Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review
Abstract
:1. Introduction
1.1. Implementation of Renewables Energies in South America Towards a Low-Carbon Sustainable Energy Matrix
1.2. Scope of the Article
- RQ1: What are the main clusters of solar energy concepts applied to implement this infrastructure in South America and how do they evolve?
- RQ2: What is the solar energy installed capacity (MW), solar average theoretical potential considering global horizontal irradiance (GHI) (kWh/m2), and solar average practical potential (kWh/kW) in each country of South America?
- RQ3: What is the annual energy production (GWh) from solar energy infrastructures and what is the related reduction rate of greenhouse gases (GHGs) in each country of South America?
- RQ4: Which South American countries have more advances in solar energy considering the quantity of solar energy infrastructures under operation?
- RQ5: What are the main policies related to climate change mitigation considering the implementation of solar energy in South America?
- RQ6: What are the main cutting-edge technologies linked with solar energy infrastructures in South America?
- RQ7: What are the main challenges facing the implementation of solar energy in South America?
- RQ8: What are the main types of energy storage systems used in solar energy production in South America?
2. Methodology Applied
2.1. Resources
2.1.1. Publications from Scopus
2.1.2. Use of Software
2.2. Method Applied
2.2.1. Bibliometric Analysis and Systematic Content Review
2.2.2. Analysis of Publications Selected
3. Results and Findings
3.1. Analysis of Publication Screening
3.2. Results and Findings Using Bibliometric Analysis
3.2.1. Articles Published per Year
3.2.2. Production of Selected Articles from Different Countries
3.2.3. Production of Citations of Selected Articles from Different Nations
3.2.4. Document Classification Considering 91 Publications Selected
3.2.5. Findings Considering Keyword Co-Occurrence Study
3.3. Systematic Content Review Findings
3.3.1. Content Analysis
3.3.2. Comparative Analysis of the Publications Selected
- Regarding the aspects in column (i), there is a relatively even distribution between the different policies implemented in South America to promote the development of solar energy, with all options achieving a repetition percentage of around 20%.
- When studying the aspects in column (ii), there is a percentage of around 35% where the scientific literature does not specify what type of cutting-edge technologies are being implemented in South America for the development of solar energy.
- Regarding the aspects in column (iii), more than 55% of the scientific literature considers political/economic issues and the intermittency of energy production as challenges for the implementation of solar energy in South America. In this sense, this means that the community demands a solar energy production/transmission/distribution system that is accessible to all citizens in an equitable, fair, and efficient manner.
- When analyzing the aspects in column (iv), nearly 23% of the publications analyzed in this research do not specify any type of technology for storing energy from solar sources; however, the most popular technologies used to date in South America are lithium batteries and lead-acid batteries.
- In the scientific literature reviewed exists a gap considering the implementation of Industry 4.0 technologies in the solar energy industry in South America, such as (i) sensors, (ii) IoT, (iii) cloud computing, (iv) data analytics, (v) artificial intelligence, and (vi) digital twins, among others.
- Also, in the scientific literature reviewed exists a gap considering the application of circular economy principles linked with solar energy facilities in South America, such as the recycling and reuse of solar PV panels.
- The analysis of the cost (CAPEX and OPEX) reveals that the information documented in the scientific literature does not specify the costs of wind energy infrastructure.
4. Discussion
4.1. Advances and Progress
4.1.1. Advances in Solar Energy Insertion of the Countries in South America
4.1.2. The Largest Solar PV Farms Under Operation in South America
- (i)
- Janaúba Solar Complex, Minas Gerais Region, Brazil
- (ii)
- São Gonçalo PV Park, Piauí Region, Brazil
- (iii)
- Futura 1 Solar Complex, Bahia Region, Brazil
4.2. New Trends Under Development in the Region
4.2.1. Implementation of the Hybridization of Solar PV Facilities with Onshore Wind Farm Infrastructures
- (i)
- Neoenergia Hybrid Renewable Energy Complex—Luzia and Chafariz, Paraíba Region, Brazil
- (ii)
- Azabache Hybrid Renewable Energy Complex—Azabache and Valle de Los Vientos, Antofagasta Region, Chile
- (iii)
- Las Salinas Hybrid Renewable Energy Complex—Las Salinas and Sierra Gorda, Antofagasta Region, Chile
4.2.2. Use of the Battery Energy Storage Systems (BESSs) in Solar PV Farm Facilities
- (i)
- BESS Coya Facility—Solar PV Farm and BESS Facility, Maria Elena, Antofagasta Region, Chile
4.2.3. Implementation of Concentrated Solar Power (CSP) Facilities in the Region: A Pending Issue
- (i)
- Cerro Dominador Hybrid Renewable Energy Facility—Concentrated Solar Power (CSP) and Solar PV Farm, Antofagasta Region, Chile
4.3. The Road to a Sustainable Paradigm with Disruptive Innovations
4.3.1. Prospective Utility-Scale Solar PV Farm Capacities in South America
4.3.2. Emerging Sustainable Initiatives Considering Floating Solar PV Facilities
4.3.3. Application of Artificial Intelligence, Remote Sensing, and Robotics in the Solar Energy Facilities Located in the South American Region
- How can the operation be optimized considering the different operating modes based on parameters and the analysis of real-time information?
