Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes
Abstract
:1. Introduction
2. Methodology
2.1. Heat Pipes
2.2. Database
2.2.1. Characteristics of the Heat Pipes
2.2.2. Experimental Analysis
2.2.3. Data Reduction
2.3. Artificial Neural Networks
2.3.1. Multilayer Perceptron
2.3.2. Radial Basis Function Network
2.3.3. Extreme Learning Machines
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Test | Type | Slope [º] | Filling Ratio [%] | qin [W] | Rth [K/W] |
---|---|---|---|---|---|
1 | Microgrooves | 0 | 60 | 5 | 5.66 |
2 | Microgrooves | 0 | 60 | 5 | 5.09 |
3 | Microgrooves | 0 | 60 | 5 | 1.22 |
4 | Microgrooves | 45 | 60 | 5 | 4.54 |
5 | Microgrooves | 45 | 60 | 5 | 1.66 |
6 | Microgrooves | 45 | 60 | 5 | 5.01 |
7 | Microgrooves | 90 | 60 | 5 | 5.10 |
8 | Microgrooves | 90 | 60 | 5 | 2.11 |
9 | Microgrooves | 90 | 60 | 5 | 4.79 |
10 | Microgrooves | 0 | 60 | 10 | 5.04 |
11 | Microgrooves | 0 | 60 | 10 | 5.44 |
12 | Microgrooves | 0 | 60 | 10 | 0.73 |
13 | Microgrooves | 45 | 60 | 10 | 5.23 |
14 | Microgrooves | 45 | 60 | 10 | 0.79 |
15 | Microgrooves | 45 | 60 | 10 | 4.70 |
16 | Microgrooves | 90 | 60 | 10 | 4.84 |
17 | Microgrooves | 90 | 60 | 10 | 0.92 |
18 | Microgrooves | 90 | 60 | 10 | 5.09 |
19 | Microgrooves | 0 | 60 | 15 | 4.07 |
20 | Microgrooves | 0 | 60 | 15 | 0.60 |
21 | Microgrooves | 0 | 60 | 15 | 4.16 |
22 | Microgrooves | 45 | 60 | 15 | 3.67 |
23 | Microgrooves | 45 | 60 | 15 | 3.63 |
24 | Microgrooves | 45 | 60 | 15 | 0.55 |
25 | Microgrooves | 90 | 60 | 15 | 3.68 |
26 | Microgrooves | 90 | 60 | 15 | 3.73 |
27 | Microgrooves | 90 | 60 | 15 | 0.62 |
28 | Microgrooves | 0 | 60 | 20 | 2.98 |
29 | Microgrooves | 0 | 60 | 20 | 0.55 |
30 | Microgrooves | 0 | 60 | 20 | 2.96 |
31 | Microgrooves | 45 | 60 | 20 | 2.55 |
32 | Microgrooves | 45 | 60 | 20 | 0.48 |
33 | Microgrooves | 45 | 60 | 20 | 2.55 |
34 | Microgrooves | 90 | 60 | 20 | 0.54 |
35 | Microgrooves | 90 | 60 | 20 | 2.60 |
36 | Microgrooves | 90 | 60 | 20 | 2.43 |
37 | Microgrooves | 0 | 60 | 25 | 2.14 |
38 | Microgrooves | 0 | 60 | 25 | 0.50 |
39 | Microgrooves | 0 | 60 | 25 | 2.12 |
40 | Microgrooves | 45 | 60 | 25 | 1.79 |
41 | Microgrooves | 45 | 60 | 25 | 0.43 |
42 | Microgrooves | 45 | 60 | 25 | 1.78 |
43 | Microgrooves | 90 | 60 | 25 | 0.46 |
44 | Microgrooves | 90 | 60 | 25 | 1.68 |
45 | Microgrooves | 90 | 60 | 25 | 1.84 |
46 | Microgrooves | 0 | 60 | 30 | 1.72 |
47 | Microgrooves | 0 | 60 | 30 | 0.49 |
48 | Microgrooves | 0 | 60 | 30 | 1.62 |
49 | Microgrooves | 45 | 60 | 30 | 0.40 |
50 | Microgrooves | 45 | 60 | 30 | 1.29 |
51 | Microgrooves | 45 | 60 | 30 | 1.36 |
52 | Microgrooves | 90 | 60 | 30 | 1.45 |
53 | Microgrooves | 90 | 60 | 30 | 1.27 |
54 | Microgrooves | 90 | 60 | 30 | 0.44 |
55 | Microgrooves | 0 | 60 | 35 | 0.49 |
56 | Microgrooves | 0 | 60 | 35 | 1.32 |
57 | Microgrooves | 45 | 60 | 35 | 0.37 |
58 | Microgrooves | 45 | 60 | 35 | 1.03 |
59 | Microgrooves | 45 | 60 | 35 | 1.05 |
60 | Microgrooves | 90 | 60 | 35 | 0.41 |
61 | Microgrooves | 90 | 60 | 35 | 1.08 |
62 | Microgrooves | 90 | 60 | 35 | 0.94 |
63 | Microgrooves | 0 | 60 | 40 | 0.44 |
64 | Microgrooves | 45 | 60 | 40 | 0.35 |
