In Search of Energy Security: Nuclear Energy Development in the Visegrad Group Countries
Abstract
:1. Introduction
2. Nuclear Power Around the World
3. The Development of Nuclear Energy in the Visegrad Group Countries in a Nutshell
Country | Reactor Name | Type | Capacity (MW) | First Grid Connection |
---|---|---|---|---|
Slovakia | Jaslovské Bohunice 3 | VVER V-213 | 466 | 1984 |
Jaslovské Bohunice 4 | VVER V-213 | 466 | 1985 | |
Mochovce 1 | VVER V-213 | 408 | 1998 | |
Mochovce 2 | VVER V-213 | 408 | 1999 | |
Mochovce 3 | VVER V-213 | 440 | 2023 | |
Czechia | Dukovany 1 | VVER V-213 | 510 | 1985 |
Dukovany 2 | VVER V-213 | 510 | 1986 | |
Dukovany 3 | VVER V-213 | 510 | 1986 | |
Dukovany 4 | VVER V-213 | 510 | 1987 | |
Temelin 1 | VVER V-320 | 1086 | 2000 | |
Temelin 2 | VVER V-320 | 1086 | 2002 | |
Hungary | Paks 1 | VVER V-213 | 479 | 1982 |
Paks 2 | VVER V-213 | 479 | 1984 | |
Paks 3 | VVER V-213 | 479 | 1986 | |
Paks 4 | VVER V-213 | 479 | 1987 |
4. The Energy Sector in the Visegrad Countries with Focus on Nuclear Energy
5. Plans for the Development of Nuclear Energy in the V4 Countries
5.1. Poland
5.2. Czechia
5.3. Hungary
5.4. Slovakia
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mišík, M. When the Accession Legacy Fades Away: Central and Eastern European Countries and the EU Renewables Targets. Int. Spect. 2021, 56, 3. [Google Scholar] [CrossRef]
- Mišík, M.; Nosko, A. Each one for themselves: Exploring the energy security paradox of the European Union. Energy Res. Soc. Sci. 2023, 99, 103074. [Google Scholar] [CrossRef]
- Deák, A.; Szabo, J.; Weiner, C. Russia’s gas weapon in Central and Eastern Europe. In EU Energy and Climate Policy after COVID-19 and the Invasion of Ukraine; Mišík, M., Figulová, A., Eds.; Routledge: London, UK, 2024; pp. 119–137. [Google Scholar]
- Glaser, A. After Fukushima: Preparing for a More Uncertain Future of Nuclear Power. Electr. J. 2011, 24, 27–35. [Google Scholar] [CrossRef]
- Bowen, M. The Global Future of Nuclear Energy. Atlantic Council. Washington, 2023. Available online: https://www.atlanticcouncil.org/wp-content/uploads/2023/08/The-Global-Future-of-Nuclear-Energy-1.pdf (accessed on 11 September 2024).
- Selje, T. Comparing the German exit of nuclear and coal: Assessing historical pathways and energy phase-out dimensions. Energy Res. Soc. Sci. 2022, 94, 102883. [Google Scholar] [CrossRef]
- Upham, P.; Eberhardt, L.; Klapper, R.G. Rethinking the meaning of “landscape shocks” in energy transitions: German social representations of the Fukushima nuclear accident. Energy Res. Soc. Sci. 2020, 69, 101710. [Google Scholar] [CrossRef]
- McCauley, D.; Brown, A.; Rehner, R.; Heffron, R.; Graaff, S. Energy justice and policy change: An historical political analysis of the German nuclear phase-out. Appl. Energy 2018, 228, 317–323. [Google Scholar] [CrossRef]
- Telli, A.; Erat, S.; Demir, B. Comparison of energy transition of Turkey and Germany: Energy policy, strengths/weaknesses and targets. Clean Technol. Env. Policy 2020, 23, 413–427. [Google Scholar] [CrossRef]
- Rogge, K.S.; Johnstone, P. Exploring the role of phase-out policies for low-carbon energy transitions: The case of the German Energiewende. Energy Res. Soc. Sci. 2017, 33, 128–137. [Google Scholar] [CrossRef]
- Wiese, F.; Thema, J.; Cordroch, L. Strategies for climate neutrality. Lessons from a meta-analysis of German energy scenarios. Renew. Sustain. Energy Transit. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Nam, H.; Konishi, S.; Nam, K. Comparative analysis of decision making regarding nuclear policy after the Fukushima Dai-ichi Nuclear Power Plant Accident: Case study in Germany and Japan. Technol. Soc. 2021, 67, 101735. [Google Scholar] [CrossRef]
- Hayashi, M.; Hughes, L. The policy responses to the Fukushima nuclear accident and their effect on Japanese energy security. Energy Policy 2013, 59, 86–101. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Suzuki, M.; Antal, M. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy 2017, 101, 612–628. [Google Scholar] [CrossRef]
- Ohta, H.; Barrett, B.F.D. Politics of climate change and energy policy in Japan: Is green transformation likely? Earth Syst. Gov. 2023, 17, 100187. [Google Scholar] [CrossRef]
- Knuepfer, K.; Rogalski, N.; Knuepfer, A.; Esteban, M.; Shibayama, T. A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power. Appl. Energy 2022, 328, 119840. [Google Scholar] [CrossRef]