- How can weather and energy sale conditions be integrated with the best scenarios and strategies according to the reality of the plant’s layout and operation at any given time?
- How can the plant’s 24/48 h load plans be made more efficient based on the analysis of real data from the facility?
- How can different variables and operating modes be integrated into a digital twin to simulate different operating scenarios?
- How can better forecasts and maintenance needs be obtained for systems, equipment, or parts of the facility based on information and analysis of parameters measured in real time and historical data?
4.4. Gaps and Limitations of This Review
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SDGs | Sustainable Development Goals |
UN | United Nations |
BAT | best available technology |
PV | photovoltaic |
CSP | concentrated solar power |
GHGs | greenhouse gases |
CO2eq | carbon dioxide equivalent |
NDCs | Nationally Determined Contributions |
IRENA | International Renewable Energy Agency |
ESMAP | Energy Sector Management Assistance Program |
NGOs | Non-Government Organizations |
DHI | diffuse horizontal irradiance |
DNI | direct normal irradiance |
GHI | global horizontal irradiance |
PF | plant factor |
BESS | battery energy storage system |
R&D | research and development |
AI | artificial intelligence |
ML | machine learning |
IoT | Internet of Things |
CC | cloud computing |
5G | first-generation cellular technology—mobile network that provides more connectivity and faster connection speeds |
UAVs | unmanned aerial vehicles |
LiDAR | Light Detection and Ranging |
EIA | Environmental Impact Assessment |
DEM | data extraction from metadata |
DEC | data extraction from content |
ECs | exclusion criteria |
CAPEX | capital costs |
OPEX | operational costs |
EPC | Engineering, Procurement, and Construction |
RER | renewable energy resource |
ENSO | El Niño–Southern Oscillation |
LCOE | Levelized Cost of Electricity |
MW | megawatts |
GW | gigawatts |
MWh | megawatts-hour |
GWh | gigawatts-hour |
TWh | terawatts-hour |
kWh/m2 | kilowatt-hour per square meter |
kWh/kW | kilowatt-hour per kilowatt |
Mt | millions of tons |
Ha | hectare |
h | Hours |
masl | meters above sea level |
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Review: Renewable Energy in an Increasingly Uncertain Future. Appl. Sci. 2023, 13, 388. [Google Scholar] [CrossRef]
- Hou, H.; Lu, W.; Liu, B.; Hassanein, Z.; Mahmood, H.; Khalid, S. Exploring the Role of Fossil Fuels and Renewable Energy in Determining Environmental Sustainability: Evidence from OECD Countries. Sustainability 2023, 15, 2048. [Google Scholar] [CrossRef]
- Bhatt, U.S.; Carreras, B.A.; Barredo, J.M.R.; Newman, D.E.; Collet, P.; Gomila, D. The Potential Impact of Climate Change on the Efficiency and Reliability of Solar, Hydro, and Wind Energy Sources. Land 2022, 11, 1275. [Google Scholar] [CrossRef]
- Solé, J. Climate and Energy Crises from the Perspective of the Intergovernmental Panel on Climate Change: Trade-Offs between Systemic Transition and Societal Collapse? Sustainability 2023, 15, 2231. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Energy efficiency or conservation for mitigating climate change? Energies 2019, 12, 3543. [Google Scholar] [CrossRef]
- Seminario-Córdova, R.; Rojas-Ortega, R. Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years. Sustainability 2023, 15, 10499. [Google Scholar] [CrossRef]
- Moreno, J.; Medina, J.P.; Palma-Behnke, R. Latin America’s Renewable Energy Impact: Climate Change and Global Economic Consequences. Energies 2024, 17, 179. [Google Scholar] [CrossRef]
- Seminario-Córdova, R. Latin America towards Sustainability through Renewable Energies: A Systematic Review. Energies 2023, 16, 7422. [Google Scholar] [CrossRef]
- Peyerl, D.; Barbosa, M.O.; Ciotta, M.; Pelissari, M.R.; Moretto, E.M. Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector. Energies 2022, 15, 4293. [Google Scholar] [CrossRef]
- Oliveira, J.C.; Nogueira, M.C.; Madaleno, M. Do the Reduction of Traditional Energy Consumption and the Acceleration of the Energy Transition Bring Economic Benefits to South America? Energies 2023, 16, 7121. [Google Scholar] [CrossRef]
- Chabla-Auqui, L.; Ochoa-Correa, D.; Villa-Ávila, E.; Astudillo-Salinas, P. Distributed Generation Applied to Residential Self-Supply in South America in the Decade 2013–2023: A Literature Review. Energies 2023, 16, 6207. [Google Scholar] [CrossRef]
- International Energy Agency. Latin America Energy Outlook; International Energy Agency: Paris, France, 2023; Available online: https://www.iea.org/reports/latin-america-energy-outlook-2023 (accessed on 6 September 2024).
