Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability
Abstract
:1. Introduction
- An analysis of the effects of different X/R ratios connected between the grid and/or to the inverters under unstable grid voltage and Volt-VAR control. The physical distances in a distribution system are observed by a range of X/R ratios between the grid and IBRs.
- An evaluation of 16 different operating configurations of the secondary voltage distribution system.
- An analysis of the impacts of the X/R ratio in terms of power reliability, grid fluctuations, and the ability of the inverters to perform frequency droop under unstable grid frequency conditions.
- An evaluation of different frequency droop settings, constant power factors, and the equivalent of physical distances in a distribution system between the grid and IBRs characterized by a range of X/R ratios.
- An observation of possible interactions between smart inverters under the same grid-supporting control mode but different dynamical settings.
2. Experimental Setup and Methods
2.1. P-HIL Testbed and Impedance Circuit Configurations
2.2. Data Acquisition and Stability Evaluation
2.3. Grid Voltage Variation and Inverter Volt-VAR Profiles
2.4. Grid Frequency Variation and Inverter Frequency Droop Profiles
3. Results and Discussion
3.1. Grid Voltage Instability Test
3.1.1. Impacts of High X/R Ratio
3.1.2. Impacts of Low X/R Ratio
3.1.3. Interactions Between Two Inverters
3.2. Grid Frequency Instability Test
3.2.1. Spikes in Reactive Power and Voltage Responses
3.2.2. Fluctuation in Active Power and Current Responses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seuss, J.; Reno, M.J.; Broderick, R.J.; Grijalva, S. Improving distribution network PV hosting capacity via smart inverter reactive power support. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Mohan, S.; Hasan, S.; Gebremariam, Y.; Varma, R.K. Increasing hosting capacity of pv solar systems using smart inverter volt-var control. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Analyzing the effect of X/R ratio on dynamic performance of microgrids. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Khan, A.; Hosseinzadehtaher, M.; Shadmand, M.B.; Bayhan, S.; Abu-Rub, H. On the stability of the power electronics-dominated grid: A new energy paradigm. IEEE Ind. Electron. Mag. 2020, 14, 65–78. [Google Scholar] [CrossRef]
- Sarkar, T.; Dan, A.K.; Ghosh, S.; Das Bhattacharya, K.; Saha, H. Interfacing solar PV power plant with rural distribution grid: Challenges and possible solutions. Int. J. Sustain. Energy 2018, 37, 999–1018. [Google Scholar] [CrossRef]
- de Aguiar, E.L.; Cardoso, R.; de Oliveira Stein, C.M.; da Costa, J.P.; Carati, E.G. Distributed renewable power sources in weak grids—Analysis and control. Renew. Energy-Util. Syst. Integr. 2016, 9, 199–225. [Google Scholar]
- Yu, L.; Sun, H.; Xu, S.; Zhao, B.; Zhang, J. A critical system strength evaluation of a power system with high penetration of renewable energy generations. CSEE J. Power Energy Syst. 2021, 8, 710–720. [Google Scholar]
- Grunau, S.; Fuchs, F.W. Effect of wind-energy power injection into weak grids. Proc. EWEA 2012, 1–7. [Google Scholar]
- Chawda, G.S.; Shaik, A.G. Power quality mitigation in weak AC grid with low X/R ratios using distribution static compensator controlled by LMF algorithm. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; IEEE: New York, NY, USA, 2020; pp. 44–47. [Google Scholar]
- Alizadeh, S.M.; Ozansoy, C.; Alpcan, T. The impact of X/R ratio on voltage stability in a distribution network penetrated by wind farms. In Proceedings of the 2016 Australasian universities power engineering conference (AUPEC), Brisbane, Australia, 25–28 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Khan, H.; Chacko, S.J.; Fernandes, B.G.; Kulkarni, A. Reliable and effective ride-through controller operation for smart PV systems connected to LV distribution grid under abnormal voltages. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2371–2384. [Google Scholar] [CrossRef]