- Streimikiene, D. The role of nuclear energy in Lithuania under various post-Kyoto climate change mitigation regimes. Energy 2008, 33, 7. [Google Scholar] [CrossRef]
- Sattich, T.; Morgan, R.; Moe, E. Searching for energy independence, finding renewables? Energy security perceptions and renewable energy policy in Lithuania. Political Geogr. 2022, 96, 102656. [Google Scholar] [CrossRef]
- Brutschin, E.; Cherp, A.; Jewell, J. Failing the formative phase: The global diffusion of nuclear power is limited by national markets. Energy Res. Soc. Sci. 2021, 80, 102221. [Google Scholar] [CrossRef]
- Cooper, M. Small modular reactors and the future of nuclear power in the United States. Energy Res. Soc. Sci. 2014, 3, 161–177. [Google Scholar] [CrossRef]
- Bernstein, D.H.; Parmeter, C.F.; Tsionas, M.G. On the performance of the United States nuclear power sector: A Bayesian approach. Energy Econ. 2023, 125, 106884. [Google Scholar] [CrossRef]
- Brown, N.R. Engineering demonstration reactors: A stepping stone on the path to deployment of advanced nuclear energy in the United States. Energy 2022, 238, 121750. [Google Scholar] [CrossRef]
- Sinclair, E.; Hamilton, J.A. New life at old plants: Exploring solar power development at former nuclear power plant sites in the United States. Electr. J. 2023, 36, 6. [Google Scholar] [CrossRef]
- Yamamoto, D.; Greco, A. Cursed forever? Exploring socio-economic effects of nuclear power plant closures across nine communities in the United States. Energy Res. Soc. Sci. 2022, 92, 102766. [Google Scholar] [CrossRef]
- Richter, J.; Bernstein, M.J.; Farooque, M. The process to find a process for governance: Nuclear waste management and consent-based siting in the United States. Energy Res. Soc. Sci. 2022, 87, 102473. [Google Scholar] [CrossRef]
- Malischek, R.; Trüby, J. The Future of Nuclear Power in France: An Analysis of the Costs of Phasing-out. Energy 2016, 116, 908–921. [Google Scholar] [CrossRef]
- Korkut Pata, U.; Samour, A. Do renewable and nuclear energy enhance environmental quality in France? A new EKC approach with the load capacity factor. Prog. Nucl. Energy 2022, 149, 104249. [Google Scholar] [CrossRef]
- Shirizadeh, B.; Quirion, P. Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage? Energy Econ. 2021, 95, 105004. [Google Scholar] [CrossRef]
- Zimmermann, F.; Keles, D. State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects. Energy Policy 2023, 173, 113403. [Google Scholar] [CrossRef]
- Maïzi, M.; Assoumou, E. Future prospects for nuclear power in France. Appl. Energy 2014, 136, 849–859. [Google Scholar] [CrossRef]
- Wealer, B.; Bauer, S.; Hirschhausen, C.; Kemfert, C.; Göke, L. Investing into third generation nuclear power plants—Review of recent trends and analysis of future investments using Monte Carlo Simulation. Renew. Sustain. Energy Rev. 2021, 143, 110836. [Google Scholar] [CrossRef]
- Velasquez, C.E.; Estanislau, F.; Costa, A.L.; Pereira, C. Assessment of the French nuclear energy system—A case study. Energy Strategy Rev. 2020, 30, 100513. [Google Scholar] [CrossRef]
- Shin, S.E.; Park, H.G.; Na, H.N.; Bang, Y.S.; Lee, Y.S. A study on security oversight framework for Korean Nuclear Facility regulations. Nucl. Eng. Technol. 2024, 56, 2. [Google Scholar] [CrossRef]
- Cho, H.S.; Woo, T.H. Cyber security in nuclear industry—Analytic study from the terror incident in nuclear power plants (NPPs). Ann. Nucl. Energy 2017, 99, 47–53. [Google Scholar] [CrossRef]
- Choi, H. Preliminary strong ground motion simulation at seismic stations within nuclear power plant sites in South Korea by a scenario earthquake on the causative fault of 2016 Gyeongju earthquake. Nucl. Eng. Technol. 2022, 54, 7. [Google Scholar] [CrossRef]
- Lee, E.C.; Lee, B.W.; Kim, H.M. Strategies for the symbiotic development of renewable power and nuclear power under the ‘Renewable Energy 3020’ policy in South Korea: Part II. Technical solutions for expanding renewable power generation. Energy Rep. 2022, 8, 16. [Google Scholar] [CrossRef]
- Vincent, I.; Lee, E.C.; Cha, K.H.; Kim, H.M. The WASP model on the symbiotic strategy of renewable and nuclear power for the future of ‘Renewable Energy 3020’ policy in South Korea. Renew. Energy 2021, 172, 929–940. [Google Scholar] [CrossRef]
- Nam, H.; Konishi, S. Potentiality of biomass-nuclear hybrid system deployment scenario: Techno-economic feasibility perspective in South Korea. Energy 2019, 175, 1038–1054. [Google Scholar] [CrossRef]
