholar] [CrossRef]
- Sadeghi, K.; Ghazaie, S.H.; Chebac, R.; Sokolova, E.; Fedorovich, E.; Cammi, A.; Ricotti, M.E.; Shirani, A.S. Towards net-zero emissions through the hybrid SMR-solar cogeneration plant equipped with modular PCM storage system for seawater desalination. Desalination 2022, 524, 115476. [Google Scholar] [CrossRef]
- Morones-García, E.; François, J.-L. Nuclear microreactors: Status review and potential applications; the Mexican case. Nucl. Eng. Des. 2024, 420, 113021. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R.M. Renewable energy from the ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Rourke, F.; Boyle, F.; Reynolds, A. Tidal energy update 2009. Appl. Energy 2010, 87, 398–409. [Google Scholar] [CrossRef]
- Zhao, G.; Su, X.; Cao, Y.; Su, J.; Liu, Y. Experiments on the hydrodynamic performance of horizontal axis tidal current turbine and de-salination of sea water. Int. J. Energy Res. 2016, 40, 600–609. [Google Scholar] [CrossRef]
- Khanjanpour, M.H.; Javadi, A.A. Optimization of a Horizontal Axis Tidal (HAT) turbine for powering a Reverse Osmosis (RO) desalination system using Computational Fluid Dynamics (CFD) and Taguchi method. Energy Convers. Manag. 2021, 231, 113833. [Google Scholar] [CrossRef]
- Ling, C.; Wang, Y.; Min, C.; Zhang, Y. Economic evaluation of reverse osmosis desalination system coupled with tidal energy. Front. Energy 2018, 12, 297–304. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L. Off-grid SeaWater Reverse Osmosis (SWRO) desalination driven by hybrid tidal range/solar PV systems: Sensitivity analysis and criteria for preliminary design. Sustain. Energy Technol. Assess. 2022, 53, 102425. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L.; del Moral, M.J. Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV)—Tidal range energy system. Desalination 2020, 477, 114247. [Google Scholar] [CrossRef]
- Davies, P.A. Wave-powered desalination: Resource assessment and review of technology. Desalination 2005, 186, 97–109. [Google Scholar] [CrossRef]
- Hicks, D.C.; Mitcheson, G.R.; Pleass, C.M.; Salevan, J.F. Delbouy: Ocean wave-powered seawater reverse osmosis desalination systems. Desalination 1989, 73, 81–94. [Google Scholar] [CrossRef]
- Crerar, A.; Pritchard, C. Wavepowered desalination: Experimental and mathematical modelling. Desalination 1991, 81, 391–398. [Google Scholar] [CrossRef]
- Sharmila, N.; Jalihal, P.; Swamy, A.; Ravindran, M. Wave powered desalination system. Energy 2004, 29, 1659–1672. [Google Scholar] [CrossRef]
- Folley, M.; Suarez, B.P.; Whittaker, T. An autonomous wave-powered desalination system. Desalination 2008, 220, 412–421. [Google Scholar] [CrossRef]
- Folley, M.; Whittaker, T. The cost of water from an autonomous wave-powered desalination plant. Renew. Energy 2009, 34, 75–81. [Google Scholar] [CrossRef]
- Cheddie, D.; Maharajh, A.; Ramkhalawan, A.; Persad, P. Transient modeling of wave powered reverse osmosis. Desalination 2010, 260, 153–160. [Google Scholar] [CrossRef]
- Lu, B.; Liu, Y.; Zhai, X.; Zhang, L.; Chen, Y. Design and Experimental Study of 50 kW Ocean Thermal Energy Conversion Test Platform Based on Organic Rankine Cycle. J. Mar. Sci. Eng. 2024, 12, 463. [Google Scholar] [CrossRef]
- Hu, Z.; Deng, Z.; Gao, W.; Chen, Y. Experimental study of the absorption refrigeration using ocean thermal energy and its under-lying prospects. Renew. Energy 2023, 213, 47–62. [Google Scholar] [CrossRef]
- Rey, M.; Lauro, F. Ocean thermal energy and desalination. Desalination 1981, 39, 159–168. [Google Scholar] [CrossRef]
- Yilmaz, F.; Ozturk, M.; Selbas, R. Design and performance assessment of an OTEC driven combined plant for producing power, freshwater, and compressed hydrogen. Int. J. Hydrogen Energy 2024, 58, 688–697. [Google Scholar] [CrossRef]
- Xiao, C.; Hu, Z.; Chen, Y.; Zhang, C. Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system. Renew. Energy 2024, 225, 120194. [Google Scholar] [CrossRef]
- Soyturk, G.; Kizilkan, O. An innovative OTEC and PV/T-based multi-generation system with LNG cold energy recovery for sustainable production of hydrogen and distilled water. Int. J. Hydrogen Energy 2024, 75, 613–624. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, X.; Tong, L.; Li, J.; Wu, Z.; Lu, H.; Luo, H.; Wang, C.; Wang, S. Theoretical, numerical and experimental research on an innovative ocean thermal energy conversion coupled VMD desalination system. Desalination 2024, 571, 117097. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Huo, E.; Zhang, C. Investigation of a distillation desalination system driven by solar and ocean thermal energy. Desalination 2023, 559, 116649. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Qiu, X.; Tian, Z.; Peng, H.; Gao, W. Experimental study and performance comparison of a 1 kW-class solar-ocean thermal energy conversion system integrated air conditioning: Energy, exergy, economic, and environmental (4E) analysis. J. Clean. Prod. 2024, 451, 142033. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, H.; Zhang, Z.; Gao, Q. Performance analysis and multi-objective optimization of the offshore renewable energy powered integrated energy supply system. Energy Convers. Manag. 2024, 304, 118232. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Power Generation Costs in 2023; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2023. [Google Scholar]
- Zhang, Y.; Zhu, C.; Zhang, H.; Zheng, W.; You, S.; Zhen, Y. Experimental study of a humidification-dehumidification desalination system with heat pump unit. Desalination 2018, 442, 108–117. [Google Scholar] [CrossRef]
- Dehghani, S.; Date, A.; Akbarzadeh, A. Performance analysis of a heat pump driven humidification-dehumidification desalination system. Desalination 2018, 445, 95–104. [Google Scholar] [CrossRef]