- Global Energy Monitor. A Race to the Top: Latin America 2023; Global Energy Monitor: San Francisco, CA, USA, 2023. [Google Scholar]
- Cacciuttolo, C.; Navarrete, M.; Atencio, E. Renewable Wind Energy Implementation in South America: A Comprehensive Review and Sustainable Prospects. Sustainability 2024, 16, 6082. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2023; International Energy Agency: Paris, France, 2023; Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 6 September 2024).
- Borowski, P.F. Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022. Energies 2022, 15, 9289. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Climate change mitigation potential of wind energy. Climate 2021, 9, 136. [Google Scholar] [CrossRef]
- Pedruzzi, R.; Silva, A.R.; dos Santos, T.S.; Araujo, A.C.; Weyll, A.L.C.; Kitagawa, Y.K.L.; Ramos, D.N.d.S.; de Souza, F.M.; Narciso, M.V.A.; Araujo, M.L.S.; et al. Review of mapping analysis and complementarity between solar and wind energy sources. Energy 2023, 283, 129045. [Google Scholar] [CrossRef]
- Miyake, S.; Teske, S.; Rispler, J.; Feenstra, M. Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20). Renew. Sustain. Energy Rev. 2024, 202, 114622. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Cano, D.; Guardia, X.; Villicaña, E. Renewable Energy from Wind Farm Power Plants in Peru: Recent Advances, Challenges, and Future Perspectives. Sustainability 2024, 16, 1589. [Google Scholar] [CrossRef]
- Li, P.; Lian, J.; Ma, C.; Zhang, J. Complementarity and development potential assessment of offshore wind and solar resources in China seas. Energy Convers. Manag. 2023, 296, 117705. [Google Scholar] [CrossRef]
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2019. [Google Scholar]
- Arredondo, J.; Ramos, M. Auctions in Renewable Energy and the Grid Parity Using Solar Photovoltaic Technology in Peru. J. Phys. Conf. Ser. 2021, 1841, 7. [Google Scholar] [CrossRef]
- Ray, M.; Chakraborty, B. Impact of demand response on escalating energy access with affordable solar photovoltaic generation in the Global South. Renew. Sustain. Energy Rev. 2021, 143, 110884. [Google Scholar] [CrossRef]
- Verástegui, F.; Villalobos, C.; Lobos, N.; Lorca Negrete, M.; Olivares, D. An optimization-based analysis of decarbonization pathways and flexibility requirements in the Chilean electric power system. In Proceedings of the ISES Solar World Congress and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, International Solar Energy Society, Santiago, Chile, 4–7 November 2019; pp. 1624–1635. [Google Scholar]
- Ukoba, K.; Yoro, K.O.; Eterigho-Ikelegbe, O.; Ibegbulam, C.; Jen, T.C. Adaptation of solar energy in the Global South: Prospects, challenges and opportunities. Heliyon 2024, 10, e28009. [Google Scholar] [CrossRef] [PubMed]
- Asencios, Y. The Importance of Hydrogen for Brazil: A source of clean energy and a path to the production of nitrogen fertilizers. SciELO Prepr. 2022.