- Lee, J.; Cho, Y. Economic value of the development of nuclear power plant decommissioning technology in South Korea. Energy Policy 2023, 181, 113695. [Google Scholar] [CrossRef]
- Lim, Y.J.; Lee, B.S.; Park, S.O.; Lee, S.G. A study on the clearance waste recycling scenario in the decommissioning of Korea’s nuclear power plants. Ann. Nucl. Energy 2022, 178, 109366. [Google Scholar] [CrossRef]
- Muraviev, E.V.; Khomyakov, Y.S.; Kashirsky, A.A.; Rodina, E.A. Comparative study of a stationary two-component nuclear energy system with light water and fast breeder reactors versus one-component one with self-sufficient non-breeding fast neutron reactors. Nucl. Eng. Des. 2021, 384, 111500. [Google Scholar] [CrossRef]
- Tolstoukhov, D.; Panov, S.; Presnyakov, I. Economic aspects of nuclear fuel cycle closure on the basis of fast neutron reactors in the framework of “Proryv” project direction implementation. Nucl. Eng. Des. 2021, 384, 111471. [Google Scholar] [CrossRef]
- Thomas, S. Russia’s Nuclear Export Programme. Energy Policy 2018, 121, 236–247. [Google Scholar] [CrossRef]
- Dolzikova, D. Atoms for Sale: Developments in Russian Nuclear Energy Exports. RUSI Special Report, 14 February 2023. Royal United Services Institute for Defence and Security Studies. Available online: https://rusi.org/explore-our-research/publications/special-resources/atoms-sale-developments-russian-nuclear-energy-exports (accessed on 11 September 2024).
- Yuan, R.; Ma, Q.; Zhang, Q.; Yuan, X.; Wang, Q.; Luo, C. Coordinated effects of energy transition on air pollution mitigation and CO2 emission control in China. Sci. Total Environ. 2022, 841, 156482. [Google Scholar] [CrossRef]
- Wang, C.; Raza, S.A.; Adebayo, T.S.; Yi, S.; Shah, M.I. The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis. Energy 2023, 262, 125303. [Google Scholar] [CrossRef]
- Li, A.; Liu, Y.; Yu, Z. China’s nuclear exports: Understanding the dynamics between domestic governance reforms and international market competition. Energy Res. Soc. Sci. 2023, 103, 103230. [Google Scholar] [CrossRef]
- Pekar, Ç. Nuclear Power Program in Turkey as a Nuclear Newcomer Country. İzmir J. Soc. Sci. 2023, 5, 1. [Google Scholar] [CrossRef]
- Kok, B.; Benli, H. Energy diversity and nuclear energy for sustainable development in Turkey. Renew. Energy 2017, 111, 870–877. [Google Scholar] [CrossRef]
- Novikau, A.; Muhasilović, J. Turkey’s quest to become a regional energy hub: Challenges and opportunities. Heliyon 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Aras, E. The Necessity of Nuclear Energy in Turkey: A Comparison with Hydropower. Energy Energy Sources Part B Econ. Plan. Policy 2011, 8, 2. [Google Scholar] [CrossRef]
- Comsan, M.N.H. Nuclear electricity for sustainable development: Egypt a case study. Energy Convers. Manag. 2010, 51, 9. [Google Scholar] [CrossRef]
- Hickey, S.M.; Malkawi, S.; Khalil, A. Nuclear power in the Middle East: Financing and geopolitics in the state nuclear power programs of Turkey, Egypt, Jordan and the United Arab Emirates. Energy Res. Soc. Sci. 2021, 74, 101961. [Google Scholar] [CrossRef]
- Belaïd, F.; Al-Sarihi, A. Saudi Arabia energy transition in a post-paris agreement era: An analysis with a multi-level perspective approach. Res. Int. Bus. Financ. 2024, 67, 102086. [Google Scholar] [CrossRef]
- Amran, Y.H.A.; Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Ali, A.; Shams, A.; Al-Athel, K.S.; Alwafi, A. Saudi Arabia’s nuclear energy ambition and its compliance with IAEA guidelines for newcomers: An overview. Nucl. Eng. Des. 2023, 411, 112448. [Google Scholar] [CrossRef]
- Liu, L.; Guo, H.; Dai, L.; Liu, M.; Xiao, Y.; Cong, T.; Gu, H. The role of nuclear energy in the carbon neutrality goal. Prog. Nucl. Energy 2023, 162, 104772. [Google Scholar] [CrossRef]
- Chen, R.; Su, G.H.; Zhang, K. Analysis on the high-quality development of nuclear energy under the goal of peaking carbon emissions and achieving carbon neutrality. Carbon Neutrality 2022, 1, 33. [Google Scholar] [CrossRef]
- Rahmanta, M.A.; Harto, A.W.; Agung, A.; Ridwan, M.K. Nuclear Power Plant to Support Indonesia’s Net Zero Emissions: A Case Study of Small Modular Reactor Technology Selection Using Technology Readiness Level and Levelized Cost of Electricity Comparing Method. Energies 2023, 16, 3752. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Curr. Res. Environ. Sustain. 2022, 4, 100165. [Google Scholar] [CrossRef]