- Al-Hrari, M.; Ceylan, I.; Nakoa, K.; Ergün, A. Concentrated photovoltaic and thermal system application for fresh water production. Appl. Therm. Eng. 2020, 171, 115054. [Google Scholar] [CrossRef]
- Wu, G.; Kutlu, C.; Zheng, H.; Su, Y.; Cui, D. A study on the maximum gained output ratio of single-effect solar humidification-dehumidification desalination. Sol. Energy 2017, 157, 1–9. [Google Scholar] [CrossRef]
- Tariq, R.; Sheikh, N.A.; Xamán, J.; Bassam, A. An innovative air saturator for humidification-dehumidification desalination application. Appl. Energy 2018, 228, 789–807. [Google Scholar] [CrossRef]
- Huttner, K.R. Overview of existing water and energy policies in the MENA region and potential policy approaches to overcome the existing barriers to desalination using renewable energies. Desalin. Water Treat. 2013, 51, 87–94. [Google Scholar] [CrossRef]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Jacobson, M.Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 2011, 39, 1170–1190. [Google Scholar] [CrossRef]
- DeCanio, S.J.; Fremstad, A. Economic feasibility of the path to zero net carbon emissions. Energy Policy 2011, 39, 1144–1153. [Google Scholar] [CrossRef]
- Semiat, R. Energy Issues in Desalination Processes. Environ. Sci. Technol. 2008, 42, 8193–8201. [Google Scholar] [CrossRef]
- Abraham, T.; Luthra, A. Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India. Desalination 2011, 268, 238–248. [Google Scholar] [CrossRef]
- Shemer, H.; Semiat, R. Sustainable RO desalination—Energy demand and environmental impact. Desalination 2017, 424, 10–16. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region. Desalin. Water Treat. 2013, 51, 38–43. [Google Scholar] [CrossRef]
- Mtombeni, T.; Maree, J.P.; Zvinowanda, C.M.; Asante, J.K.O.; Oosthuizen, F.S.; Louw, W.J. Evaluation of the performance of a new freeze desalination technology. Int. J. Environ. Sci. Technol. 2013, 10, 545–550. [Google Scholar] [CrossRef]
- Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J.D.; Englezos, P.; Linga, P. A review of clathrate hydrate based desalination to strengthen energy–water nexus. ACS Sustain. Chem. Eng. 2018, 6, 8093–8107. [Google Scholar] [CrossRef]
- Clarke, D.P.; Al-Abdeli, Y.M.; Kothapalli, G. The effects of including intricacies in the modelling of a small-scale solar-PV reverse osmosis desalination system. Desalination 2013, 311, 127–136. [Google Scholar] [CrossRef]
- Kelley, L.C.; Dubowsky, S. Thermal control to maximize photovoltaic powered reverse osmosis desalination systems productivity. Desalination 2013, 314, 10–19. [Google Scholar] [CrossRef]
- Mokheimer, E.M.; Sahin, A.Z.; Al-Sharafi, A.; Ali, A.I. Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Convers. Manag. 2013, 75, 86–97. [Google Scholar] [CrossRef]
- Peñate, B.; Subiela, V.J.; Vega, F.; Castellano, F.; Domínguez, F.J.; Millán, V. Uninterrupted eight-year operation of the autonomous solar photovoltaic reverse osmosis system in Ksar Ghilène (Tunisia). Desalin. Water Treat. 2015, 55, 3141–3148. [Google Scholar] [CrossRef]
- Kumarasamy, S.; Narasimhan, S.; Narasimhan, S. Optimal operation of battery-less solar powered reverse osmosis plant for desalination. Desalination 2015, 375, 89–99. [Google Scholar] [CrossRef]
- Alsheghri, A.; Sharief, S.A.; Rabbani, S.; Aitzhan, N.Z. Design and Cost Analysis of a Solar Photovoltaic Powered Reverse Osmosis Plant for Masdar Institute. Energy Procedia 2015, 75, 319–324. [Google Scholar] [CrossRef]
- Elasaad, H.; Bilton, A.; Kelley, L.; Duayhe, O.; Dubowsky, S. Field evaluation of a community scale solar powered water purification technology: A case study of a remote Mexican community application. Desalination 2015, 375, 71–80. [Google Scholar] [CrossRef]
- Alghoul, M.A.; Poovanaesvaran, P.; Mohammed, M.H.; Fadhil, A.M.; Muftah, A.F.; Alkilani, M.M.; Sopian, K. Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system. Renew. Energy 2016, 93, 101–114. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Rezaei, M.; Babaee-Tirkolaee, E. Investigation of off-grid photovoltaic systems for a reverse osmosis desalina-tion system: A case study. Desalination 2019, 454, 91–103. [Google Scholar] [CrossRef]
- Ghafoor, A.; Ahmed, T.; Munir, A.; Arslan, C.; Ahmad, S. Techno-economic feasibility of solar based desalination through reverse osmosis. Desalination 2020, 485, 114464. [Google Scholar] [CrossRef]
- Kettani, M.; Bandelier, P. Techno-economic assessment of solar energy coupling with large-scale desalination plant: The case of Morocco. Desalination 2020, 494, 114627. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, B.; Shirvani, H.; Alamolhoda, A.A.; Farhadi, F.; Karimi, M. A feasibility study of solar-powered reverse osmosis processes. Desalination 2020, 500, 114885. [Google Scholar] [CrossRef]
- Ajiwiguna, T.A.; Lee, G.R.; Lim, B.J.; Cho, S.H.; Park, C.D. Optimization of battery-less PV-RO system with seasonal water storage tank. Desalination 2021, 503, 114934. [Google Scholar] [CrossRef]
- Sanna, A.; Buchspies, B.; Ernst, M.; Kaltschmitt, M. Decentralized brackish water reverse osmosis de-salination plant based on PV and pumped storage-Technical analysis. Desalination 2021, 516, 115232. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Al-Hanbali, A.; Mohammed, A.; Attia, A.M.; Saleh, H.; Alsawafy, O. Optimization of a solar-wind- grid powered desalination system in Saudi Arabia. Renew. Energy 2021, 178, 295–306. [Google Scholar] [CrossRef]
- Nafey, A.S.; Sharaf, M.A. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations. Renew. Energy 2010, 35, 2571–2580. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Manolakos, D.; Papadakis, G. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination. Renew. Energy 2010, 35, 989–996. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC). Energy Convers. Manag. 2010, 51, 2913–2920. [Google Scholar] [CrossRef]