65 | Microgrooves | 45 | 60 | 40 | 0.75 |
66 | Microgrooves | 90 | 60 | 40 | 0.38 |
67 | Microgrooves | 90 | 60 | 40 | 0.77 |
68 | Microgrooves | 90 | 60 | 40 | 0.89 |
69 | Microgrooves | 45 | 60 | 45 | 0.34 |
70 | Microgrooves | 90 | 60 | 45 | 0.37 |
71 | Microgrooves | 45 | 60 | 50 | 0.33 |
72 | Screen mesh | 0 | 60 | 5 | 6.93 |
73 | Screen mesh | 45 | 60 | 5 | 7.13 |
74 | Screen mesh | 90 | 60 | 5 | 6.94 |
75 | Screen mesh | 0 | 60 | 5 | 2.63 |
76 | Screen mesh | 45 | 60 | 5 | 2.43 |
77 | Screen mesh | 90 | 60 | 5 | 2.65 |
78 | Screen mesh | 0 | 60 | 10 | 6.61 |
79 | Screen mesh | 45 | 60 | 10 | 6.39 |
80 | Screen mesh | 90 | 60 | 10 | 6.44 |
81 | Screen mesh | 0 | 60 | 10 | 1.50 |
82 | Screen mesh | 45 | 60 | 10 | 1.28 |
83 | Screen mesh | 90 | 60 | 10 | 1.36 |
84 | Screen mesh | 0 | 60 | 15 | 1.16 |
85 | Screen mesh | 45 | 60 | 15 | 0.89 |
86 | Screen mesh | 90 | 60 | 15 | 0.95 |
87 | Screen mesh | 0 | 60 | 15 | 4.49 |
88 | Screen mesh | 45 | 60 | 15 | 4.42 |
89 | Screen mesh | 90 | 60 | 15 | 4.36 |
90 | Screen mesh | 0 | 60 | 20 | 0.99 |
91 | Screen mesh | 45 | 60 | 20 | 0.76 |
92 | Screen mesh | 90 | 60 | 20 | 0.80 |
93 | Screen mesh | 0 | 60 | 20 | 3.14 |
94 | Screen mesh | 45 | 60 | 20 | 3.13 |
95 | Screen mesh | 90 | 60 | 20 | 3.06 |
96 | Screen mesh | 0 | 60 | 25 | 2.42 |
97 | Screen mesh | 45 | 60 | 25 | 2.48 |
98 | Screen mesh | 90 | 60 | 25 | 2.38 |
99 | Screen mesh | 0 | 60 | 25 | 0.85 |
100 | Screen mesh | 45 | 60 | 25 | 0.66 |
101 | Screen mesh | 90 | 60 | 25 | 0.71 |
102 | Screen mesh | 0 | 60 | 30 | 0.80 |
103 | Screen mesh | 45 | 60 | 30 | 0.59 |
104 | Screen mesh | 90 | 60 | 30 | 0.64 |
105 | Screen mesh | 0 | 60 | 30 | 1.89 |
106 | Screen mesh | 45 | 60 | 30 | 1.99 |
107 | Screen mesh | 90 | 60 | 30 | 1.91 |
108 | Screen mesh | 0 | 60 | 35 | 0.70 |
109 | Screen mesh | 45 | 60 | 35 | 0.50 |
110 | Screen mesh | 90 | 60 | 35 | 0.55 |
111 | Screen mesh | 0 | 60 | 40 | 0.67 |
112 | Screen mesh | 45 | 60 | 40 | 0.46 |
113 | Screen mesh | 90 | 60 | 40 | 0.52 |
114 | Screen mesh | 45 | 60 | 45 | 0.42 |
115 | Screen mesh | 90 | 60 | 45 | 0.47 |
116 | Screen mesh | 45 | 60 | 50 | 0.42 |
117 | Sintered | 0 | 60 | 5 | 3.48 |
118 | Sintered | 0 | 100 | 5 | 5.28 |
119 | Sintered | 45 | 100 | 5 | 4.89 |
120 | Sintered | 45 | 60 | 5 | 3.28 |
121 | Sintered | 90 | 60 | 5 | 3.35 |
122 | Sintered | 90 | 100 | 5 | 4.73 |
123 | Sintered | 0 | 120 | 5 | 5.21 |
124 | Sintered | 0 | 80 | 5 | 2.94 |
125 | Sintered | 45 | 120 | 5 | 4.63 |
126 | Sintered | 45 | 80 | 5 | 3.06 |
127 | Sintered | 90 | 120 | 5 | 5.43 |
128 | Sintered | 90 | 80 | 5 | 2.93 |
129 | Sintered | 0 | 60 | 10 | 1.58 |
130 | Sintered | 0 | 100 | 10 | 2.60 |
131 | Sintered | 45 | 60 | 10 | 1.54 |
132 | Sintered | 45 | 100 | 10 | 2.41 |
133 | Sintered | 90 | 60 | 10 | 1.52 |
134 | Sintered | 90 | 100 | 10 | 2.21 |
135 | Sintered | 0 | 80 | 10 | 1.44 |
136 | Sintered | 0 | 120 | 10 | 2.65 |
137 | Sintered | 45 | 120 | 10 | 2.32 |
138 | Sintered | 45 | 80 | 10 | 1.49 |
139 | Sintered | 90 | 120 | 10 | 2.29 |
140 | Sintered | 90 | 80 | 10 | 1.43 |
141 | Sintered | 0 | 100 | 15 | 1.43 |
142 | Sintered | 0 | 60 | 15 | 1.03 |