- Cho, I.; Oh, S.; Kim, S.; Ardin, F.; Heo, E. Determinants of nuclear power expansion in Indonesia. Nucl. Eng. Technol. 2021, 53, 1. [Google Scholar] [CrossRef]
- Ahmad, S.; Nadeem, A.; Akhanova, G.; Houghton, T.; Muhammad-Sukki, F. Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan. Energy 2017, 141, 1880–1891. [Google Scholar] [CrossRef]
- Wagner, A.; Matuszek, K.C. Time for transition—Temporal structures in energy governance in contemporary Poland. Futures 2022, 140, 102959. [Google Scholar] [CrossRef]
- Wagner, A.; Grobelski, T.; Harembski, M. Is energy policy a public issue? Nuclear power in Poland and implications for energy transitions in Central and East Europe. Energy Res. Soc. Sci. 2016, 13, 158–169. [Google Scholar] [CrossRef]
- Żuk, P. Soft power and the media management of energy transition: Analysis of the media narrative about the construction of nuclear power plants in Poland. Energy Rep. 2023, 9, 568–583. [Google Scholar] [CrossRef]
- Gierszewski, J.; Młynarkiewicz, Ł.; Nowacki, T.R.; Dworzecki, J. Nuclear Power in Poland’s Energy Transition. Energies 2021, 14, 3626. [Google Scholar] [CrossRef]
- Malec, M. The prospects for decarbonisation in the context of reported resources and energy policy goals: The case of Poland. Energy Policy 2022, 161, 112763. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.Y. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- Bohdanowicz, Z.; Łopaciuk-Gonczaryk, B.; Gajda, P.; Rajewski, A. Support for nuclear power and proenvironmental attitudes: The cases of Germany and Poland. Energy Policy 2023, 177, 113578. [Google Scholar] [CrossRef]
- Vrban, B.; Nečas, V.; Čerba, Š.; Lüley, J.; Filová, V. Perspectives on the future of nuclear energy in Slovakia. Energy Syst. 2023, 1–22. [Google Scholar] [CrossRef]
- Barkhatov, D.; Marek, P.; Rolenc, J.M.; Antal, J. Nuclear Power Expansion and its Economic Implications to the Energy Security of the Czech Republic. Současná Evropa. 1. 2019. Available online: https://wep.vse.cz/artkey/sev-201901-0003.php (accessed on 11 September 2024).
- Leal-Arcas, R.; Burstein, B. Slovakia: Energy Policy. In Encyclopedia of Mineral and Energy Policy; Tiess, G., Majumder, T., Cameron, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–17. [Google Scholar] [CrossRef]
- Mihók, P. Understanding political institutional support for completing the Mochovce nuclear power plant. Prog. Nucl. Energy 2020, 120, 103192. [Google Scholar] [CrossRef]
- Zemánek, L. Czech Republic Economy Briefing: The Czech Republic to Expand Nuclear Power Plants. Weekly Briefing. China-CEE Institute. 23, 2, 2019. Available online: https://china-cee.eu/wp-content/uploads/2019/12/2019e1190%EF%BC%8816%EF%BC%89Czech-Republic.pdf (accessed on 11 September 2024).
- Karatayev, M.; Gaduš, J.; Lisiakiewicz, R. Creating pathways toward secure and climate neutral energy system through Energy PLAN scenario model: The case of Slovak Republic. Energy Rep. 2023, 10, 2525–2536. [Google Scholar] [CrossRef]
- Pan, Y. Managing the atomic divorce: The challenges of East Central Europe’s nuclear energy decoupling from Russia. Electr. J. 2023, 36, 1. [Google Scholar] [CrossRef]
- Dyduch, J.; Skorek, A. Go South! Southern dimension of the V4 states’ energy policy strategies—An assessment of viability and prospects. Energy Policy 2020, 140, 111372. [Google Scholar] [CrossRef]
- World Nuclear Association. Mochovce 3, Slovakia. Available online: https://www.world-nuclear.org/reactor/default.aspx/MOCHOVCE-3 (accessed on 11 September 2024).
- Knápek, J.; Efmertová, M.; Mikeš, J. Nuclear Energy in Czechoslovakia. An Outline and Description of Its Development Trends. Ann. Hist. L’Électricité 2011, 9, 59–80. [Google Scholar] [CrossRef]
- Vlček, T.; Černoch, F. Energetický Sektor České republiky. Masaryk University. 2012. Available online: https://munispace.muni.cz/library/catalog/book/812 (accessed on 10 October 2024).
- Katona, T.J. Nuclear energy in Hungary. Hung. Geogr. Bull. 2009, 58, 4. [Google Scholar]
- Sarlós, G. Risk perception and political alienism: Political discourse on the future of nuclear energy in Hungary. Cent. Eur. J. Commun. 2015, 8, 93–111. [Google Scholar]
- Csernus, D. Country Report Hungary. Energy Without Russia. The Consequences of the Ukraine war and the EU Sanction on the Energy Sector in Europe. Friedrich Ebert Stiftung. 2023. Available online: https://library.fes.de/pdf-files/bueros/budapest/20509.pdf (accessed on 11 September 2024).