- Peñate, B.; García-Rodríguez, L. Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range. Desalination 2012, 284, 86–91. [Google Scholar] [CrossRef]
- Salcedo, R.; Antipova, E.; Boer, D.; Jiménez, L.; Guillén-Gosálbez, G. Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis de-salination considering economic and life cycle environmental concerns. Desalination 2012, 286, 358–371. [Google Scholar] [CrossRef]
- Ibarra, M.; Rovira, A.; Alarcón-Padilla, D.; Zaragoza, G.; Blanco, J. Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant. Energy Procedia 2014, 49, 2251–2260. [Google Scholar] [CrossRef]
- Xia, G.; Sun, Q.; Wang, J.; Cao, X.; Yu, Y.; Wang, L. Theoretical analysis of a reverse osmosis desalination system driven by solar-powered organic Rankine cycle and wind energy. Desalin. Water Treat. 2015, 53, 876–886. [Google Scholar] [CrossRef]
- Geng, D.; Du, Y.; Yang, R. Performance analysis of an organic Rankine cycle for a reverse osmosis desalination system using zeotropic mixtures. Desalination 2016, 381, 38–46. [Google Scholar] [CrossRef]
- Nihill, J.; Date, A.; Lappas, P.; Velardo, J. Investigating the prospects of water desalination using a thermal water pump coupled with reverse osmosis membrane. Desalination 2018, 445, 256–265. [Google Scholar] [CrossRef]
- Igobo, O.; Davies, P. Isothermal Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO) desalination: Experimental investigation and case study using R245fa working fluid. Appl. Therm. Eng. 2018, 136, 740–746. [Google Scholar] [CrossRef]
- El Mansouri, A.; Hasnaoui, M.; Amahmid, A.; Hasnaoui, S. Feasibility analysis of reverse osmosis desalination driven by a solar pond in Mediterranean and semi-arid climates. Energy Convers. Manag. 2020, 221, 113190. [Google Scholar] [CrossRef]
- Geng, D.; Cui, J.; Fan, L. Performance investigation of a reverse osmosis desalination system powered by solar dish-Stirling engine. Energy Rep. 2021, 7, 3844–3856. [Google Scholar] [CrossRef]
- Bouguecha, S.T.; Aly, S.E.; Al-Beirutty, M.H.; Hamdi, M.M.; Boubakri, A. Solar driven DCMD: Performance evaluation and thermal energy efficiency. Chem. Eng. Res. Des. 2015, 100, 331–340. [Google Scholar] [CrossRef]
- Suárez, F.; Ruskowitz, J.A.; Tyler, S.W.; Childress, A.E. Renewable water: Direct contact membrane distillation coupled with solar ponds. Appl. Energy 2015, 158, 532–539. [Google Scholar] [CrossRef]
- Suárez, F.; Urtubia, R. Tackling the water-energy nexus: An assessment of membrane distillation driven by salt-gradient solar ponds. Clean Technol. Environ. Policy 2016, 18, 1697–1712. [Google Scholar] [CrossRef]
- Dow, N.; Gray, S.; Li, J.-D.; Zhang, J.; Ostarcevic, E.; Liubinas, A.; Atherton, P.; Roeszler, G.; Gibbs, A.; Duke, M. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment. Desalination 2016, 391, 30–42. [Google Scholar] [CrossRef]
- Kumar, N.U.; Mohan, G.; Martin, A. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production. Appl. Energy 2016, 170, 466–475. [Google Scholar] [CrossRef]
- Kabeel, A.; Abdelgaied, M.; El-Said, E.M. Study of a solar-driven membrane distillation system: Evaporative cooling effect on performance enhancement. Renew. Energy 2017, 106, 192–200. [Google Scholar] [CrossRef]
- Lokare, O.R.; Tavakkoli, S.; Rodriguez, G.; Khanna, V.; Vidic, R.D. Integrating membrane distillation with waste heat from natural gas compressor stations for produced water treatment in Pennsylvania. Desalination 2017, 413, 144–153. [Google Scholar] [CrossRef]
- Ali, A.; Criscuoli, A.; Macedonio, F.; Argurio, P.; Figoli, A.; Drioli, E. Direct contact membrane distillation for the treatment of wastewater for a cooling tower in the power industry. H2Open J. 2018, 1, 57–68. [Google Scholar] [CrossRef]
- Ma, Q.; Ahmadi, A.; Cabassud, C. Direct integration of a vacuum membrane distillation module within a solar collector for small-scale units adapted to seawater desalination in remote places: Design, modeling & evaluation of a flat-plate equipment. J. Membr. Sci. 2018, 564, 617–633. [Google Scholar] [CrossRef]
- Amaya-Vías, D.; Nebot, E.; López-Ramírez, J.A. Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels. Desalination 2018, 429, 44–51. [Google Scholar] [CrossRef]
- Moore, S.E.; Mirchandani, S.D.; Karanikola, V.; Nenoff, T.M.; Arnold, R.G.; Sáez, A.E. Process modeling for economic optimization of a solar driven sweeping gas membrane distillation desalination system. Desalination 2018, 437, 108–120. [Google Scholar] [CrossRef]
- Zarzoum, K.; Zhani, K.; Ben Bacha, H.; Koschikowski, J. Experimental parametric study of membrane distillation unit using solar energy. Sol. Energy 2019, 188, 1274–1282. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Kheiri, A.; Gabsi, S. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Convers. Manag. 2019, 185, 143–154. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M. A novel solar-driven direct contact membrane-based water desalination system. Energy Convers. Manag. 2019, 199, 112055. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Roca, L.; Ruiz-Aguirre, A.; Acién, F.; Gil, J.; Zaragoza, G. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Appl. Energy 2020, 258, 114068. [Google Scholar] [CrossRef]
- Li, G.; Lu, L. Modeling and performance analysis of a fully solar-powered stand-alone sweeping gas membrane distillation desalination system for island and coastal households. Energy Convers. Manag. 2019, 205, 112375. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Bergamasco, L.; Albiero, A.; Curzio, M.L.; Asinari, P.; Chiavazzo, E. Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets. Appl. Energy 2020, 258, 114086. [Google Scholar] [CrossRef]