143 | Sintered | 45 | 100 | 15 | 1.40 |
144 | Sintered | 45 | 60 | 15 | 1.00 |
145 | Sintered | 90 | 60 | 15 | 0.98 |
146 | Sintered | 90 | 100 | 15 | 1.38 |
147 | Sintered | 0 | 120 | 15 | 1.77 |
148 | Sintered | 0 | 80 | 15 | 1.12 |
149 | Sintered | 45 | 120 | 15 | 1.51 |
150 | Sintered | 45 | 80 | 15 | 1.02 |
151 | Sintered | 90 | 120 | 15 | 1.52 |
152 | Sintered | 90 | 80 | 15 | 1.01 |
153 | Sintered | 0 | 80 | 20 | 0.93 |
154 | Sintered | 0 | 60 | 20 | 0.81 |
155 | Sintered | 0 | 120 | 20 | 1.37 |
156 | Sintered | 0 | 100 | 20 | 1.24 |
157 | Sintered | 45 | 120 | 20 | 1.16 |
158 | Sintered | 45 | 100 | 20 | 1.04 |
159 | Sintered | 45 | 60 | 20 | 0.77 |
160 | Sintered | 45 | 80 | 20 | 0.78 |
161 | Sintered | 90 | 80 | 20 | 0.80 |
162 | Sintered | 90 | 120 | 20 | 1.18 |
163 | Sintered | 90 | 60 | 20 | 0.74 |
164 | Sintered | 90 | 100 | 20 | 1.05 |
165 | Sintered | 0 | 60 | 25 | 0.73 |
166 | Sintered | 0 | 120 | 25 | 1.17 |
167 | Sintered | 0 | 100 | 25 | 1.03 |
168 | Sintered | 0 | 80 | 25 | 0.81 |
169 | Sintered | 45 | 60 | 25 | 0.67 |
170 | Sintered | 45 | 80 | 25 | 0.69 |
171 | Sintered | 45 | 100 | 25 | 0.84 |
172 | Sintered | 45 | 120 | 25 | 0.97 |
173 | Sintered | 90 | 80 | 25 | 0.69 |
174 | Sintered | 90 | 100 | 25 | 0.84 |
175 | Sintered | 90 | 120 | 25 | 1.00 |
176 | Sintered | 90 | 60 | 25 | 0.64 |
177 | Sintered | 0 | 60 | 30 | 0.68 |
178 | Sintered | 0 | 100 | 30 | 0.96 |
179 | Sintered | 0 | 120 | 30 | 1.05 |
180 | Sintered | 0 | 80 | 30 | 0.74 |
181 | Sintered | 45 | 80 | 30 | 0.63 |
182 | Sintered | 45 | 60 | 30 | 0.62 |
183 | Sintered | 45 | 120 | 30 | 0.87 |
184 | Sintered | 45 | 100 | 30 | 0.71 |
185 | Sintered | 90 | 120 | 30 | 0.88 |
186 | Sintered | 90 | 80 | 30 | 0.63 |
187 | Sintered | 90 | 60 | 30 | 0.59 |
188 | Sintered | 90 | 100 | 30 | 0.73 |
189 | Sintered | 0 | 120 | 35 | 0.93 |
190 | Sintered | 45 | 120 | 35 | 0.79 |
191 | Sintered | 90 | 120 | 35 | 0.79 |
192 | Sintered | 0 | 80 | 35 | 0.70 |
193 | Sintered | 0 | 100 | 35 | 0.85 |
194 | Sintered | 45 | 80 | 35 | 0.59 |
195 | Sintered | 45 | 100 | 35 | 0.62 |
196 | Sintered | 90 | 100 | 35 | 0.65 |
197 | Sintered | 90 | 80 | 35 | 0.59 |
198 | Sintered | 0 | 60 | 35 | 0.65 |
199 | Sintered | 45 | 60 | 35 | 0.58 |
200 | Sintered | 90 | 60 | 35 | 0.53 |
201 | Sintered | 0 | 80 | 40 | 0.65 |
202 | Sintered | 45 | 80 | 40 | 0.55 |
203 | Sintered | 90 | 80 | 40 | 0.56 |
204 | Sintered | 0 | 100 | 40 | 0.78 |
205 | Sintered | 0 | 60 | 40 | 0.62 |
206 | Sintered | 0 | 120 | 40 | 0.91 |
207 | Sintered | 45 | 60 | 40 | 0.54 |
208 | Sintered | 45 | 100 | 40 | 0.56 |
209 | Sintered | 45 | 120 | 40 | 0.74 |
210 | Sintered | 90 | 60 | 40 | 0.50 |
211 | Sintered | 90 | 120 | 40 | 0.72 |
212 | Sintered | 90 | 100 | 40 | 0.62 |
213 | Sintered | 0 | 100 | 45 | 0.69 |
214 | Sintered | 45 | 80 | 45 | 0.52 |
215 | Sintered | 45 | 100 | 45 | 0.54 |
216 | Sintered | 90 | 60 | 45 | 0.47 |
217 | Sintered | 90 | 80 | 45 | 0.51 |
218 | Sintered | 90 | 100 | 45 | 0.60 |
References
- International Energy Agency. Available online: https://www.iea.org/energy-system/energy-efficiency-and-demand/energy-efficiency (accessed on 15 May 2024).