- Energy Policy of Poland until 2025. Monitor Polski. Available online: https://www.prawo.pl/akty/m-p-2005-42-562,17205399.html (accessed on 11 September 2024).
- World Nuclear Association. Country Profiles. Available online: https://world-nuclear.org/information-library/country-profiles (accessed on 11 September 2024).
- Sulich, A.; Sołoducho-Pelc, L. Renewable Energy Producers’ Strategies in the Visegrád Group Countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
- International Energy Agency. Energy System in Europe. Available online: https://www.iea.org/regions/europe (accessed on 11 September 2024).
- Tichý, L.; Dubský, Z. Russian energy discourse on the V4 countries. Energy Policy 2020, 137, 111128. [Google Scholar] [CrossRef]
- Oravcová, V. Country Report Slovakia. Energy Without Russia. The Consequences of the Ukraine war and the EU Sanction on the Energy Sector in Europe. Friedrich Ebert Stiftung. 2023. Available online: https://library.fes.de/pdf-files/bueros/budapest/20408.pdf (accessed on 11 September 2024).
- De Rosa, M.; Gainsford, K.; Pallonetto, F.; Finn, D.P. Diversification, concentration and renewability of the energy supply in the European Union. Energy 2022, 253, 124097. [Google Scholar] [CrossRef]
- Hebda, W. The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources. Energies 2021, 14, 7188. [Google Scholar] [CrossRef]
- Dzikuć, M.; Piwowar, A.; Dzikuć, M. The importance and potential of photovoltaics in the context of low-carbon development in Poland. Energy Storage Sav. 2022, 1, 3. [Google Scholar] [CrossRef]
- Talarek, K.; Knitter-Piątkowska, A.; Garbowski, T. Wind Parks in Poland—New Challenges and Perspectives. Energies 2022, 15, 7004. [Google Scholar] [CrossRef]
- Lapčík, V.; Lapčík, M.; Lapčík, V. Aktualne aspekty dekarbonizacji w Czechach i możliwości zastąpienia węglowych źródeł energii odnawialnymi źródłami energii elektrycznej. Inżynieria Miner. 2022, 1, 49. [Google Scholar] [CrossRef]
- Durcansky, P.; Zvada, B.; Nosek, R.; Najser, J.; Najser, T. Evolution of Green Energy Production in Czech Republic. Appl. Sci. 2023, 13, 2185. [Google Scholar] [CrossRef]
- Knápek, J. Country Report Czech Republic. Energy Without Russia. The Consequences of the Ukraine war and the EU Sanction on the Energy Sector in Europe. Friedrich Ebert Stiftung. 2023. Available online: https://library.fes.de/pdf-files/bueros/budapest/20581.pdf (accessed on 11 September 2024).
- Bosák, M.; Dugas, J.; Szaryszová, P.; Kuhnová, L. Sustainable development and coal consumption in Slovakia. E3S Web Conf. 2023, 451, 02002. [Google Scholar] [CrossRef]
- Russian Gas Phase Out in Hungary. Regional Centre for Energy Policy Research. Available online: https://rekk.hu/downloads/projects/Russian%20gas%20phase%20out%20in%20Hungary_%20final%20report-1.pdf (accessed on 11 September 2024).
- Hortay, O.; Víg, A.A. Potential effects of market power in Hungarian solar boom. Energy 2020, 213, 118857. [Google Scholar] [CrossRef]
- Portela, C.; Pospieszna, P.; Skrzypczyńska, J.; Walentek, D. Consensus against all odds: Explaining the persistence of EU sanctions on Russia. J. Eur. Integr. 2021, 43, 6. [Google Scholar] [CrossRef]
- Hebda, W. Gas from the South, not from Russia: The Possibility of Distributing Natural Gas from the Eastern Mediterranean to Poland and Central Europe. Energies 2024, 17, 1469. [Google Scholar] [CrossRef]
- Lamour, C. Orbán Placed in Europe: Ukraine, Russia and the Radical-Right Populist Heartland. Geopolitics 2023, 29, 1297–1323. [Google Scholar] [CrossRef]
- Fagan, M.; Clancy, L.; Gubbala, S.; Austin, S. Poles and Hungarians Differ Over Views of Russia and U.S. Pew Research Center. 2023. Available online: https://www.pewresearch.org/global/2023/10/02/poles-and-hungarians-differ-over-views-of-russia-and-the-us/ (accessed on 11 September 2024).
- Schulzová, H. Trade and energy—the conflict’s limited impact on the Czech economy. In Diverging Voices, Converging Policies: The Visegrad States’ Reactions to the Russia-Ukraine Conflict; Kucharczyk, J., Mesežnikov, G., Eds.; Heinrich-Böll-Stiftung: Prague, The Czech Republic, 2015; pp. 37–51. Available online: https://cz.boell.org/sites/default/files/diverging_voices-converging_policies.pdf (accessed on 11 September 2024).