- Yang, G.; Marra, F.; Juamperez, M.; Kjær, S.B.; Hashemi, S.; Φstergaard, J.; Ipsen, H.H.; Frederiksen, K.H. Voltage rise mitigation for solar PV integration at LV grids Studies from PVNET. dk. J. Mod. Power Syst. Clean Energy 2015, 3, 411–421. [Google Scholar] [CrossRef]
- Tremblay, O.; Fortin-Blanchette, H.; Gagnon, R.; Brissette, Y. Contribution to stability analysis of power hardware-in-the-loop simulators. IET Gener. Transm. Distrib. 2017, 11, 3073–3079. [Google Scholar] [CrossRef]
- Huerta, F.; Tello, R.L.; Prodanovic, M. Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines. IEEE Trans. Ind. Electron. 2016, 64, 1893–1904. [Google Scholar] [CrossRef]
- Muhammad, M.; Behrends, H.; Geißendörfer, S.; Maydell, K.v.; Agert, C. Power hardware-in-the-loop: Response of power components in real-time grid simulation environment. Energies 2021, 14, 593. [Google Scholar] [CrossRef]
- Resch, S.; Friedrich, J.; Wagner, T.; Mehlmann, G.; Luther, M. Stability analysis of power hardware-in-the-loop simulations for grid applications. Electronics 2021, 11, 7. [Google Scholar] [CrossRef]
- Kikusato, H.; Orihara, D.; Hashimoto, J.; Takamatsu, T.; Oozeki, T.; Matsuura, T.; Miyazaki, S.; Hamada, H.; Miyazaki, T. Performance evaluation of grid-following and grid-forming inverters on frequency stability in low-inertia power systems by power hardware-in-the-loop testing. Energy Rep. 2023, 9, 381–392. [Google Scholar] [CrossRef]
- Rimorov, D.; Tremblay, O.; Haché, J.F.; Morissette, V.; Desbiens, C.; Lacroix, J.; Martel, P.L. Power Hardware-in-the-Loop Testing of Residential PV Inverters in the Conditions of Weak Network. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Kaewnukultorn, T.; Sepúlveda-Mora, S.B.; Hegedus, S. Characterization of Voltage Stabilization Functions of Residential PV Inverters in a Power Hardware-in-the-Loop Environment. IEEE Access 2022, 10, 114802–114813. [Google Scholar] [CrossRef]
- Kaewnukultorn, T.; Sepúlveda-Mora, S.B.; Broadwater, R.; Zhu, D.; Tsoutsos, N.G.; Hegedus, S. Smart PV Inverter Cyberattack Detection using Hardware-in-the-Loop Test Facility. IEEE Access 2023, 11, 90766–90779. [Google Scholar] [CrossRef]
- Seneviratne, C.; Ozansoy, C. Frequency response due to a large generator loss with the increasing penetration of wind/PV generation–A literature review. Renew. Sustain. Energy Rev. 2016, 57, 659–668. [Google Scholar] [CrossRef]
- Makolo, P.; Zamora, R.; Lie, T.T. The role of inertia for grid flexibility under high penetration of variable renewables-A review of challenges and solutions. Renew. Sustain. Energy Rev. 2021, 147, 111223. [Google Scholar] [CrossRef]
- Yan, R.; Saha, T.K.; Modi, N.; Masood, N.A.; Mosadeghy, M. The combined effects of high penetration of wind and PV on power system frequency response. Appl. Energy 2015, 145, 320–330. [Google Scholar] [CrossRef]
- Tamimi, B.; Cañizares, C.; Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE Trans. Sustain. Energy 2013, 4, 680–688. [Google Scholar] [CrossRef]
- You, S.; Kou, G.; Liu, Y.; Zhang, X.; Cui, Y.; Till, M.J.; Yao, W.; Liu, Y. Impact of high PV penetration on the inter-area oscillations in the US eastern interconnection. IEEE Access 2017, 5, 4361–4369. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 2012, 28, 893–901. [Google Scholar] [CrossRef]
- Pilehvar, M.S.; Mirafzal, B. Frequency and voltage supports by battery-fed smart inverters in mixed-inertia microgrids. Electronics 2020, 9, 1755. [Google Scholar] [CrossRef]