- Bamasag, A.; Alqahtani, T.; Sinha, S.; Ghaffour, N.; Phelan, P. Experimental investigation of a solar-heated direct contact membrane distillation sys-tem using evacuated tube collectors. Desalination 2020, 487, 114497. [Google Scholar] [CrossRef]
- Deng, H.; Yang, X.; Tian, R.; Hu, J.; Zhang, B.; Cui, F.; Guo, G. Modeling and optimization of solar thermal-photovoltaic vacuum membrane distillation system by response surface methodology. Sol. Energy 2020, 195, 230–238. [Google Scholar] [CrossRef]
- Abdelgaied, M.; Kabeel, A.; Sathyamurthy, R. Improving the performance of solar powered membrane distillation systems using the thermal energy storage mediums and the evaporative cooler. Renew. Energy 2020, 157, 1046–1052. [Google Scholar] [CrossRef]
- Shafieian, A.; Azhar, M.R.; Khiadani, M.; Sen, T.K. Performance improvement of thermal-driven membrane-based solar desal-ination systems using nanofluid in the feed stream. Sustain. Energy Technol. Assess. 2020, 39, 100715. [Google Scholar]
- Sandid, A.M.; Bassyouni, M.; Nehari, D.; Elhenawy, Y. Experimental and simulation study of multichannel air gap membrane distil-lation process with two types of solar collectors. Energy Convers. Manag. 2021, 243, 114431. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Gabsi, S. Modeling and energy analysis of a solar thermal vacuum membrane distillation coupled with a liquid ring vacuum pump. Renew. Energy 2020, 164, 1395–1407. [Google Scholar] [CrossRef]
- Bamasag, A.; Alqahtani, T.; Sinha, S.; Ghaffour, N.; Phelan, P. Solar-heated submerged vacuum membrane distillation system with agitation tech-niques for desalination. Sep. Purif. Technol. 2021, 256, 117855. [Google Scholar] [CrossRef]
- Okati, V.; Moghadam, A.J.; Farzaneh-Gord, M.; Moein-Jahromi, M. Thermo-economical and environmental analyses of a Direct Contact Mem-brane Distillation (DCMD) performance. J. Clean. Prod. 2022, 340, 130613. [Google Scholar] [CrossRef]
- Soomro, M.I.; Kim, W.-S. Performance and economic investigations of solar power tower plant integrated with direct contact membrane distillation system. Energy Convers. Manag. 2018, 174, 626–638. [Google Scholar] [CrossRef]
- Soomro, M.I.; Kim, W.-S. Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact mem-brane distillation system. Renew. Energy 2018, 129, 561–569. [Google Scholar] [CrossRef]
- Krnac, A.; Araiz, M.; Rana, S.; Velardo, J.; Date, A. Investigation of Direct Contact Membrane Distillation coupling with a Concentrated Photo-voltaic solar system. Energy Procedia 2019, 160, 246–252. [Google Scholar] [CrossRef]
- Elminshawy, N.A.; Gadalla, M.A.; Bassyouni, M.; El-Nahhas, K.; Elminshawy, A.; Elhenawy, Y. A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water. Renew. Energy 2020, 162, 802–817. [Google Scholar] [CrossRef]
- Chen, Q.; Burhan, M.; Akhtar, F.H.; Ybyraiymkul, D.; Shahzad, M.W.; Li, Y.; Ng, K.C. A decentralized water/electricity cogeneration system integrating concentrated photo-voltaic/thermal collectors and vacuum multi-effect membrane distillation. Energy 2021, 230, 120852. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Cheng, C.; Huang, J. Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system. Renew. Energy 2021, 179, 1815–1825. [Google Scholar] [CrossRef]
- Al-Arfi, I.; Shboul, B.; Poggio, D.; Ingham, D.; Ma, L.; Hughes, K.; Pourkashanian, M. Thermo-economic and design analysis of a solar thermal power combined with anaerobic biogas for the air gap membrane distillation process. Energy Convers. Manag. 2022, 257, 115407. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Novati, N.; Sutter, L.; Simonetti, R.; Molinaroli, L.; Manzolini, G.; Mazzotti, M. Combined water desalination and electricity generation through a humidification-dehumidification process integrated with photovoltaic-thermal modules: Design, performance analysis and techno-economic assessment. Energy Convers. Manag. X 2019, 1, 100004. [Google Scholar] [CrossRef]
- Mohamed, A.; Shahdy, A.G.; Ahmed, M.S. Investigation on solar humidification dehumidification water desalination system using a closed-air cycle. Appl. Therm. Eng. 2021, 188, 116621. [Google Scholar] [CrossRef]
- Zubair, M.I.; Al-Sulaiman, F.A.; Antar, M.A.; Al-Dini, S.A.; Ibrahim, N.I. Performance and cost assessment of solar driven humidification dehumidifi-cation desalination system. Energy Convers. Manag. 2017, 132, 28–39. [Google Scholar] [CrossRef]
- Rafiei, A.; Alsagri, A.S.; Mahadzir, S.; Loni, R.; Najafi, G.; Kasaeian, A. Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: Cubical, cylindrical, and hemispherical. Energy Convers. Manag. 2019, 198, 111861. [Google Scholar] [CrossRef]
- Wu, G.; Zheng, H.; Ma, X.; Kutlu, C.; Su, Y. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Convers. Manag. 2017, 143, 241–251. [Google Scholar] [CrossRef]
- Xiao, J.; Zheng, H.; Jin, R.; Liang, S.; Wang, G.; Ma, X. Experimental investigation of a bubbling humidification-dehumidification desalination system directly heated by cylindrical Fresnel lens solar concentrator. Sol. Energy 2021, 220, 873–881. [Google Scholar] [CrossRef]
- Wu, G.; Zheng, H.-F.; Wang, F.; Chang, Z.-H. Parametric study of a tandem desalination system based on humidification-dehumidification process with 3-stage heat recovery. Appl. Therm. Eng. 2017, 112, 190–200. [Google Scholar] [CrossRef]
- Dave, T.; Ahuja, V.; Krishnan, S. Economic analysis and experimental investigation of a direct absorption solar humidification-dehumidification system for decentralized water production. Sustain. Energy Technol. Assess. 2021, 46, 101306. [Google Scholar] [CrossRef]
- Negharchi, S.M.; Najafi, A.; Nejad, A.A.; Ghadimi, N. Determination of the optimal model for solar humidification dehumidification desalination cycle with extraction and injection. Desalination 2021, 506, 114984. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Kabeel, A.E.; Moharram, B.M.; Fleafl, A.H. Experimental study of hybrid solar humidification dehumidification system for extremely saline water desalination. Energy Convers. Manag. 2021, 235, 114021. [Google Scholar] [CrossRef]