- Lintner, T.; Diviák, T.; Nekardová, B.; Lehotský, L.; Vašečka, M. Slovak MPs’ response to the 2022 Russian invasion of Ukraine in light of conspiracy theories and the polarization of political discourse. Humanit. Soc. Sci. Commun. 2023, 10, 758. [Google Scholar] [CrossRef]
- Mesík, J. Economics and energy in Slovak-Russian relations in the context of the Russian-Ukrainian conflict. In Diverging Voices, Converging Policies: The Visegrad States’ Reactions to the Russia-Ukraine Conflict; Kucharczyk, J., Mesežnikov, G., Eds.; Heinrich-Böll-Stiftung: Prague, Czech Republic; Warsaw, Poland, 2015; pp. 175–194. Available online: https://cz.boell.org/sites/default/files/diverging_voices-converging_policies.pdf (accessed on 11 September 2024).
- Vlček, T.; Jirusek, M. Behavioral Determinants of Russian Nuclear State-Owned Enterprises in Central and Eastern European Region. Int. J. Energy Econ. Policy 2015, 5, 4. Available online: https://dergipark.org.tr/en/download/article-file/361555 (accessed on 11 September 2024).
- Kratochvíl, P.; Mišík, M. Bad external actors and good nuclear energy: Media discourse on energy supplies in the Czech Republic and Slovakia. Energy Policy 2020, 136, 111058. [Google Scholar] [CrossRef]
- Sovacool, B.K. Critically weighing the costs and benefits of a nuclear renaissance. J. Integr. Environ. Sci. 2010, 7, 2. [Google Scholar] [CrossRef]
- Halkos, G.E.; Gkampoura, E.C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Rhodes, R.; Beller, D. The Need for Nuclear Power. Foreign Aff. 2000, 79, 1. [Google Scholar] [CrossRef]
- Cohen, B.L. Perspectives on the high level waste disposal problem. Interdiscip. Sci. Rev. 1998, 23, 3. [Google Scholar] [CrossRef]
- Hałdy Górnicze—Ukryć Trudno, a i Pozbyć Się Niełatwo. Najwyższa Izba Kontroli. Available online: https://www.nik.gov.pl/aktualnosci/haldy-gornicze-ukryc-trudno-a-i-pozbyc-sie-nielatwo.html (accessed on 11 September 2024). (In Polish)
- World Nuclear Association. Radioactive Waste Management. Available online: https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-waste/radioactive-waste-management (accessed on 11 September 2024).
- Abdel Rahman, R.O. Chapter 2—Historical radioactive and nuclear waste management practices: Analysis and insights for the period 1940–1990s. In Nuclear Waste Management Facilities; Abdel Rahman, R.O., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 71–154. [Google Scholar] [CrossRef]
- Ewing, R.C.; Park, S. The Concept of Geological Disposal of Highly Radioactive Nuclear Waste. In Encyclopedia of Nuclear Energy; Greenspan, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 588–602. [Google Scholar] [CrossRef]
- Uranium 2022. Resources, Production and Demand. Nuclear Energy Agency, International Atomic Energy Agency. Available online: https://nucleus.iaea.org/sites/connect/UPCpublic/Documents/Uranium%202022_%20Resources,%20Production%20and%20Demand.pdf (accessed on 11 September 2024).
- Meyer, T. Assessing the weaponability of enriched uranium trade in the geopolitics of nuclear energy: The EU-Russia interrelations. Resour. Policy 2023, 86, 104318. [Google Scholar] [CrossRef]
- Szulecki, K.; Overland, I. Russian nuclear energy diplomacy and its implications for energy security in the context of the war in Ukraine. Nat. Energy 2023, 8, 413–421. [Google Scholar] [CrossRef]
- Na Ile Wystarczy Polskiego Uranu? Ministerstwo Klimatu i Środowiska. Available online: https://www.gov.pl/web/polski-atom/na-ile-lat-wystarczy-polskiego-uranu (accessed on 11 September 2024). (In Polish)
- Jurda, M.; Němec, M. Remediation of the uranium industry in the Czech Republic: Regulation aspects and main technologies. J. Radiol. Prot. 2022, 42, 010504. [Google Scholar] [CrossRef]
- René, M. History of Uranium Mining in Central Europe. In Uranium—Safety, Resources, Separation and Thermodynamic Calculation; Awwad, N.S., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Electric Power Monthly. U.S. Energy Information Administration. Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_07_a; https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b; (accessed on 11 September 2024).
- Scheig, G. Understanding Capacity Factors for Renewable Sources & Fossil Fuels. Stout. 2023. Available online: https://www.stout.com/en/insights/commentary/understanding-capacity-factors-renewable-sources-fossil-fuels (accessed on 11 September 2024).
- Davidson, A.J. The Role of Nuclear Energy in the Global Energy Transition. Oxford Institute for Energy Studies. 2022. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2022/08/The-Role-of-Nuclear-Energy-in-the-Global-Energy-Transition-ET14.pdf (accessed on 11 September 2024).
- Aszódi, A.; Biró, B.; Adorján, L.; Dobos, A.C.; Illés, G.; Tóth, N.T.; Zagyi, D.; Zsiborás, Z.T. The effect of the future of nuclear energy on the decarbonization pathways and continuous supply of electricity in the European Union. Nucl. Eng. Des. 2023, 415, 112688. [Google Scholar] [CrossRef]
- Polityka energetyczna Polski do 2040 r. Ministerstwo Klimatu i Środowiska. Warszawa. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WMP20210000264/O/M20210264.pdf (accessed on 11 September 2024).