- Kamal Chowdhury, A.F.M.; Wessel, J.; Wild, T.; Lamontagne, J.; Kanyako, F. Exploring sustainable electricity system development pathways in South America’s MERCOSUR sub-region. Energy Strategy Rev. 2023, 49, 101150 . [Google Scholar] [CrossRef]
- Nahui, J.; Aguinaga, A.; Dávila, F.; Méndez, O. Incidence of load profiles in the Levelized Cost of Electricity for a solar-PV generation system located in Lambayeque-Perú. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, Virtual, 9–10 December 2021. [Google Scholar]
- Murray, C.; Platzer, W.; Petersen, J. Potential for solar thermal energy in the heap bioleaching of chalcopyrite in Chilean copper mining. Miner. Eng. 2017, 100, 75–82. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Cárdenas, L.; Icaza, D.; Cárdenas, M.; Mejía, F.; Icaza, F.; Flores, M. System of generation of energy based on solar energy for the rural political movements centers. In Proceedings of the 8th International Conference on Renewable Energy Research and Applications, ICRERA 2019, Brasov, Romania, 3–6 November 2019; pp. 100–106. [Google Scholar]
- Pourasl, H.H.; Barenji, R.V.; Khojastehnezhad, V.M. Solar energy status in the world: A comprehensive review. Energy Rep. 2023, 10, 3474–3493. [Google Scholar] [CrossRef]
- Mahn, D.; Best, R.; Wang, C.; Abiona, O. What drives solar energy adoption in developing countries? Evidence from household surveys across countries. Energy Econ. 2024, 138, 107815. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0140988324005231 (accessed on 12 October 2023). [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Kirby, A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications 2023, 11, 10. [Google Scholar] [CrossRef]
- Boaye Belle, A.; Zhao, Y. Evidence-Based Software Engineering: A Checklist-Based Approach to Assess the Abstracts of Reviews Self-Identifying as Systematic Reviews. Appl. Sci. 2022, 12, 9017. [Google Scholar] [CrossRef]
- Jia, C.; Mustafa, H. A Bibliometric Analysis and Review of Nudge Research Using VOSviewer. Behav. Sci. 2023, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Galván, A.; Haas, J.; Moreno-Leiva, S.; Osorio-Aravena, J.C.; Nowak, W.; Palma-Benke, R.; Breyer, C. Exporting sunshine: Planning South America’s electricity transition with green hydrogen. Appl. Energy 2022, 325, 119569. [Google Scholar] [CrossRef]
- Dei, T.; Hirata, K.; Ushiyama, I. Wind, photovoltaic and mini-hydro hybrid generation in Bolivia: A case study at a mountainous village. Wind. Eng. 2005, 29, 271–286. [Google Scholar] [CrossRef]
- Buch, L.F.; Filho, W.L. An assessment of the potential and barriers for the diffusion of renewable energy technologies in Bolivia. Int. J. Energy Technol. Policy 2012, 8, 109–127. [Google Scholar] [CrossRef]
- Silva, D.D.; Cardoso, E.M.; Basquerotto, C.; Pereira, J.A.; Turra, A.E.; Feldhaus, J. Outlook on the Brazilian scenario of floating photovoltaic solar energy. Energy Rep. 2023, 10, 4429–4435. [Google Scholar] [CrossRef]
- De Sousa, N.M.; Oliveira, C.B.; Cunha, D. Photovoltaic electronic waste in Brazil: Circular economy challenges, potential and obstacles. Soc. Sci. Humanit. Open 2023, 7, 100456. [Google Scholar] [CrossRef]
- David, T.M.; de Souza, T.M.; Rizol, P.M.S.R. Photovoltaic systems: A review with analysis of the energy transition in Brazilian culture, 2018–2023. Energy Inform. 2024, 7, 14. [Google Scholar] [CrossRef]
- Matos, D.; Lassio, J.G.; Castelo Branco, D.; Pereira Júnior, A.O. Perspectives for Expansion of Concentrating Solar Power (CSP) Generation Technologies in Brazil. Energies 2022, 15, 9286. [Google Scholar] [CrossRef]
- Barbosa de Melo, K.; Kitayama da Silva, M.; Lucas de Souza Silva, J.; Costa, T.S.; Villalva, M.G. Study of energy improvement with the insertion of bifacial modules and solar trackers in photovoltaic installations in Brazil. Renew. Energy Focus 2022, 41, 179–187. [Google Scholar] [CrossRef]
- Carpio, L.G.T. Efficient spatial allocation of solar photovoltaic electric energy generation in different regions of Brazil: A portfolio approach. Energy Sources Part B Econ. Plan. Policy 2021, 16, 542–557. [Google Scholar] [CrossRef]