- Cullen, J.M.; Allwood, J.M. Theoretical efficiency limits for energy conversion devices. Energy 2010, 35, 2059–2069. [Google Scholar] [CrossRef]
- Antonini Alves, T.; Altemani, C.A.C. An invariant descriptor for heaters temperature prediction in conjugate cooling. Int. J. Therm. Sci. 2012, 58, 92–101. [Google Scholar] [CrossRef]
- Krambeck, L.; Nishida, F.B.; Aguiar, V.M.; Santos, P.H.D.; Antonini Alves, T. Thermal performance evaluation of different passive devices for electronics cooling. Therm. Sci. 2019, 23, 1151–1160. [Google Scholar] [CrossRef]
- Seo, J.; Lee, J.Y. Length effect on entrainment limitation of vertical wickless heat pipe. Int. J. Heat Mass Transf. 2016, 101, 373–378. [Google Scholar] [CrossRef]
- Santos, P.H.D.; Antonini Alves, T.; Oliveira Junior, A.A.M.; Bazzo, E. Analysis of a flat capillary evaporator with a bi-layered porous wick. Therm. Sci. 2020, 24, 1951–1962. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, Y.; Wang, Z.; Zhang, D.; Liu, Z. Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe. Int. J. Heat Mass Transf. 2021, 168, 120856. [Google Scholar] [CrossRef]
- Machado, P.L.O.; Dimbarre, V.V.; Szmoski, R.M.; Antonini Alves, T. Experimental Investigation on the Influence of the Diameter on Thermosyphons for Application in a Hybrid Photovoltaic/Thermal System. In Proceedings of the 9th International Renewable and Sustainable Energy Conference IRSEC, Tetouan, Morocco, 23–27 November 2021; pp. 1–5. [Google Scholar]
- Xu, Z.; Zhang, Y.; Li, B.; Wang, C.C.; Ma, Q. Heat performances of a thermosyphon as affected by evaporator wettability and filling ratio. Appl. Therm. Eng. 2018, 29, 665–673. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, D.H.; Kim, J.S.; You, S.M.; Lee, J. Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios. Appl. Therm. Eng. 2018, 145, 328–342. [Google Scholar] [CrossRef]
- Babu, E.R.; Reddy, N.C.; Babbar, A.; Chandrashekar, A.; Kumar, R.; Bains, P.S.; Alsubih, M.; Islam, S.; Joshi, S.K.; Rizal, A.; et al. Characteristics of pulsating heat pipe with variation of tube diameter, filling ratio, and SiO2 nanoparticles: Biomedical and engineering implications. Case Stud. Therm. Eng. 2024, 55, 104065. [Google Scholar] [CrossRef]
- Markal, B.; Aksoy, K. The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe. Heat Mass Transf. 2021, 57, 751–763. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Li, B.; Wang, C.C.; Li, Y. The influences of the inclination angle and evaporator wettability on the heat performance of a thermosyphon by simulation and experiment. Int. J. Heat Mass Transf. 2018, 116, 675–684. [Google Scholar] [CrossRef]
- Arat, H.; Arslan, O.; Ercetin, U.; Akbulut, A. Experimental study on heat transfer characteristics of closed thermosyphon at different volumes and inclination angles for variable vacuum pressures. Case Stud. Therm. Eng. 2021, 26, 101117. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Yin, L.; Yang, D.; Yang, G.; Akkurt, N.; Liu, D.; Zhu, L.; Qiang, Y.; Yu, F.; et al. Experimental study on heat transfer properties of gravity heat pipes in single/hybrid nanofluids and inclination angles. Case Stud. Therm. Eng. 2022, 34, 102064. [Google Scholar] [CrossRef]
- Gallego, A.; Herrera, B.; Buitrago-Sierra, R.; Zapata, C.; Cacua, K. Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-Struct. Nano-Objects 2020, 22, 100448. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, Y.; Shin, D.H.; You, S.M.; Lee, J. Heat transfer and flow visualization of a two-phase closed thermosiphon using water, acetone, and HFE7100. Appl. Therm. Eng. 2021, 187, 116571. [Google Scholar] [CrossRef]
- Krambeck, L.; Bartmeyer, G.A.; Fusão, D.; Santos, P.H.D.; Antonini Alves, T. Experimental Research of Capillary Structure Technologies for Heat Pipes. Acta Sci.-Technol. 2020, 42, 48189. [Google Scholar] [CrossRef]
- Krambeck, L.; Bartmeyer, G.A.; Souza, D.O.; Fusão, D.; Santos, P.H.D.; Antonini Alves, T. Experimental thermal performance of different capillary structures for heat pipes. Energy Eng. 2021, 118, 1–14. [Google Scholar] [CrossRef]
- Vieira, G.C.; Flórez, J.P.; Mantelli, M.B.H. Improving heat transfer and eliminating Geyser boiling in loop thermosyphons: Model and experimentation. Int. J. Heat Mass Transf. 2020, 156, 119832. [Google Scholar] [CrossRef]
- Souza, D.O.; Machado, P.L.O.; Chiarello, C.; Santos, E.N.; Silva, M.J.; Santos, P.H.D.; Antonini Alves, T. Experimental study of hydrodynamic parameters regarding on geyser boiling phenomenon in glass thermosyphon using wire-mesh sensor. Therm. Sci. 2022, 26, 1391–1404. [Google Scholar]