- Pattabiraman, D.; Tan, J.; Gevorgian, V.; Hoke, A.; Antonio, C.; Arakawa, D. Impact of frequency-watt control on the dynamics of a high DER penetration power system. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Lee, H.J.; Yoon, K.H.; Shin, J.W.; Kim, J.C.; Cho, S.M. Optimal parameters of volt–var function in smart inverters for improving system performance. Energies 2020, 13, 2294. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.C.; Cho, S.M. Optimal volt–var curve setting of a smart inverter for improving its performance in a distribution system. IEEE Access 2020, 8, 157931–157945. [Google Scholar] [CrossRef]
- Mirafzal, B.; Adib, A. On grid-interactive smart inverters: Features and advancements. IEEE Access 2020, 8, 160526–160536. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, E.S.; Moon, S.I. Frequency and voltage control strategy of standalone microgrids with high penetration of intermittent renewable generation systems. IEEE Trans. Power Syst. 2015, 31, 718–728. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Bi, D.; Dai, Y.; Wen, Y. The application of microgrids based on droop control with coupling compensation and inertia. IEEE Trans. Sustain. Energy 2017, 9, 1157–1168. [Google Scholar] [CrossRef]
- Arani, M.F.M.; Mohamed, Y.A.R.I. Dynamic droop control for wind turbines participating in primary frequency regulation in microgrids. IEEE Trans. Smart Grid 2017, 9, 5742–5751. [Google Scholar] [CrossRef]
- von Jouanne, A.; Agamloh, E.; Yokochi, A. Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions. Energies 2023, 16, 916. [Google Scholar] [CrossRef]
- Tonkoski, R.; Lopes, L.A. Voltage regulation in radial distribution feeders with high penetration of photovoltaic. In Proceedings of the 2008 IEEE Energy 2030 Conference, Atlanta, Georgia, 17–18 November 2008; IEEE: New York, NY, USA, 2008; pp. 1–7. [Google Scholar]
- Martinenas, S.; Knezović, K.; Marinelli, M. Management of power quality issues in low voltage networks using electric vehicles: Experimental validation. IEEE Trans. Power Deliv. 2016, 32, 971–979. [Google Scholar] [CrossRef]
- Yokogawa Electric. Power Quality Analyzer, CW500. 2022. Available online: https://cdn.tmi.yokogawa.com/1/2619/files/BUCW500-01EN.pdf (accessed on 3 August 2024).
- Ma, J.; Wang, T.; Wang, Z.; Thorp, J.S. Adaptive damping control of inter-area oscillations based on federated Kalman filter using wide area signals. IEEE Trans. Power Syst. 2012, 28, 1627–1635. [Google Scholar] [CrossRef]
- Follum, J.; Tuffner, F. A multi-channel method for detecting periodic forced oscillations in power systems. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Nise, N.S. Control Systems Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Shinners, S.M. Modern Control System Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003); IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- Rylander, M.; Reno, M.J.; Quiroz, J.E.; Ding, F.; Li, H.; Broderick, R.J.; Mather, B.; Smith, J. Methods to determine recommended feeder-wide advanced inverter settings for improving distribution system performance. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; IEEE: New York, NY, USA, 2016; pp. 1393–1398. [Google Scholar]
- Zandt, D.V. Mitigation methods to increase feeder hosting capacity 3002013382. EPRI Rep. 2018.
- Nelson, A.; Martin, G.; Hurtt, J. Experimental evaluation of grid support enabled PV inverter response to abnormal grid conditions. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; IEEE: New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- NREL. Impact of IEEE 1547 Standard on Smart Inverters and the Applications in Power Systems. 2020. Available online: https://www.nrel.gov/grid/ieee-standard-1547/assets/pdfs/smart-inverters-applications-in-power-systems.pdf (accessed on 3 August 2024).