- Nadaleti, W.C.; de Souza, E.G.; de Souza, S.N.M. The potential of hydrogen production from high and low-temperature electrolysis methods using solar and nuclear energy sources: The transition to a hydrogen economy in Brazil. Int. J. Hydrog. Energy 2022, 47, 34727–34738. [Google Scholar] [CrossRef]
- de Souza, T.L.S.; Lima, R.L.F.A.; de Lima, C., Jr. Dirt on photovoltaic modules and efficient energy generation in the Brazilian semiarid. Rev. Bras. Eng. Agric. E Ambient. 2022, 26, 321–326. [Google Scholar] [CrossRef]
- de Sousa Torres, G.; de Oliveira, T.A.P.; de Leles Ferreira Filho, A.; Melo, F.C.; Domingues, E.G. Techno-economic assessment of concentrated solar and photovoltaic power plants in Brazil. Renew. Energy Power Qual. J. 2021, 19, 583–588. [Google Scholar] [CrossRef]
- Martelli, V.; Chimenti, P.; Nogueira, R. Future scenarios for the Brazilian electricity sector: PV as a new driving force? Futures 2020, 120, 102555. [Google Scholar] [CrossRef]
- Viviescas, C.; Lima, L.; Diuana, F.A.; Vasquez, E.; Ludovique, C.; Silva, G.N.; Huback, V.; Magalar, L.; Szklo, A.; Lucena, A.F.; et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew. Sustain. Energy Rev. 2019, 113, 109232. [Google Scholar] [CrossRef]
- Sulaeman, S.; Brown, E.; Quispe-Abad, R.; Müller, N. Floating PV system as an alternative pathway to the amazon dam underproduction. Renew. Sustain. Energy Rev. 2021, 135, 110082. [Google Scholar] [CrossRef]
- da Rocha Santos, F.; D’Angela Mariano, J.; Sestrem Junior, J.A.; Junior, J.U. Analysis of solar photovoltaic energy potential in Brazilian hydroelectric reservoirs through floating panels. Braz. Arch. Biol. Technol. 2019, 62, e19190012. [Google Scholar]
- Vilaça Gomes, P.; Knak Neto, N.; Carvalho, L.; Sumaili, J.; Saraiva, J.T.; Dias, B.H.; Miranda, V.; Souza, S.M. Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues. Energy Policy 2018, 115, 199–206. [Google Scholar] [CrossRef]
- Urbanetz, I.V.; de Moura Netto, A.; Scolari, B.; Leite, V.; Urbanetz, J. Current panorama and 2025 scenario of photovoltaic solar energy in Brazil. Braz. Arch. Biol. Technol. 2019, 62, e19190011. [Google Scholar] [CrossRef]
- Soria, R.; Lucena, A.F.P.; Tomaschek, J.; Fichter, T.; Haasz, T.; Szklo, A.; Schaeffer, R.; Rochedo, P.; Fahl, U.; Kern, J. Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach. Energy 2016, 116, 265–280. [Google Scholar] [CrossRef]
- Fichter, T.; Soria, R.; Szklo, A.; Schaeffer, R.; Lucena, A.F.P. Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model. Energy 2017, 121, 695–715. [Google Scholar] [CrossRef]
- Ferreira, A.; Kunh, S.S.; Fagnani, K.C.; De Souza, T.A.; Tonezer, C.; Dos Santos, G.R.; Coimbra-Araújo, C.H. Economic overview of the use and production of photovoltaic solar energy in brazil. Renew. Sustain. Energy Rev. 2018, 81, 181–191. [Google Scholar] [CrossRef]
- Malagueta, D.; Szklo, A.; Soria, R.; Dutra, R.; Schaeffer, R.; Moreira Cesar Borba, B.S. Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system. Renew. Energy 2014, 68, 223–235. [Google Scholar] [CrossRef]
- Nogueira, C.E.C.; Vidotto, M.L.; Niedzialkoski, R.K.; De Souza, S.N.M.; Chaves, L.I.; Edwiges, T.; dos Santos, D.B.; Werncke, I. Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil. Renew. Sustain. Energy Rev. 2014, 29, 151–157. [Google Scholar] [CrossRef]
- de Martino Jannuzzi, G.; de Melo, C.A. Grid-connected photovoltaic in Brazil: Policies and potential impacts for 2030. Energy Sustain. Dev. 2013, 17, 40–46. [Google Scholar] [CrossRef]
- Viana, T.S.; Rüther, R.; Martins, F.R.; Pereira, E.B. Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation. Sol. Energy 2011, 85, 486–495. [Google Scholar] [CrossRef]
- do Sacramento, E.M.; Sales, A.D.; de Lima, L.C.; Veziroglu, T.N. A solar-wind hydrogen energy system for the Ceará state-Brazil. Int. J. Hydrog. Energy 2008, 33, 5304–5311. [Google Scholar] [CrossRef]
- Martins, F.R.; Pereira, E.B.; Silva, S.A.B.; Abreu, S.L.; Colle, S. Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy 2008, 36, 2853–2864. [Google Scholar] [CrossRef]