- Rahimi-Ahar, Z.; Hatamipour, M.S. Performance evaluation of a solar and vacuum assisted multi-stage humidification-dehumidification desalination system. Process Saf. Environ. Prot. 2021, 148, 1304–1314. [Google Scholar] [CrossRef]
- El-Said, E.M.; Dahab, M.A.; Omara, M.; Abdelaziz, G.B. Solar desalination unit coupled with a novel humidifier. Renew. Energy 2021, 180, 297–312. [Google Scholar] [CrossRef]
- El-Said, E.M.; Dahab, M.A.; Omara, M.A.; Abdelaziz, G.B. Humidification-dehumidification solar desalination system using porous activated carbon tubes as a humidifier. Renew. Energy 2022, 187, 657–670. [Google Scholar] [CrossRef]
- Abdel Dayem, A.M.; Alzahrani, A. Psychometric study and performance investigation of an efficient evaporative solar HDH water desalination system. Sustain. Energy Technol. Assess. 2022, 52, 102030. [Google Scholar] [CrossRef]
- Khalaf-Allah, R.A.; Abdelaziz, G.B.; Kandel, M.G.; Easa, A.S. Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions. Renew. Energy 2022, 190, 1041–1054. [Google Scholar] [CrossRef]
- Hu, W.; Yu, L.; Haohao, A.; Xuan, Z.; Pengfei, S.; Dong, H. Parametric analysis of humidification dehumidification desalination driven by photovoltaic/thermal (PV/T) system. Energy Convers. Manag. 2022, 259, 115520. [Google Scholar]
- Zhao, Y.; Zheng, H.; Liang, S.; Zhang, N.; Ma, X.L. Experimental research on four-stage cross flow humidification dehumidification (HDH) solar desalination system with direct contact dehumidifiers. Desalination 2019, 467, 147–157. [Google Scholar] [CrossRef]
- Kara, O.; Hürdoğan, E. Thermodynamic analysis of a novel desalination system assisted with ground source heat exchanger. Energy Convers. Manag. 2019, 200, 112104. [Google Scholar] [CrossRef]
- Okati, V.; Ebrahimi-Moghadam, A.; Behzadmehr, A.; Farzaneh-Gord, M. Proposal and assessment of a novel hybrid system for water desalination using solar and geothermal energy sources. Desalination 2019, 467, 229–244. [Google Scholar] [CrossRef]
- Almahmoud, H.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Ben Mansour, R.; Alkhulaifi, Y.M. Energetic performance analysis of a solar-driven hybrid ejector cooling and humidification-dehumidification desalination system. Energy 2021, 230, 120849. [Google Scholar] [CrossRef]
- Ananda, B.; Shankara, R.; Srinivasb, T.; Murugavelha, S. Performance analysis of combined two stage desalination and cooling plant with different solar collectors. Desalin. Water Treat. 2019, 156, 136–147. [Google Scholar] [CrossRef]
- Jabari, F.; Nazari-heris, M.; Mohammadi-ivatloo, B.; Asadi, S.; Abapour, M. A solar dish Stirling engine combined humidification-dehumidification desalination cycle for cleaner production of cool, pure water, and power in hot and humid regions. Sustain. Energy Technol. Assess. 2020, 37, 100642. [Google Scholar] [CrossRef]
- Pourafshar, S.T.; Jafarinaemi, K.; Mortezapour, H. Development of a photovoltaic-thermal solar humidifier for the humidification-dehumidification desalination system coupled with heat pump. Sol. Energy 2020, 205, 51–61. [Google Scholar] [CrossRef]
- Kabeel, A.E.; El-Said, E.M.S. Experimental study on a modified solar power driven hybrid desalination system. Desalination 2018, 443, 1–10. [Google Scholar] [CrossRef]
- Abdullah, A.; Essa, F.; Omara, Z.; Bek, M. Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions. Desalination 2018, 441, 52–61. [Google Scholar] [CrossRef]
- Memon, S.; Soomro, S.H.; Kim, W.-S.; Kim, Y.-D. Performance investigation of solar-powered direct-contact membrane distillation and humidification–dehumidification hybrid system. Chem. Eng. Process. Process Intensif. 2022, 174, 108889. [Google Scholar] [CrossRef]
- Moreno, F.; Pinilla, A. Preliminary experimental study of a small reverse osmosis-wind-powered desalination plant. Desalination 2005, 171, 257–265. [Google Scholar] [CrossRef]
- Herold, D.; Neskakis, A. A small PV-driven reverse osmosis desalination plant on the island of Gran Canaria. Desalination 2001, 137, 285–292. [Google Scholar] [CrossRef]
- Bilstad, T.; Protasova, E.; Simonova, A.; Stornes, S.; Yuneizi, I. Wind-powered RO desalination. Desalin. Water Treat. 2015, 55, 3106–3110. [Google Scholar] [CrossRef]
- Miranda, M.S.; Infield, D. A wind-powered seawater reverse-osmosis system without batteries. Desalination 2003, 153, 9–16. [Google Scholar] [CrossRef]
- Bilton, A.M.; Kelley, L.C.; Dubowsky, S. Photovoltaic reverse osmosis—Feasibility and a pathway to develop technology. Desalin. Water Treat. 2011, 31, 24–34. [Google Scholar] [CrossRef]
- Soric, A.; Cesaro, R.; Perez, P.; Guiol, E.; Moulin, P. Eausmose project desalination by reverse osmosis and batteryless solar energy: Design for a 1m3 per day delivery. Desalination 2012, 301, 67–74. [Google Scholar] [CrossRef]
- Manolakos, D.; Kosmadakis, G.; Kyritsis, S.; Papadakis, G. On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination. Sol. Energy 2008, 83, 646–656. [Google Scholar] [CrossRef]
- Weiner, D.; Fisher, D.; Moses, E.J.; Katz, B.; Meron, G. Operation experience of a solar- and wind-powered desalination demonstration plant. Desalination 2001, 137, 7–13. [Google Scholar] [CrossRef]
- Gökçek, M.; Gökçek, B. Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO). Desalination 2016, 381, 47–57. [Google Scholar] [CrossRef]
- Thomson, M.; Infield, D. A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination 2003, 153, 1–8. [Google Scholar] [CrossRef]
- Kershman, S.A.; Rheinländer, J.; Gabler, H. Seawater reverse osmosis powered from renewable energy sources-hybrid wind/photovoltaic/grid power supply for small-scale desalination in Libya. Desalination 2003, 153, 17–23. [Google Scholar] [CrossRef]