- Government of Massachusetts, Default IEEE 1547-2018 Setting Requirements. 2022. Available online: https://www.mass.gov/doc/tsrg-inverter-source-requirements-document/download (accessed on 15 January 2024).
- Hoke, A.; Nelson, A.; Miller, B.; Chakraborty, S.; Bell, F.; McCarty, M. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016. [Google Scholar]
- IEEE Std 1547.1-2005; IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems. IEEE: New York, NY, USA, 2007.
- IEEE Std 1547.1-2020; IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems. IEEE: New York, NY, USA, 2023.
- Chakraborty, S.; Hoke, A.; Lundstrom, B. Evaluation of multiple inverter volt-VAR control interactions with realistic grid impedances. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Soonee, S.; Agrawal, V.; Jain, S. Reactive power and system frequency relationship: A case study. In Proceedings of the 7th International R&D Conference, Bhubaneswar, India, 4–6 February 2009; pp. 1–5. [Google Scholar]
- Chen, X.; Li, Y. An islanding detection algorithm for inverter-based distributed generation based on reactive power control. IEEE Trans. Power Electron. 2013, 29, 4672–4683. [Google Scholar] [CrossRef]
- Mishra, P.P.; Bhende, C.N. Islanding detection scheme for distributed generation systems using modified reactive power control strategy. IET Gener. Transm. Distrib. 2019, 13, 814–820. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, M.; Ke, G.; Zhou, L.; Xie, B. Stability problems of PV inverter in weak grid: A review. IET Power Electron. 2020, 13, 2165–2174. [Google Scholar] [CrossRef]
- Kumar, D.S.; Maharjan, S.; Srinivasan, D. Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems. Sol. Energy 2022, 234, 377–386. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Chen, B.; Ding, S.; Xiao, W. A cost-effective power ramp rate control strategy based on flexible power point tracking for photovoltaic system. Sol. Energy 2020, 208, 1058–1067. [Google Scholar] [CrossRef]
X/R Ratio | At Inverter-A | At Grid | ||||
---|---|---|---|---|---|---|
R (Ω) | L (mH) | |Z| (Ω) | R (Ω) | L (mH) | |Z| (Ω) | |
0 | 0.5 | None | 0.5 | 0.5 | None | 0.5 |
0.5 | 0.5 | 0.25 | 0.509 | 0.5 | 0.66 | 0.559 |
3.5 | 0.15 | 1.33 | 0.523 | 0.067 | 0.66 | 0.258 |
∞ | None | 1 | 0.377 | None | 0.66 | 0.249 |
Section | Voltage Profile | Fixed Parameter | Varied Parameter |
---|---|---|---|
Section 3.1.1 | Figure 4 | Volt-VAR setpoints Grid X/R = 3.5 PA = 600 WDC PB = 1200 WDC | Inverter-A X/R |
Section 3.1.2 | Figure 3 | Volt-VAR setpoints PA = 600 WDC PB = 1200 WDC | Grid X/R Inverter-A X/R |
Section 3.1.3 | Figure 3 | Volt-VAR setpoints Grid X/R = 0.5 Inverter-A X/R = 3.5 | Test 1: PA = 600 WDC, PB = 1200 WDC Test 2: PA = 1200 WDC, PB = 600 WDC |
X/R | Location | Voltage | Real/Reactive Power |
---|---|---|---|
High | Inverter | Better voltage control | No significant fluctuation |
High | Grid | Smaller voltage drop | Very low power fluctuation |
Low | Inverter | Larger voltage drop | No significant fluctuation |
Low | Grid | Larger voltage drop | Large real power fluctuation and random reactive power spikes |