- Martins, F.R.; Rüther, R.; Pereira, E.B.; Abreu, S.L. Solar energy scenarios in Brazil. Part two: Photovoltaics applications. Energy Policy 2008, 36, 2865–2877. [Google Scholar] [CrossRef]
- Neelkanth Dhere, B.G. THE DEVELOPMENT OF SOLAR PHOTOVOLTAIC ENERGY IN BRAZIL. Sol. Cells 1989, 26, 13–23. [Google Scholar] [CrossRef]
- Da Silva, E.P.; Marin Neto, A.J.; Ferreira, P.F.P.; Camargo, J.C.; Apolinário, F.R.; Pinto, C.S. Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil. Sol. Energy 2005, 78, 670–677. [Google Scholar] [CrossRef]
- Quiñones, G.; Felbol, C.; Valenzuela, C.; Cardemil, J.M.; Escobar, R.A. Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry. Sol. Energy 2020, 197, 292–310. [Google Scholar] [CrossRef]
- Maximov, S.A.; Mehmood, S.; Friedrich, D. Multi-objective optimisation of a solar district heating network with seasonal storage for conditions in cities of southern Chile. Sustain. Cities Soc. 2021, 73, 103087. [Google Scholar] [CrossRef]
- Viole, I.; Valenzuela-Venegas, G.; Zeyringer, M.; Sartori, S. A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen. Energy 2023, 282, 128570. [Google Scholar] [CrossRef]
- Vargas Gil, G.M.; Bittencourt Aguiar Cunha, R.; Giuseppe Di Santo, S.; Machado Monaro, R.; Fragoso Costa, F.; Sguarezi Filho, A.J. Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems. Renew. Energy 2020, 162, 1307–1320. [Google Scholar] [CrossRef]
- León, M.; Silva, J.; Ortíz-Soto, R.; Carrasco, S. A Techno-Economic Study for Off-Grid Green Hydrogen Production Plants: The Case of Chile. Energies 2023, 16, 5327. [Google Scholar] [CrossRef]
- Cornejo-Ponce, L.; Vilca-Salinas, P.; Arenas-Herrera, M.J.; Moraga-Contreras, C.; Tapia-Caroca, H.; Kukulis-Martínez, S. Small-Scale Solar-Powered Desalination Plants: A Sustainable Alternative Water-Energy Nexus to Obtain Water for Chile’s Coastal Areas. Energies 2022, 15, 9245. [Google Scholar] [CrossRef]
- Behar, O.; Peña, R.; Kouro, S.; Kracht, W.; Fuentealba, E.; Moran, L.; Sbarbaro, D. The use of solar energy in the copper mining processes: A comprehensive review. Clean. Eng. Technol. 2021, 4, 100259. [Google Scholar] [CrossRef]
- Haas, J.; Khalighi, J.; de la Fuente, A.; Gerbersdorf, S.U.; Nowak, W.; Chen, P.J. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Convers. Manag. 2020, 206, 112414. [Google Scholar] [CrossRef]
- Bayo-Besteiro, S.; de la Torre, L.; Costoya, X.; Gómez-Gesteira, M.; Pérez-Alarcón, A.; deCastro, M.; Añel, J. Photovoltaic power resource at the Atacama Desert under climate change. Renew. Energy 2023, 216, 118999. [Google Scholar] [CrossRef]
- Hernández, C.; Barraza, R.; Saez, A.; Ibarra, M.; Estay, D. Potential map for the installation of concentrated solar power towers in Chile. Energies 2020, 13, 2131. [Google Scholar] [CrossRef]
- Cardemil, J.M.; Cortés, F.; Díaz, A.; Escobar, R. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile. Energy Convers. Manag. 2016, 123, 348–361. [Google Scholar] [CrossRef]
- Suuronen, A.; Lensu, A.; Kuitunen, M.; Andrade-Alvear, R.; Celis, N.G.; Miranda, M.; Perez, M.; Kukkonen, J.V.K. Optimization of photovoltaic solar power plant locations in northern Chile. Environ. Earth Sci. 2017, 76, 824. [Google Scholar] [CrossRef]
- Starke, A.R.; Cardemil, J.M.; Escobar, R.A.; Colle, S. Assessing the performance of hybrid CSP + PV plants in northern Chile. Sol. Energy 2016, 138, 88–97. [Google Scholar] [CrossRef]
- Mena, R.; Escobar, R.; Lorca Negrete-Pincetic, M.; Olivares, D. The impact of concentrated solar power in electric power systems: A Chilean case study. Appl. Energy 2019, 235, 258–283. [Google Scholar] [CrossRef]
- Grágeda, M.; Escudero, M.; Alavia, W.; Ushak, S.; Fthenakis, V. Review and multi-criteria assessment of solar energy projects in Chile. Renew. Sustain. Energy Rev. 2016, 59, 583–596. [Google Scholar] [CrossRef]
- Girard, A.; Roberts, C.; Simon, F.; Ordoñez, J. Solar electricity production and taxi electrical vehicle conversion in Chile. J. Clean. Prod. 2019, 210, 1261–1269. [Google Scholar] [CrossRef]
- Agostini, C.A.; Nasirov, S.; Silva, C. Solar PV Planning Toward Sustainable Development in Chile: Challenges and Recommendations. J. Environ. Dev. 2016, 25, 25–46. [Google Scholar] [CrossRef]