- Hebda, W. Energy Policy of Poland until 2040: The Challenges and Threats to Energy Security in the Next Two Decades. Politeja 2022, 19, 4. [Google Scholar] [CrossRef]
- Zarębski, P.; Katarzyński, D. Small Modular Reactors (SMRs) as a Solution for Renewable Energy Gaps: Spatial Analysis for Polish Strategy. Energies 2023, 16, 6491. [Google Scholar] [CrossRef]
- Hebda, W. Rosyjska agresja militarna na Ukrainę a bezpieczeństwo energetyczne Polski. In The War Must Go On: Dynamika wojny w Ukrainie i jej Reperkusje dla Bezpieczeństwa Polski; Gruszczak, A., Ed.; Księgarnia Akademicka: Kraków, Poland, 2023; pp. 115–124. [Google Scholar] [CrossRef]
- Agreement Between the United States of America and Poland. Signed at Upper Marlboro and Warsaw October 19 and 22, 2020. Entered into force February 24, 2021. Available online: https://www.state.gov/wp-content/uploads/2021/05/21-224-Poland-Nuclear-Energy.pdf (accessed on 11 September 2024).
- Mikulski, A. Energetyka jądrowa w Polsce w 2022 roku—Próba podsumowania. Postępy Tech. Jądrowej 2022, 65, 4. Available online: https://bibliotekanauki.pl/articles/2171855 (accessed on 11 September 2024).
- Brodacki, D. Nuclear Poland. How to Bring Reactors to Poland. Baker Mckenzie. 2023. Available online: https://www.bakermckenzie.com/-/media/files/locations/poland/baker-mckenzie-nuclear-poland-en.pdf (accessed on 11 September 2024).
- Polskie Elektrownie Jądrowe i Westinghouse Podpisały Umowę Na Prace Przedprojektowe Elektrowni Jądrowej na Pomorzu. Polskie Elektrownie Jądrowe. Available online: https://ppej.pl/aktualnosci/polskie-elektrownie-jadrowe-i-westinghouse-podpisaly-umowe-na-prace-przedprojektowe-elektrowni-jadrowej-na-pomorzu (accessed on 11 September 2024).
- Rečka, L.; Ščasný, M. Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic. Energies 2017, 10, 1947. [Google Scholar] [CrossRef]
- State Energy Policy of the Czech Republic; Ministry of Industry and Trade: Prague, The Czech Republic, 2014. Available online: https://www.mzp.cz/C125750E003B698B/en/climate_energy/$FILE/OEOK-State_Energy_Policy-20160310.pdf (accessed on 11 September 2024).
- Národní Akční Plán Rozvoje Jaderné Energetiky v České Republice; Ministry of Industry and Trade: Prague, Czech Republic, 2015. Available online: https://www.mpo.cz/assets/dokumenty/54251/61936/640148/priloha001.pdf (accessed on 11 September 2024).
- Nuclear Power in Czech Republic. World Nuclear Association. Available online: https://world-nuclear.org/information-library/country-profiles/countries-a-f/czech-republic.aspx (accessed on 11 September 2024).
- Czarnecki, S. Elektrownia Jądrowa Dukovany: Panaceum na Przyszłe Problemy Energetyczne Republiki Czeskiej. Komentarze IEŚ. 372. 2021. Available online: https://ies.lublin.pl/komentarze/elektrownia-jadrowa-dukovany-panaceum-na-przyszle-problemy-energetyczne-republiki-czeskiej/ (accessed on 11 September 2024).
- Dębiec, K. The Czech Nuclear Showdown Enters the Final Straight. OSW Commentary. 2023. Available online: https://www.osw.waw.pl/sites/default/files/OSW%20Commentary%20500.pdf (accessed on 11 September 2024).
- Final Bids Submitted for New Dukovany NPP Units. Nuclear Engineering International. Available online: https://www.neimagazine.com/news/newsfinal-bids-submitted-for-new-dukovany-npp-units-11265668 (accessed on 11 September 2024).
- Czech SMR RoadMap Applicability and Contribution to Economy. Ministry of Industry and Trade of the Czech Republic. Available online: https://www.mpo.cz/assets/en/guidepost/for-the-media/press-releases/2023/11/Czech-SMR-Roadmap_EN.pdf (accessed on 11 September 2024).
- Osička, J.; Černoch, F.; Zapletalová, V.; Lehotský, L. Too good to be true: Sugarcoating nuclear energy in the Czech national energy strategy. Energy Res. Soc. Sci. 2021, 72, 101865. [Google Scholar] [CrossRef]
- Ferenc, J. Jadernou Energetiku v ČR Podporují 72 Procenta Obyvatel. Svět Hospodářství. 2022. Available online: https://svethospodarstvi.cz/ekonomika/jadernou-energetiku-v-cr-podporuji-72-procenta-obyvatel/ (accessed on 11 September 2024).