- Souza, F.G.; Cisterna, L.H.R.; Milanez, F.H.; Mantelli, M.B.H. Geyser boiling experiments in thermosyphons filled with immiscible working fluids. Int. J. Therm. Sci. 2023, 185, 108066. [Google Scholar] [CrossRef]
- Chhokar, C.; Ashouri, M.; Bahrami, M. Modeling the thermal and hydrodynamic performance of grooved wick flat heat pipes. Appl. Therm. Eng. 2024, 257, 124281. [Google Scholar] [CrossRef]
- Zhong, R.; Feng, W.; Ma, Y.; Deng, J.; Liu, Y.; Ding, S.; Wang, X.; Liang, Y.; Yang, G. Experimental study of heat pipe start-up characteristics and development of an enhanced model considering gas diffusion effects. Appl. Therm. Eng. 2024, 257, 124460. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yu, H.; Huang, J.; Zhang, S.; Wang, X.; Huang, S.; Su, G.H.; Zhang, M. Numerical modeling of alkali metal heat pipes. Ann. Nucl. Energy 2025, 210, 110855. [Google Scholar] [CrossRef]
- Su, Z.; Li, Z.; Wang, K.; Kuang, Y.; Wang, H.; Yang, J. Investigation of improved VOF method in CFD simulation of sodium heat pipes using a multi-zone modeling method. Int. Commun. Heat Mass Transf. 2024, 157, 107669. [Google Scholar] [CrossRef]
- Biglia, F.M.; Dimbarre, V.V.; Bartmeyer, G.A.; Santos, P.H.D.; Antonini Alves, T. Numerical-experimental study of the boiling heat transfer coefficient in a thermosyphon. Therm. Sci. 2024, 181. [Google Scholar] [CrossRef]
- Machado, P.L.O.; Pereira, T.S.; Guerreiro, M.T.; Biglia, F.M.; Santos, P.H.D.; Tadano, Y.S.; Siqueira, H.V.; Antonini Alves, T. Estimating thermal performance of thermosyphons by Artificial Neural Networks. Alex. Eng. J. 2023, 79, 93–104. [Google Scholar] [CrossRef]
- Olabi, A.G.; Haridy, S.; Sayed, E.T.; Radi, M.A.; Alami, A.H.; Zwayyed, F.; Salameh, T.; Abdelkareem, M.A. Implementation of Artificial Intelligence in Modeling and Control of Heat Pipes: A Review. Energies 2023, 16, 760. [Google Scholar] [CrossRef]
- Sivaraman, B.; Mohan, N.K. Analysis of heat pipe solar collector using artificial neural network. J. Sci. Ind. Res. 2007, 66, 995–1001. [Google Scholar]
- Chen, R.H.; Su, G.H.; Qiu, S.Z.; Fukuda, K. Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm. Heat Mass Transf. 2010, 46, 345–353. [Google Scholar] [CrossRef]
- Salehi, H.; Heris, S.Z.; Salooki, M.K.; Noei, S.H. Designing a neural network for closed thermosyphon with nanofluid using a genetic algorithm. Braz. J. Chem. Eng. 2011, 28, 157–168. [Google Scholar] [CrossRef]
- Shanbedi, M.; Jafari, D.; Amiri, A.; Heris, S.Z.; Baniadam, M. Prediction of temperature performance of a two-phase closed thermosyphon using Artificial Neural Network. Heat Mass Transf. 2013, 49, 65–73. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Y.; Meng, X.; Chen, G. A general method to predict the performance of closed pulsating heat pipe by artificial neural network. Appl. Therm. Eng. 2019, 157, 113761. [Google Scholar] [CrossRef]
- Kahani, M.; Vatankhah, G. Thermal performance prediction of wickless heat pipe with Al2O3/water nanofluid using artificial neural network. Chem. Eng. Commun. 2019, 206, 509–523. [Google Scholar] [CrossRef]
- Maddah, H.; Ghazvini, M.; Ahmadi, M.H. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int. Commun. Heat Mass Transf. 2019, 104, 33–40. [Google Scholar] [CrossRef]
- Liang, F.; Gao, J.; Xu, L. Thermal performance investigation of the miniature revolving heat pipes using artificial neural networks and genetic algorithms. Int. J. Heat Mass Transf. 2020, 151, 119394. [Google Scholar] [CrossRef]
- Rajab, R.H.; Ahmad, H.H. Analysis of thermosiphon heat pipe performance using an Artificial Neural Network. J. Inst. Eng. (India) Ser. C 2021, 102, 243–255. [Google Scholar] [CrossRef]
- Nair, A.; Ramkumar, P.; Mahadevan, S.; Prakash, C.; Dixit, S.; Murali, G.; Vatin, N.I.; Epifantsev, K.; Kumar, K. Machine Learning for Prediction of Heat Pipe Effectiveness. Energies 2022, 15, 3276. [Google Scholar] [CrossRef]
- Kim, M.; Moon, J.H. Deep neural network prediction for effective thermal conductivity and spreading thermal resistance for flat heat pipe. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 437–455. [Google Scholar] [CrossRef]
- Taghipour Kani, G.; Ghahremani, A. Predicting the thermal performance of heat pipes applying various machine learning methods and a proposed correlation. Int. Commun. Heat Mass Transf. 2023, 142, 106671. [Google Scholar] [CrossRef]