- Moreno-Leiva, S.; Díaz-Ferrán, G.; Haas, J.; Telsnig, T.; Díaz-Alvarado, F.A.; Palma-Behnke, R.; Kracht, W.; Román, R.; Chudinzow, D.; Eltrop, L. Towards solar power supply for copper production in Chile: Assessment of global warming potential using a life-cycle approach. J. Clean. Prod. 2017, 164, 242–249. [Google Scholar] [CrossRef]
- Vega, M.I.; Zaror, C.A. The effect of solar energy on the environmental profile of electricity generation in Chile: A midterm scenario. Int. J. Energy Prod. Manag. 2018, 3, 110–121. [Google Scholar] [CrossRef]
- Valenzuela, C.; Mata-Torres, C.; Cardemil, J.M.; Escobar, R.A. CSP + PV hybrid solar plants for power and water cogeneration in northern Chile. Sol. Energy 2017, 157, 713–726. [Google Scholar] [CrossRef]
- Ferrada, P.; Araya, F.; Marzo, A.; Fuentealba, E. Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile. Sol. Energy 2015, 114, 356–363. [Google Scholar] [CrossRef]
- Jiménez-Estévez, G.; Palma-Behnke, R.; Román Latorre, R.; Morán, L. Heat and Dust: The Solar Energy Challenge in Chile. IEEE Power Energy Mag. 2015, 13, 71–77. [Google Scholar] [CrossRef]
- Escobar, R.A.; Cortés, C.; Pino, A.; Salgado, M.; Pereira, E.B.; Martins, F.R.; Boland, J.; Cardemil, J.M. Estimating the potential for solar energy utilization in Chile by satellite-derived data and ground station measurements. Sol. Energy 2015, 121, 139–151. [Google Scholar] [CrossRef]
- Cáceres, G.; Anrique, N.; Girard, A.; Degrève, J.; Baeyens, J.; Zhang, H.L. Performance of molten salt solar power towers in Chile. J. Renew. Sustain. Energy 2013, 5, 053142. [Google Scholar] [CrossRef]
- Fuentealba, E.; Ferrada, P.; Araya, F.; Marzo, A.; Parrado, C.; Portillo, C. Photovoltaic performance and LCoE comparison at the coastal zone of the Atacama Desert, Chile. Energy Convers. Manag. 2015, 95, 181–186. [Google Scholar] [CrossRef]
- Marcher, T.; Bauer, S.; Allende, M.; Mathiesen, C. Valhalla-Innovative pumped hydro storage facilities in Chile: Challenges from a rock mechanical point of view. Geomech. Und Tunnelbau. 2015, 8, 387–393. [Google Scholar] [CrossRef]
- Larraín, T.; Escobar, R. Net energy analysis for concentrated solar power plants in northern Chile. Renew. Energy 2012, 41, 123–133. [Google Scholar] [CrossRef]
- Parrado, C.; Girard, A.; Simon, F.; Fuentealba, E. 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy 2016, 94, 422–430. [Google Scholar] [CrossRef]
- Betancur, S.; Ortega-Avila, N.; López-Vidaña, E.C. Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia. Resources 2024, 13, 3. [Google Scholar] [CrossRef]
- Villamizar, D.N.G.; Suárez, O.M.D.; Camperos, J.A.G. Technical and economic analysis of a photovoltaic solar system in Norte de Santander, Colombia. J. Appl. Eng. Sci. 2023, 21, 275–284. [Google Scholar]
- López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.-Y. Solar PV generation in Colombia-A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. [Google Scholar] [CrossRef]
- Abril, S.O.; Pabón León, J.A.; García Mendoza, J.O. Study of the benefit of solar energy through the management of photovoltaic systems in Colombia. Int. J. Energy Econ. Policy 2021, 11, 96–103. [Google Scholar] [CrossRef]
- Carvajal-Romo, G.; Valderrama-Mendoza, M.; Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustain. Energy Technol. Assess. 2019, 36, 100531. [Google Scholar] [CrossRef]
- Mulcué-Nieto, L.F.; Echeverry-Cardona, L.F.; Restrepo-Franco, A.M.; García-Gutiérrez, G.A.; Jiménez-García, F.N.; Mora-López, L. Energy performance assessment of monocrystalline and polycrystalline photovoltaic modules in the tropical mountain climate: The case for Manizales-Colombia. Energy Rep. 2020, 6, 2828–2835. [Google Scholar] [CrossRef]
- Aristizabal, A.J.; Ospina, D.; Castaneda, M.; Zapata, S.; Banguero, E. Optimal power flow model for building integrated photovoltaic systems operating in the andean range. Indones. J. Electr. Eng. Comput. Sci. 2019, 16, 52–58. [Google Scholar] [CrossRef]
- Sandoval-Rodriguez, C.L.; Rincon-Quintero, A.D.; Angulo-Julio, C.A.; Lengerke, O.; Rodriguez-Nieves, A.J.; Castillo-Leon, N.Y. A parabolic solar collector for harnessing solar energy in Bucaramanga, Colombia. Sustain. Eng. Innov. 2023, 5, 151–160. [Google Scholar]