- National Energy Strategy 2030. Ministry of National Development: Budapest. Available online: https://2010-2014.kormany.hu/download/7/d7/70000/Hungarian%20Energy%20Strategy%202030.pdf (accessed on 11 September 2024).
- Antal, M. How the regime hampered a transition to renewable electricity in Hungary. Environ. Innov. Soc. Transit. 2019, 33, 162–182. [Google Scholar] [CrossRef]
- Aalto, P.; Nyyssönen, H.; Kojo, M.; Pal, P. Russian nuclear energy diplomacy in Finland and Hungary. Eurasian Geogr. Econ. 2017, 58, 4. [Google Scholar] [CrossRef]
- Judgment of the General Court in Case T-101/18. Austria v Commission. Court of Justice of the European Union. Available online: https://curia.europa.eu/jcms/upload/docs/application/pdf/2022-11/cp220192en.pdf (accessed on 11 September 2024).
- Rosatom. Newsletter. Available online: https://rosatomnewsletter.com/wp-content/uploads/2023/09/newsletter_09_269_eng_main.pdf (accessed on 11 September 2024).
- Jávor, B. Hungary’s Paks 2 Nuclear Plant Project: Russia’s Controversial Test Laboratory. Heinrich-Böll-Stiftung European Union. 2021. Available online: https://eu.boell.org/en/2021/04/26/hungarys-paks-2-nuclear-plant-project-russias-controversial-test-laboratory (accessed on 11 September 2024).
- Gál, Z. In Rosatom’s shadow. The uncertain role of nuclear in energy transition of Central and Eastern Europe. In EU Energy and Climate Policy after COVID-19 and the Invasion of Ukraine; Mišík, M., Figulová, A., Eds.; Routledge: London, UK, 2024; pp. 72–91. [Google Scholar]
- Mišík, M.; Jursová Prachárová, V. Coal Is a Priority for Energy Security, until It Is Not: Coal Phase-Out in the EU and Its Persistence in the Face of the Energy Crisis. Sustainability 2023, 15, 6879. [Google Scholar] [CrossRef]
- Mišík, M.; Oravcová, V. Policy persistence vis-à-vis a crisis: The curious case of Slovak energy policy after the Russian invasion of Ukraine. Energy Effic. 2024, 17, 33. [Google Scholar] [CrossRef]
- Mišík, M. The EU needs to improve its external energy security. Energy Policy 2022, 165, 112930. [Google Scholar] [CrossRef]
Poland | Slovakia | Czechia | Hungary | |
---|---|---|---|---|
Coal and other fossil | 71.8 | 9.7 | 44.1 | 8.7 |
Natural gas | 6.6 | 7.9 | 5.1 | 24.8 |
Nuclear | 0 | 59.7 | 36.6 | 44.3 |
Renewables | 21.1 | 21.9 | 13.7 | 20.9 |
Location | Type | Capacity (MW) | Construction Start |
---|---|---|---|
Lubiatowo-Kopalino | AP 1000 | 3 × 1250 | 2026 |
Pątnów | APR 1400 | 2 × 1400 | before 2030 |
Dąbrowa Górnicza | BWRX-300 | 4 × 300 | after 2030 |
Nowa Huta | BWRX-300 | 4 × 300 | after 2030 |
Ostrołęka | BWRX-300 | 4 × 300 | after 2030 |
Stawy Manowskie | BWRX-300 | 4 × 300 | after 2030 |
Tarnobrzeg | BWRX-300 | 4 × 300 | after 2030 |
Włocławek | BWRX-300 | 4 × 300 | after 2030 |
Reactor | Type | Capacity (MW) | Construction Start |
---|---|---|---|
Dukovany 5 and 6 | EPR 1200, AP 1000, APR 1400 | 2 × 1000–1400 | 2029 |
Temelin 3 and 4 | EPR 1200, AP 1000 or AP5 1400 | 2 × 1000–1400 | after 2030 |
Reactor | Type | Capacity (MW) | Construction Start |
---|---|---|---|
Paks 5 and 6 | AES-2006E: VVER-1200/V-527 | 2 × 1200 | 2025 |
Reactor | Type | Capacity (MW) | Construction Start |
---|---|---|---|
Mochovce 4 | VVER V-213 | 471 | 1987 |
Jaslovské Bohunice 5 | EPR 1200, APR 1400, AP 1000 | 1000–1200 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hebda, W.; Mišík, M. In Search of Energy Security: Nuclear Energy Development in the Visegrad Group Countries. Energies 2024, 17, 5390. https://doi.org/10.3390/en17215390
Hebda W, Mišík M. In Search of Energy Security: Nuclear Energy Development in the Visegrad Group Countries. Energies. 2024; 17(21):5390. https://doi.org/10.3390/en17215390
Chicago/Turabian StyleHebda, Wiktor, and Matúš Mišík. 2024. "In Search of Energy Security: Nuclear Energy Development in the Visegrad Group Countries" Energies 17, no. 21: 5390. https://doi.org/10.3390/en17215390
APA StyleHebda, W., & Mišík, M. (2024). In Search of Energy Security: Nuclear Energy Development in the Visegrad Group Countries. Energies, 17(21), 5390. https://doi.org/10.3390/en17215390