- Spyrou, I.D.; Anagnostopoulos, J.S. Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit. Desalination 2010, 257, 137–149. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L.; Romero-Ternero, V.J. Preliminary design of a solar thermal-powered seawater reverse osmosis system. Desalination 2007, 216, 292–305. [Google Scholar] [CrossRef]
- Bruno, J.C.; López-Villada, J.; Letelier, E.; Romera, S.; Coronas, A. Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Appl. Therm. Eng. 2008, 28, 2212–2226. [Google Scholar] [CrossRef]
- Hossam-Eldin, A.; El-Nashar, A.; Ismaiel, A. Investigation into economical desalination using optimized hybrid renewable energy system. Int. J. Electr. Power Energy Syst. 2012, 43, 1393–1400. [Google Scholar] [CrossRef]
- Helal, A.; Al-Malek, S.; Al-Katheeri, E. Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates. Desalination 2008, 221, 1–16. [Google Scholar] [CrossRef]
- Ali, M.T.; Fath, H.E.S.; Armstrong, P.R. A comprehensive techno-economical review of indirect solar desalination. Renew. Sustain. Energy Rev. 2011, 15, 4187–4199. [Google Scholar] [CrossRef]
- Ortiz, J.; Expósito, E.; Gallud, F.; Garciagarcia, V.; Montiel, V.; Aldaz, A. Desalination of underground brackish waters using an electrodialysis system powered directly by photovoltaic energy. Sol. Energy Mater. Sol. Cells 2008, 92, 1677–1688. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, C.; Dominguez-Ramos, A.; Ibañez, R.; Irabien, A. Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production. Renew. Sustain. Energy Rev. 2015, 47, 604–615. [Google Scholar] [CrossRef]
- Peñate, B.; Círez, F.; Domínguez, F.J.; Subiela, V.J.; Vera, L. Design and testing of an isolated commercial EDR plant driven by solar photovoltaic energy. Desalin. Water Treat. 2013, 51, 1254–1264. [Google Scholar] [CrossRef]
- He, W.; Amrose, S.; Wright, N.C.; Buonassisi, T.; Peters, I.M. Field demonstration of a cost-optimized solar powered electrodialysis reversal desalination system in rural India. Desalination 2020, 476, 114217. [Google Scholar] [CrossRef]
- Gonzalez, A.; Grágeda, M.; Ushak, S. Assessment of pilot-scale water purification module with electrodialysis technology and solar energy. Appl. Energy 2017, 206, 1643–1652. [Google Scholar] [CrossRef]
- Malek, P.; Ortiz, J.; Schulte-Herbrüggen, H. Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination 2016, 377, 54–64. [Google Scholar] [CrossRef]
- He, W.F.; Han, D.; Wen, T. Energy, entropy and cost analysis of a combined power and water system with cascade utilization of geothermal energy. Energy Convers. Manag. 2018, 174, 719–729. [Google Scholar] [CrossRef]
- Rostamzadeh, H.; Gargari, S.G.; Namin, A.S.; Ghaebi, H. A novel multigeneration system driven by a hybrid biogas-geothermal heat source, Part I: Thermodynamic modeling. Energy Convers. Manag. 2018, 177, 535–562. [Google Scholar] [CrossRef]
- Rostamzadeh, H.; Gargari, S.G.; Namin, A.S.; Ghaebi, H. A novel multigeneration system driven by a hybrid biogas-geothermal heat source, Part II: Multi-criteria optimization. Energy Convers. Manag. 2018, 180, 859–888. [Google Scholar] [CrossRef]
- Karaghouli, A.A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Abbosh, F.G.; Kamal, I.; Chalchal, S.; Gerke, H. Design and performance of the world’s largest operating dual-purpose sea water desalting plant. Desalination 1983, 45, 223–230. [Google Scholar] [CrossRef]
- Shoeibi, S.; Mirjalily, S.A.A.; Kargarsharifabad, H.; Khiadani, M.; Panchal, H. A comprehensive review on performance improvement of solar desali-nation with applications of heat pipes. Desalination 2022, 540, 115983. [Google Scholar] [CrossRef]
- Prabhakar, S.; Patra; Misra, B.; Ramani, M. Management and feasibility of reverse osmosis schemes for rural water supply in India. Desalination 1989, 73, 37–46. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Gao, T.; Conforti, K.M.; Tian, H.; Bazant, M.Z. Small-scale desalination of seawater by shock electrodialysis. Desalination 2019, 476, 114219. [Google Scholar] [CrossRef]
- Ayoub, J.; Alward, R. Water requirements and remote arid areas: The need for small-scale desalination. Desalination 1996, 107, 131–147. [Google Scholar] [CrossRef]
- Bourouni, K.; Martin, R.; Tadrist, L.; Chaibi, M.T. Heat transfer and evaporation in geothermal desalination units. Appl. Energy 1999, 64, 129–147. [Google Scholar] [CrossRef]
- Nakatake, Y.; Tanaka, H. A new maritime lifesaving distiller driven by wind. Desalination 2005, 177, 31–42. [Google Scholar] [CrossRef]
- Suchithra, R.; Das, T.K.; Rajagopalan, K.; Chaudhuri, A.; Ulm, N.; Prabu, M.; Samad, A.; Cross, P. Numerical modelling and design of a small-scale wave-powered desalination system. Ocean Eng. 2022, 256, 111419. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Papadakis, G. Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics. Desalination 2004, 164, 87–97. [Google Scholar] [CrossRef]
- Mousa, K.; Diabat, A.; Fath, H. Optimal design of a hybrid solar-wind power to drive a small-size reverse osmosis desalination plant. Desalin. Water Treat. 2013, 51, 3417–3427. [Google Scholar] [CrossRef]
Ref. | Technology | kgCO2/m3 | Cost [USD/m3] |
---|---|---|---|
[13] | MSF (Non-cogeneration, natural gas) | 20.4–25.0 | 0.41–0.50 |
MSF (Cogeneration, steam cycle, natural gas) | 13.9–15.6 | 0.28–0.31 | |
MED (Non-cogeneration, natural gas) | 11.8–17.6 | 0.24–0.35 | |
MED (Cogeneration, steam cycle, natural gas) | 8.2–8.9 | 0.16–0.18 | |
RO (sea) | 3.4–6.0 | 0.07–0.12 | |
RO (brackish) | 0.3–1.7 | 0.01–0.03 | |
Reddy et al. [14] | MSF (Cogeneration, hybrid RO, steam cycle, natural gas) | 9.45 | - |
MSF (Cogeneration, hybrid RO, combined cycle, natural gas) | 5.56 | - | |
MED (Cogeneration, hybrid RO, steam cycle, natural gas) | 7.33 | 0.15 | |