- Bakhirathan, A.; Lachireddi, G.K.K. Comparative predictive analysis using ANN and RCA for experimental investigation on branched and conventional micro heat pipe. Therm. Sci. Eng. Prog. 2024, 54, 102811. [Google Scholar] [CrossRef]
- Jin, I.J.; Park, Y.Y.; Bang, I.C. Heat transfer performance prediction for heat pipe using deep learning based on wick type. Int. J. Therm. Sci. 2024, 197, 108806. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Shi, X.; Zhang, Z.; Zhang, C.; Liu, S. Developing a machine learning model for heat pipes considering different input features. Int. J. Therm. Sci. 2025, 208, 109398. [Google Scholar] [CrossRef]
- Groll, M.; Rösler, S. Operation principles and performance of heat pipes and closed two-phase thermosyphons. J. Non-Equilib. Thermodyn. 1992, 17, 91–151. [Google Scholar]
- Mantelli, M.B.H. Thermosyphons and Heat Pipes: Theory and Applications, 1st ed.; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Peterson, G.P. An Introduction to Heat Pipes: Modeling, Testing, and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Faghri, A. Heat Pipe Science and Technology, 2nd ed.; Global Digital Press: Rajastham, India, 2016. [Google Scholar]
- Reay, D.A.; Kew, P.A.; McGlen, R.J. Heat Pipe: Theory, Design and Applications, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Zohuri, B. Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd ed.; Springer Nature: Cham, Switzerland, 2016. [Google Scholar]
- Krambeck, L. Experimental Investigation of Wire Mesh Thermal Performance in Heat Pipes. Bachelor’s Thesis, Mechanical Engineering, Federal University of Technology—Paraná (UTFPR), Ponta Grossa, Brazil, 2016. (In Portuguese). [Google Scholar]
- Nishida, F.B.; Krambeck, L.; Santos, P.H.D.; Antonini Alves, T. Experimental investigation of heat pipe thermal performance with microgrooves fabricated by wire electrical discharge machining (wire-EDM). Therm. Sci. 2020, 24, 701–711. [Google Scholar]
- Krambeck, L.; Bartmeyer, G.A.; Souza, D.O.; Fusão, D.; Santos, P.H.D.; Antonini Alves, T. Selecting sintered capillary structure for heat pipes based on experimental thermal performance. Acta Scientiarum. Technol. 2022, 44, 57099. [Google Scholar] [CrossRef]
- Antonini Alves, T.; Krambeck, L.; Santos, P.H.D. Heat pipe and thermosyphon for thermal management of thermoelectric cooling. In Bringing Thermoelectricity into Reality; Aranguren, P., Ed.; IntechOpen: London, UK, 2018; pp. 353–374. [Google Scholar]
- Rohsenow, W.M.; Hartnett, J.P.; Cho, Y.I. Handbook of Heat Transfer, 1st ed.; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Prentice Hall: New York, NY, USA, 2009. [Google Scholar]
- Ozturk, M.C.; Xu, D.; Príncipe, J.C. Analysis and design of Echo State Networks. Neural Comput. 2007, 19, 111–138. [Google Scholar] [CrossRef]
- Graupe, D. Principals of Artificial Neural Network: Basic Designs to Deep Learning, 4th ed.; World Scientific: Singapore, 2019. [Google Scholar]
- Siqueira, H.; Luna, I. Performance comparison of feedforward neural networks applied to stream flow series forecasting. Math. Eng. Sci. Aerosp. 2019, 10, 41–53. [Google Scholar]
- Ewim, D.R.E.; Okwu, M.O.; Onyiriuka, E.J.; Abiodun, A.S.; Abolarin, S.M.; Kaood, A. A quick review of the applications of Artificial Neural Networks (ANN) in the modelling of thermal systems. Eng. Appl. Sci. Res. 2022, 49, 444–458. [Google Scholar]
- Gedik, E.; Kurt, H.; Pala, M.; Alakour, A.; Kaya, M. Experimental and Artificial Neural Network investigation on the thermal efficiency of two-phase closed thermosyphon. Int. J. Therm.-Fluid Eng. Mod. Energetics 2022, 1, 19–33. [Google Scholar] [CrossRef]
- Polezer, G.; Tadano, Y.S.; Siqueira, H.V.; Godoi, A.F.L.; Yamamoto, C.I.; André, P.A.; Pauliquevis, T.; Andrade, M.F.; Oliveira, A.; Saldiva, P.H.N.; et al. Assessing the impact of PM2.5 on respiratory disease using Artificial Neural Networks. Environ. Pollut. 2018, 235, 394–403. [Google Scholar] [CrossRef]
- Belotti, J.T.; Castanho, D.S.; Araujo, L.N.; Silva, L.V.; Antonini Alves, T.; Tadano, Y.S.; Stevan Junior, S.L.; Correa, F.C.; Siqueira, H. Air pollution epidemiology: A simplified generalized linear model approach optimized by bio-inspired metaheuristics. Environ. Res. 2020, 1, 110106. [Google Scholar] [CrossRef] [PubMed]
- Araujo, L.N.; Belotti, J.T.; Antonini Alves, T.; Tadano, Y.S.; Siqueira, H. Ensemble method based on Artificial Neural Networks to estimate air pollution health risks. Environ. Model. Softw. 2020, 123, 104567. [Google Scholar] [CrossRef]