X/R at Inverter-A | Volt-VAR on Inverter-A | (I) | (II) |
---|---|---|---|
None | IEEE 1547 | 0.167 | 1 |
0.5 | IEEE 1547 | 0.293 | 0.735 |
3.5 | IEEE 1547 | 0.487 | 0.547 |
None | Aggressive | 0.273 | 0.883 |
0.5 | Aggressive | 0.465 | 0.599 |
3.5 | Aggressive | 1 (Best) | 0.149 (Best) |
Grid X/R | Inverter-A X/R | (P) | (Q) |
---|---|---|---|
0.5 | None | 0.887 | 0.742 |
0.5 | 3.5 | 1 | 1 |
3.5 | 3.5 | 0.088 (Best) | 0.043 (Best) |
Grid Parameter | Inverter-A (W) | Inverter-B (W) | |
---|---|---|---|
Voltage | 1200 | 600 | 0.014 |
Voltage | 600 | 1200 | 0.016 |
Real power | 1200 | 600 | 67.8 |
Real power | 600 | 1200 | 4140 |
Reactive power | 1200 | 600 | 54.6 |
Reactive power | 600 | 1200 | 494 |
Dominating Inverter | Inverter X/R | Volt-VAR Control | |
---|---|---|---|
Inverter-B (Figure 15a) | Inverter-A = 3.5 | Inverter-A aggressive Inverter-B IEEE 1547 | 1 |
Inverter-B (Figure 15b) | Inverter-B = 3.5 | Inverter-A IEEE 1547 Inverter-B aggressive | 0.884 |
Inverter-A (Figure 15c) | Inverter-B = 3.5 | Inverter-A IEEE 1547 Inverter-B aggressive | 0.307 |
Inverter-A (Figure 15d) | Inverter-A = 3.5 | Inverter-A IEEE 1547 Inverter-B aggressive | 0.031 |
Inverter-A (Figure 15e) | Inverter-A = 3.5 | Inverter-A aggressive Inverter-B IEEE 1547 | 0.017 |
Dominating Inverter | Inverter X/R | Grid X/R | Responses | ||
---|---|---|---|---|---|
Average Settling Time (sec) | Settling Time for Subsequent Dip at t = 60 s (sec) | Maximum Q Spike Amplitude at t = 180 s Second (VAR) | |||
Inverter-B | Low | Low | 5.8 | No subsequent dip | 260 |
Low | High | 6.0 | 269 | ||
High | Low | 5.9 | 280 | ||
High | High | 5.6 | 274 | ||
Inverter-A | Low | Low | 6.5 (Longest) | 11 (Longest) | 801 (Highest) |
Low | High | 5.6 | 5 | 795 | |
High | Low | 6.4 | 9 | 739 | |
High | High | 6.0 | 7 | 756 |
Dominating Inverter | Inverter X/R | Grid X/R | Normalized | |
---|---|---|---|---|
P | I | |||
Inverter-B | High | High | 0.005 | 0.004 |
Inverter-B | Low | High | 0.002 | 0.001 |
Inverter-A | Low | High | 0.009 | 0.054 |
Inverter-B | High | Low | 1.000 | 1.000 |
Inverter-B | Low | Low | 0.771 | 0.793 |
Inverter-A | Low | Low | 0.143 | 0.335 |
Response Type | Impacted Parameter | Level of Impact | |||
---|---|---|---|---|---|
Power Domination | Inverter X/R | Grid X/R | PF | ||
Spike | Reactive power Voltage | High | High | Low | Low |
Fluctuation | Active power Current | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewnukultorn, T.; Hegedus, S. Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability. Energies 2024, 17, 5503. https://doi.org/10.3390/en17215503
Kaewnukultorn T, Hegedus S. Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability. Energies. 2024; 17(21):5503. https://doi.org/10.3390/en17215503
Chicago/Turabian StyleKaewnukultorn, Thunchanok, and Steven Hegedus. 2024. "Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability" Energies 17, no. 21: 5503. https://doi.org/10.3390/en17215503
APA StyleKaewnukultorn, T., & Hegedus, S. (2024). Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability. Energies, 17(21), 5503. https://doi.org/10.3390/en17215503