MED (Cogeneration, hybrid RO, combined cycle, natural gas) | 4.38 | - | |
Becker et al. [15] | SWRO | 3.01 | - |
Raluy et al. [16] | MSF | 23.41 | - |
MSF (Cogeneration, combined cycle, natural gas) | 9.41 | 0.18 | |
MSF (Waste heat utilized for supply of thermal energy) | 1.98 | 0.04 | |
MED | 18.05 | - | |
MED (Cogeneration, combined cycle, natural gas) | 7.01 | 0.14 | |
MED (Driven waste heat) | 1.19 | - | |
RO (4 kWh/m3) | 1.78 | - | |
RO (Steam cycle) | 2.79 | - | |
RO (Internal combustion engine) | 2.13 | 0.04 | |
RO (Combined cycle) | 1.75 | - | |
MED (Waste heat utilized for supply of thermal energy) | 1.11 | 0.02 |
Total Installed Costs | Capacity Factor | Levelised Cost of Electricity | |||||||
---|---|---|---|---|---|---|---|---|---|
(2023 USD/kW) | (%) | (2023 USD/kWh) | |||||||
2010 | 2023 | Percent Change | 2010 | 2023 | Percent Change | 2010 | 2023 | Percent Change | |
Bioenergy | 3010 | 2730 | −9% | 72 | 72 | 0% | 0.084 | 0.072 | −14% |
Geothermal | 3011 | 4589 | 52% | 87 | 82 | −6% | 0.054 | 0.071 | 31% |
Hydropower | 1459 | 2806 | 92% | 44 | 53 | 20% | 0.043 | 0.057 | 33% |
Solar PV | 5310 | 758 | −86% | 14 | 16 | 14% | 0.460 | 0.044 | −90% |
CSP | 10453 | 6589 | −37% | 30 | 55 | 83% | 0.393 | 0.117 | −70% |
Onshore wind | 2272 | 1160 | −49% | 27 | 36 | 33% | 0.111 | 0.033 | −70% |
Offshore wind | 5409 | 2800 | −48% | 38 | 41 | 8% | 0.203 | 0.075 | −63% |
Cost | MSF | MED | RO |
---|---|---|---|
Capital investment costs | 1700–2900 | 1700–2700 | 1300–2500 |
Operation and maintenance costs | 0.65–1.25 | 0.67–0.96 | 0.58–0.88 |
Total annualized cost | 0.84–1.6 | 1.21–1.59 | 1.06–1.36 |
Ref. | Desalination Technology | SEEC (kWh/m3) | STEC (kWh/m3) | Total SEC (kWh/m3) |
---|---|---|---|---|
Semiat et al. [219] | MVC | 7–12 | - | 7–12 |
TVC | 1.6–1.8 | 14.6 | 16.2–16.4 | |
Abraham et al. [220] | ED | Salinity < 2500 ppm: 0.7–2.5 2500 < Salinity < 5000 ppm: 2.6–5.5 | - | 0.7–2.5 2.6–5.5 |
Shemer et al. [221] | SWRO | 2–4 | - | 2–4 |
Shahzad et al. [222] | BWRO | 1.5–2.5 | - | 1.5–2.5 |
Ghaffour et al. [223] | MSF | 2.5–4 | 7.5–12 | 10–16 |
MED | 1.2–2 | 4–7 | 7.5–12 | |
Mtombeni et al. [224] Babu et al. [225] | FD | 8.2–11.9 | - | 8.2–11.9 |
Ref. | Technology | Efficiency (%) | Plant Capacity (m3/day) | SEC (kWh/m3) | Cost (USD/m3) |
---|---|---|---|---|---|
Clarke et al. [226] | PV-RO | RR = 10 | With Battery: 0.054 Without battery: 0.047 | - | - |
Kelley et al. [227] | PV-RO | RR = 9 | 0.3–0.45 | - | - |
Mokheimer et al. [228] | PV-RO | - | 5 | 8–20 | 3.693–3.812 |
Peñate et al. [229] | PV-RO | RR = 70 | 49.92 | 2.3 | - |
Kumarasamy et al. [230] | PV-RO | - | 0.7 | - | - |
Alsheghri et al. [231] | PV-RO | RR = 40 | 1344 | 6.99 | 0.825 |
Elasaad et al. [232] | PV-RO | RR = 33 | 1 (6 h) | - | - |
Alghoul et al. [233] | PV-RO | - | 5.1 (10 h) | 1.1 | - |
Mostafaeipour et al. [234] | PV-RO | RR = 75 | 228 | 0.8 | 1.96 |
Ghafoor et al. [235] | PV-RO | - | 4 (8 h) | - | 4.34 |
Kettani et al. [236] | PV-RO | - | 275,000 | 4 | 1 |
Rahimi et al. [237] | PV-RO | RR = 42 | 2000 | 3.4–5.5 | 0.76 |
PV-RO | RR = 42 | 1000 | - | 4 | |
Ajiwiguna et al. [238] | PV-RO | - | 365,100 (10 h) | 2.4 | Constant demand: 2.11 Variable demand: 2.73 |
Sanna et al. [239] | PV-RO | RR = 19 | 125.04 | 1.53 | - |
Ghaithan et al. [240] | PV-RO | - | 0.204 | 2–4 | 1.72–1.84 |
Nafey et al. [241] | Solar ORC-RO | - | 1166 | 6.855 | 0.94 |
Solar ORC-RO | - | 1166 | 7.302 | 0.93 | |
Solar ORC-RO | - | 1166 | 7.677 | 0.90 | |
Kosmadakis et al. [242] | Solar ORC-RO | RR = 20 | 24 | 77.78 | 6.38 |
Delgado et al. [243] | Solar ORC-RO | RR = 45 | 1000 | - | - |
Peñate et al. [244] | Solar ORC-RO | RR = 40 | 2500 | 2.99 | - |
Salcedo et al. [245] | Solar ORC-RO | - | 50,000 | 3.53 | 2.184 |
Ibarra et al. [246] | Solar ORC-RO | - | 28.8 | 4 | - |
Xia et al. [247] | Solar ORC-RO | - | 2512.12 | 3.2 | - |
Geng et al. [248] | Solar ORC-RO | RR = 30 | 78 | - | - |
Nihill et al. [249] | Solar ORC-RO | RR = 26 | 0.03 | 45.6 | - |
Igobo et al. [250] | Solar ORC-RO | - | 13.3 | 0.34 | - |
Mansouri et al. [251] | Solar ORC-RO | RR = 40 | 2380.8 | 2.82 | - |
Geng et al. [252] | Solar ORC-RO | RR = 30 | 1000 | - | - |
Bouguecha et al. [253] | FPC-PV-MD | - | - | 1609 | - |
FPC-PV-MD | - | - | 2342 | - | |
Suárez et al. [254] | SGSP-MD | - | 2029 | - | |
Suárez et al. [255] | SGSP-MD | - | - | 820–940 | - |
Dow et al. [256] | MD (Waste heat from the exhaust) | - | - | >1500 | - |
Uday et al. [257] | ETC-MD | - | - | 277 | 80 |
Kabeel et al. [258] | ETC-MD | GOR = 0.49 | - | 680 | - |
Lokare et al. [259] | MD (Exhaust gas from NGCS) | GOR = 1.07 (T = 90 °C) | - | 527–565 | - |
Drioli et al. [260] | MD (Waste heat from flue gas) | - | - | 1296.38–2829.17 | - |
Ma et al. [261] | FPC-MD | GOR = 0.71 | - | 239 | - |
Amaya et al. [262] | MD (Ship engine) | GOR = 0.53 | - | 1189 | - |
Moore et al. [263] | FPC-PV- Battery-MD | - | - | - | 85 |
Zarzoum et al. [264] | FPC-PV-MD | - | - | - | 7.14 |
Miladi et al. [265] | SC-MD | GOR = 0.98–1.1 | - | 620–650 | - |
SC-MD | - | - | 450–520 | - | |
SC-MD | GOR = 1.3–1.5 | - | 620 | - | |
SC-MD | - | - | 110 | - | |
Shafieian et al. [266] | MD (Heat pipe ETC) | GOR = 0.77–0.87 | - | 377–450 | 18.6 |
Andrés et al. [267] | FPC-MD | - | - | 266 | - |
Li et al. [268] | ETC-PV-MD | GOR = 0.82 | - | 279 | 18.34 |
Morciano et al. [269] | MD (Waste heat from diesel engine) | - | - | 255 | - |
Bamasag et al. [270] | ETC-MD | GOR = 0.24 | - | - | - |
Deng et al. [271] | ETC-PV-MD | - | - | 80 | - |
Abdelgaied et al. [272] | ETC-MD | GOR = 1.123–1.25 with PCM | - | 705 | - |
Shafieian et al. [273] | ETC-MD | - | - | 308 | - |
Marni et al. [274] | ETC-MD | GOR > 4.4 | - | 158.8 | 14.73 |
FPC-MD | - | - | 346.5 | 26.08 | |
Miladi et al. [275] | FPC-MD | GOR = 0.93–1.01 | - | 671–699 | - |