- Kachba, Y.; Chiroli, D.M.G.; Belotti, J.T.; Antonini Alves, T.; Tadano, Y.S.; Siqueira, H. Artificial Neural Networks to estimate the influence of vehicular emission variables on morbidity and mortality in the largest metropolis in South America. Sustainability 2020, 12, 2621. [Google Scholar] [CrossRef]
- Tadano, Y.S.; Bacalhau, E.T.; Casacio, L.; Puchta, E.D.P.; Pereira, T.S.; Antonini Alves, T.; Ugaya, C.M.L.; Siqueira, H. Unorganized Machines to estimate the number of hospital admissions due to respiratory diseases caused by PM 10 concentration. Atmosphere 2021, 12, 1345. [Google Scholar] [CrossRef]
- Siqueira, H.; Bacalhau, E.T.; Casacio, L.; Puchta, E.D.P.; Antonini Alves, T.; Tadano, Y.S. Hybrid unorganized machines to estimate the number of hospital admissions caused by PM10 concentration. Environ. Sci. Pollut. Res. 2023, 30, 113175–113192. [Google Scholar] [CrossRef]
- Kumar, C.H.; Swamy, R.P. Fatigue life prediction of glass fiber reinforced epoxy composites using Artificial Neural Networks. Compos. Commun. 2021, 26, 100812. [Google Scholar] [CrossRef]
- Tai, V.C.; Tan, Y.C.; Rahman, N.F.A.; Che, H.X.; Chia, C.M.; Saw, L.H.; Ali, M.F. Long-term electricity demand forecasting for Malaysia using Artificial Neural Networks in the presence of input and model uncertainties. Energy Eng. 2021, 118, 715–725. [Google Scholar]
- Tai, V.C.; Tan, Y.C.; Rahman, N.F.A.; Chia, C.M.; Zhakiya, M.; Saw, L.H. A novel power curve prediction method for horizontal-axis wind turbines using Artificial Neural Networks. Energy Eng. 2021, 118, 507–516. [Google Scholar]
- De Mattos Neto, P.S.G.; Marinho, M.H.N.; Siqueira, H.; Tadano, Y.S.; Machado, V.; Antonini Alves, T.; Oliveira, J.F.L.; Madeiro, F. A methodology to increase the accuracy of particulate matter predictors based on time decomposition. Sustainability 2020, 12, 7310. [Google Scholar] [CrossRef]
- Campos, D.S.; Tadano, Y.S.; Antonini Alves, T.; Siqueira, H.V.; Marinho, M.H.N. Unorganized Machines and linear multivariate regression model applied to atmospheric pollutants forecasting. Acta Scientiarum. Technol. 2020, 42, 48203. [Google Scholar] [CrossRef]
- Siqueira, H.; Macedo, M.; Tadano, Y.S.; Antonini Alves, T.; Stevan, S.L., Jr.; Oliveira, D.S., Jr.; Marinho, M.H.N.; De Mattos Neto, P.S.G.; Oliveira, J.F.L.; Luna, I.; et al. Selection of temporal lags for predicting riverflow series from hydroelectric plants using variable selection methods. Energies 2020, 13, 4236. [Google Scholar] [CrossRef]
- Belotti, J.T.; Siqueira, H.; Araujo, L.N.; Stevan, S.L., Jr.; De Mattos Neto, P.S.G.; Marinho, M.H.N.; Oliveira, J.F.L.; Usberti, F.L.; Leone Filho, M.A.; Converti, A.; et al. Neural-based ensembles and Unorganized Machines to predict streamflow series from brazilian hydroelectric plants. Energies 2020, 13, 4769. [Google Scholar] [CrossRef]
- De Mattos Neto, P.S.G.; Firmino, P.R.A.; Siqueira, H.; Tadano, Y.S.; Antonini Alves, T.; Oliveira, J.F.L.; Marinho, M.H.N.; Madeiro, F. Neural-based ensembles for particulate matter forecasting. IEEE Access 2021, 9, 14470–14490. [Google Scholar] [CrossRef]
- Santos, J.L.F.; Vaz, A.J.C.; Kachba, Y.R.; Stevan Junior, S.L.; Antonini Alves, T.; Siqueira, H.V. Linear Ensembles for WTI Oil Price Forecasting. Energies 2024, 17, 4058. [Google Scholar] [CrossRef]
- Tadano, Y.S.; Siqueira, H.; Antonini Alves, T. Unorganized Machines to Predict Hospital Admissions for Respiratory Diseases. In Proceedings of the 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI 2016), Cartagena, Colombia, 2–4 November 2016; pp. 25–30. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A new learning scheme of feedforward neural networks. IEEE Int. Jt. Conf. Neural Netw. 2004, 2, 985–990. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
Reference | Device | ANN | Input | Output | Error |
---|---|---|---|---|---|
Sivaraman and Mohan [30] | Heat pipe solar collector | MFFNN 1 * | Total length/inner diameter of heat pipe, condenser length/evaporator length, tilt angle, solar intensity, water inlet temperature | Water outlet temperature | 0.64% |
Chen et al. [31] | Concentric-tube open thermosyphon | ANN + GA 2 | Density ratio, the ratio of the heated tube length to the inner diameter of the outer tube, the ratio of frictional area, and the ratio of equivalent heated diameter to characteristic bubble size | Kutateladze number | 18.4% |
Salehi et al. [32] | Closed thermosyphon | MLP 3 + Backpropagation Algorithm | Magnetic field intensity, the volume fraction of nanofluid in water, and the dissipated power | Thermal efficiency and resistance | R2 = 0.99 |