Bamasag et al. [276] | ETC-MD | GOR = 0.44 | - | - | - |
Okati et al. [277] | MD (Geothermal + wastes heat) | GOR = 2.3 | - | 243.9–447.1 | 1.31 |
Soomro et al. [278] | SPT-MD | - | - | 1430 | 0.392 |
Soomro et al. [279] | LFR-MD | - | - | 1750 | 0.425 |
Krnac et al. [280] | CPV/T-MD | - | - | 245 | - |
Elminshawy et al. [281] | CPV/T-MD | GOR = 3.33–1.01 | - | 103 | 22.48 |
Chen et al. [282] | CPV/T-MD | - | - | 213.2 | 4.3 |
Liu et al. [283] | CPV/T-MD | GOR = 0.69 | - | - | - |
Arfi et al. [284] | MD (PTC + Anaerobic digestion biogas) | GOR = 1.721 | - | 1.55 | 0.5–1.45 |
Wu et al. [212] | HDH (Concentrated solar collector) | GOR < 12.5 | - | - | - |
Gabrielli et al. [285] | PV/T-HDH | - | - | - | 28 |
Mohamed et al. [286] | HDH (Solar collector) | GOR = 0.86 | - | - | 12 |
Zubair et al. [287] | ETC-HDH | GOR = 1.6 | - | - | 32–38 |
Rafiei et al. [288] | HDH (PV/T and solar dish concentrator) | GOR = 0.904 | - | - | - |
Wu et al. [289] | HDH (Fresnel lens solar concentrator) | GOR = 2.1 | - | - | - |
Xiao et al. [290] | HDH (Fresnel lens solar concentrator) | GOR = 0.71 | - | - | 27 |
Wu et al. [291] | HDH (Electric heater) | GOR = 2.65 | - | - | 2.5 |
Tariq et al. [213] | STC-HDH | GOR = 0.8 | - | - | 30 |
Dave et al. [292] | HDH (Solar humidifier) | GOR = 1.01 | - | - | 7–35 |
Mohammadzade et al. [293] | HDH (Solar heater) | GOR = 2.16 | - | - | - |
Shalaby et al. [294] | HDH (FPC with reflectors) | - | - | - | 112 |
Rahimi et al. [295] | ETC-FPC-HDH | - | - | - | 2.1 |
Said et al. [296] | ETC-FPC-HDH | GOR = 1.54 | - | - | 11.2 |
Said et al. [297] | ETC-FPC-HDH | GOR = 1.24 | - | - | 13.9 |
Abdel et al. [298] | FPC/ETC/PTC-HDH | GOR = 4.23 | - | - | - |
Khalaf et al. [299] | FPC/ETC/PTC-HDH | GOR = 1.45 | - | - | 10.6 |
He et al. [300] | HDH (PV/T with CPC) | GOR = 1.56 | - | - | - |
Zhao et al. [301] | STC-HDH | GOR = 1.4 | - | - | 3.86 |
Kara et al. [302] | FPC-HDH | GOR = 0.674 | - | - | - |
Okati et al. [303] | SWC-SAC-HDH | - | - | - | 27 |
Almahmoud et al. [304] | HDH (Ejector cooler + Solar collector) | GOR = 2.76 | - | - | - |
Anand et al. [305] | CPV/T-HDH (Vapor compression cycle) | - | - | - | 130 |
Jabari et al. [306] | HDH (Stirling engine + Solar dish) | GOR = 2.35 | - | - | - |
Pourafshar et al. [307] | HDH (Heat pump + PV/T humidifier) | - | - | - | 18 |
Kabeel et al. [308] | HDH (Solar still + Air-water heater) | GOR = 2.75 | - | - | 8.1 |
Abdullah et al. [309] | HDH (Wick solar stil + PV + PTC) | GOR = 5.7 | - | - | - |
Memon et al. [310] | DCMD-FPC-HDH | GOR = 1.3 | - | - | - |
[208] | Wind-RO | - | 0.4 | - | - |
Moreno et al. [311] | PV-RO | - | 0.8–3 | 15–16.3 | - |
Herold et al. [312] | Wind-RO | - | 7.5 | 4.24 | - |
Bilstad et al. [313] | Wind-RO | - | 8.5 | 3.4 | 0.8–3 |
Miranda et al. [314] | PV-RO | - | 0.3 | 2.5–4 | 4.7–6.6 |
Bilton et al. [315] | PV-RO | - | 0.75–1.02 | - | - |
Soric et al. [316] | Solar-RO | - | 6.72 | - | - |
Manolakos et al. [317] | hybrid wind-PV-RO | - | 3 | - | - |
Weiner et al. [318] | PV-RO | - | 12–16.8 | 5.2–5.8 | - |
Gökçek et al. [319] | Wind-RO | - | 24 | 4.4 | 2.96–6.46 |
Thomson et al. [320] | PV-RO | - | 3 | 3.5 | 2 |
Kershman et al. [321] | Hybrid wind-PV-RO | - | 300 | 2.3 | 5.6 |
Spyrou et al. [322] | Hybrid-wind-PV-RO | - | 3840 | 2.53 | 3 |
Clarke et al. [226] | PV-RO | - | 0.047–0.054 | - | - |
Delgado et al. [323] | ORC-RO | - | 2.64 | - | - |
Nafey et al. [241] | ORC-RO | - | 3480 | - | - |
Bruno et al. [324] | ORC-RO | - | 15 | - | 4.3–9.5 |
Kumarasamy et al. [230] | PV-RO | - | 0.7 | - | - |
Hossam et al. [325] | Hybrid-wind-PV-RO | - | 150–300 | 1.25–1.6 | 4.6–7.3 |
Mokheimer et al. [228] | Hybrid-wind-PV-RO | - | 5 | 3.6–3.8 | 8–20 |
Ibarra et al. [246] | SORC-RO | - | 28.8 | - | - |
Kosmadakis et al. [242] | SORC-RO | - | - | - | 6.4 |
Helal et al. [326] | PV-RO | - | 20 | 7.3 | 7.34 |
Peñate et al. [244] | SORC-RO | - | 2500 | - | - |
Ali et al. [327] | PV-ED | - | 2.8 | 0.82 | 15.97 |
PV-ED | - | 1 | 1 kWh/kg of salt removing | - | |
PV-ED | - | 10 | - | 5.77 | |
PV-ED | - | 200 | 0.6–1 | - | |
PV-ED | - | 18 | 0.8 | - | |
PV-EDR-ED | - | 1.14 | - | - | |
PV-ED | - | 1.32 | - | - | |
Ortiz et al. [328] | PV-ED | - | 13.7 | 1.33–1.47 | 0.19–15.97 |
Fernandez et al. [329] | PV-ED | - | 15 | - | - |
PV-ED | - | 2.8 | - | - | |
Peñate et al. [330] | PV-EDR-ED | - | - | 0.618 | - |
PV-ED | - | 4.3 | - | - | |
PV-ED | - | 1–200 | 0.4–4 | 0.19–15.97 | |
He et al. [331] | PV-EDR-ED | - | 6 | 2.25 | 1.87–3.33 |
Gonzalez et al. [332] | PV-ED | - | 3 | 2.16–2.86 | - |
Malek et al. [333] | Wind-ED | - | 10 | - | 3.36 |
Tariq et al. [213] | Solar-HDH | - | 0.013 | - | |
Rafiei et al. [288] | Solar-HDH | - | 0.456 | - | |
Zhao et al. [301] | Solar-HDH | - | 1.512 | - | |
He et al. [334] | Geothermal-HDH | - | 5.683 | - | |
Rostamzadeh et al. [335] | Geothermal-HDH | - | 8.83 | - | |
Rostamzadeh et al. [336] | Geothermal-HDH | - | 14.026 | - | |
Karaghouli et al. [337] | Solar-MSF | - | 1 | 1–5 | |
Solar-MED | - | >5000 | 2.3–2.8 | ||
PV-RO | - | <100 | 11.7–15.6 | ||
Wave-RO | - | 1000–3000 | 0.7–1.2 | ||
Wind-RO | - | 50–2000 | 2–5.2 | ||
Wind-MVC | - | <100 | 5.2–7.8 | ||
Solar-MD | - | 0.15–10 | 10.4–19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Wang, X. Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review. Energies 2024, 17, 5706. https://doi.org/10.3390/en17225706
Zhang G, Wang X. Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review. Energies. 2024; 17(22):5706. https://doi.org/10.3390/en17225706
Chicago/Turabian StyleZhang, Guoyu, and Xiaodong Wang. 2024. "Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review" Energies 17, no. 22: 5706. https://doi.org/10.3390/en17225706
APA StyleZhang, G., & Wang, X. (2024). Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review. Energies, 17(22), 5706. https://doi.org/10.3390/en17225706