Shanbedi et al. [33] | Two-phase closed thermosyphon | MLP + Levenberg–Marquardt Algorithm | Working fluid vapor quality parameters, the power dissipated in the heat pipe, and the length of the heat pipe | Expected temperature distribution | R2 = 0.99 |
Wang et al. [34] | Closed pulsating heat pipe | Back propagation * learning algorithm | Kutateladze, Bond, Prandtl, Jacob numbers, number of turns (N), and the ratio of the evaporation section length to the diameter | Thermal resistance | MSE = 0.0138 |
Kahani and Vatankhah [35] | Wickless heat pipe | MLP | Input power, volume concentration of nanofluid, filling ratio and mass rate in condenser section | Thermal efficiency | MEA = 0.84% |
Maddah et al. [36] | Heat pipe heat exchanger | Three-layered forward neural network * and -Lewenberg Marquard Training Algorithm | Filling ratio, nanofluid concentration, and input power were | Heat exchanger efficiency | R2 > 0.99 |
Liang et al. [37] | Miniature revolving heat pipes | Back-propagation * + GA | Bond, Jacob, Prandtl and Froude numbers, and filling ratio | Kutateladze number | R2 = 0.87977; R2 = 0.8812 |
Rajab and Ahmad [38] | Thermosyphon | MLP + Back-propagation | Working fluid, mixing ratio, and dissipated power | Thermal resistance | RMSE = 0.098 |
Nair et al. [39] | Heat pipe | 30 different algorithms | Angle, temperature, mass flow rate | Effectiveness | MAE = 1.176 |
Kim and Moon [40] | Flat heat pipe | Deep neural network | Thermal conductivity, heat sink area, heater area, thickness, and heat transfer coefficient | Thermal resistance | MAPE = 10.8% |
Machado et al. [28] | Thermosyphons | ELM, ESN, RBF, and MLP | Slope, filling ratio, heat load | Thermal resistance | 25% |
Kani and Ghahremani [41] | Heat pipes | 9 machine learning regression methods | Inner and outer diameters, lengths of evaporator and condenser sections, number of turns, working fluids, inclination angle, filling ratio, and heat input | Thermal resistance | R2 = 0.6–0.95 |
Bakhirathan and Lachireddi [42] | Micro heat pipe | MLP | Heat input, heat rejected, geometry and thermos-physical properties | Thermal resistance | 3% |
Jin et al. [43] | Heat pipes | ANN + Deep Neural Network + Convolutional Neural Networks | Wick type, nanoparticle type, and operating conditions | Thermal resistance | 20% |
Li et al. [44] | Heat pipes | Genetic algorithm based back propagation neural network | 13 different inputs | Effective thermal conductivity | R2 = 0.9580 |
Characteristic | Values |
---|---|
Inner diameter [mm] | 7.75 |
Outer diameter [mm] | 9.45 |
Evaporator length [mm] | 80 |
Adiabatic Section length [mm] | 20 |
Condenser length [mm] | 100 |
Parameter | Screen Mesh | Axial Microgrooves | Sintered |
---|---|---|---|
Working Slope [°] | 0, 45, and 90 | 0, 45, and 90 | 0, 45, and 90 |
Filling Ratio [%] | 60 | 60 | 60, 80, 100, and 120 |
Heat Load [W] | 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 | 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 | 5, 10, 15, 20, 25, 30, 35, 40, and 45 |
Model | NN | Hidden Layer Function | Number of Hidden Layers | MAE | RMSE | MAPE [%] |
---|---|---|---|---|---|---|
ELM | 84 | Logistic | 1 | 0.285 | 0.384 | 25.74 |
MLP | 15 | Logistic | 1 | 0.241 | 0.409 | 13.96 |
RBF | 102 | Gaussian | 1 | 0.669 | 0.882 | 67.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, T.S.; Machado, P.L.O.; Veitia, B.D.R.; Biglia, F.M.; dos Santos, P.H.D.; Tadano, Y.d.S.; Siqueira, H.V.; Antonini Alves, T. Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes. Energies 2024, 17, 5387. https://doi.org/10.3390/en17215387
Pereira TS, Machado PLO, Veitia BDR, Biglia FM, dos Santos PHD, Tadano YdS, Siqueira HV, Antonini Alves T. Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes. Energies. 2024; 17(21):5387. https://doi.org/10.3390/en17215387
Chicago/Turabian StylePereira, Thomas Siqueira, Pedro Leineker Ochoski Machado, Barbara Dora Ross Veitia, Felipe Mercês Biglia, Paulo Henrique Dias dos Santos, Yara de Souza Tadano, Hugo Valadares Siqueira, and Thiago Antonini Alves. 2024. "Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes" Energies 17, no. 21: 5387. https://doi.org/10.3390/en17215387
APA StylePereira, T. S., Machado, P. L. O., Veitia, B. D. R., Biglia, F. M., dos Santos, P. H. D., Tadano, Y. d. S., Siqueira, H. V., & Antonini Alves, T. (2024). Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes. Energies, 17(21), 5387. https://doi.org/10.3390/en17215387