- Orjuela-Abril, S.; Torregroza-Espinosa, A.; Duarte-Forero, J. Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry. Sustainability 2023, 15, 5720. [Google Scholar] [CrossRef]
- Moreno, C.; Milanes, C.B.; Arguello, W.; Fontalvo, A.; Alvarez, R.N. Challenges and perspectives of the use of photovoltaic solar energy in Colombia. Int. J. Electr. Comput. Eng. 2022, 12, 4521–4528. [Google Scholar] [CrossRef]
- Becerra-Fernandez, M.; Sarmiento, A.T.; Cardenas, L.M. Sustainability assessment of the solar energy supply chain in Colombia. Energy 2023, 282, 128735. [Google Scholar] [CrossRef]
- Pedraza-Yepes, C.A.; Berdugo-Rolong, K.E.; Ruiz-Muñoz, D.E.; Higuera-Cobos, O.F.; Hernández-Vásquez, J.D. Feasibility Study for the Implementation of Photovoltaic Panels in Public Transportation in Barranquilla. Energies 2023, 16, 7161. [Google Scholar] [CrossRef]
- Murillo, W.; Agudelo, H.D.; Mena, M.F.; Banguero, E.; Palomino, R.; Córdoba, S.; Aristizábal, A.J. Experimental techno-economic analysis of an autonomous photovoltaic system operating in Chocó, Colombia. Energy Rep. 2023, 9, 258–273. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [Google Scholar] [CrossRef]
- Ariza Taba, M.F.; Mwanza, M.; Çetin, N.S.; Ülgen, K. Assessment of the energy generation potential of photovoltaic systems in Caribbean region of Colombia. Period. Eng. Nat. Sci. 2017, 5, 55–60. [Google Scholar] [CrossRef]
- Domenech, B.; Ferrer-Martí, L.; García, F.; Hidalgo, G.; Pastor, R.; Ponsich, A. Optimizing PV Microgrid Isolated Electrification Projects—A Case Study in Ecuador. Mathematics 2022, 10, 1226. [Google Scholar] [CrossRef]
- Boero, A.; Agyenim, F. Modeling and simulation of a small-scale solar-powered absorption cooling system in three cities with a tropical climate. Int. J. Low-Carbon Technol. 2019, 15, 1–16. [Google Scholar] [CrossRef]
- Lata-Garcia, J.; Jurado-Melguizo, F.; Sanchez-Sainz, H.; Reyes-Lopez, C.; Fernandez-Ramirez, L. Optimal sizing hydrokinetic-photovoltaic system for electricity generation in a protected wildlife area of Ecuador. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1103–1114. [Google Scholar] [CrossRef]
- Tian, A.; Zünd, D.; Bettencourt, L.M.A. Estimating Rooftop Solar Potential in Urban Environments: A Generalized Approach and Assessment of the Galápagos Islands. Front. Sustain. Cities 2021, 3, 632109. [Google Scholar] [CrossRef]
- Zalamea-Leon, E.; Barragán-Escandón, A.; Ordoñez-Castro, A. Photovoltaic assessment to achieve energy neutral buildings and cities in equatorial Andean climate. Renew. Energy Power Qual. J. 2023, 21, 51–56. [Google Scholar] [CrossRef]
- Cevallos Escandón, A.M.A.; Barraganescandón, B.E.A.; Zalamea-León, E.; Serrano-Guerrero, X. Hydrogen capacity for use in public transportation using the excess electricity generated by photovoltaics from rooftops in the urban area of Cuenca, Ecuador. Renew. Energy Power Qual. J. 2022, 20, 49–54. [Google Scholar] [CrossRef]
- Cevallos-Escandón, A.; Barragan-Escandón, E.A.; Zalamea-León, E.; Serrano-Guerrero, X.; Terrados-Cepeda, J. Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador. Energies 2023, 16, 5569. [Google Scholar] [CrossRef]
- Bermeo, I.; Matute, L.; Barragán-Escandón, E.; Serrano-Guerrero, X.; Zalamea-León, E. Technical and economic feasibility study of a solar plant on a commercial surface in azogues, Ecuador. Renew. Energy Power Qual. J. 2021, 19, 177–183. [Google Scholar] [CrossRef]
- Gustavo, C.; Pessolani, B. An Application of the Multiple Streams Framework to the Analysis of the Inclusion of Solar Energy in the Energy Mix in Paraguay. Lat. Am. Policy 2016, 7, 163–186. [Google Scholar]
- Love, T.; Garwood, A. Wind, sun and water: Complexities of alternative energy development in rural northern Peru. Rural. Soc. 2011, 20, 294–307. [Google Scholar] [CrossRef]
- Canziani, F.; Vargas, R.; Castilla, M.; Miret, J. Reliability and energy costs analysis of a rural hybrid microgrid using measured data and battery dynamics: A case study in the coast of perú. Energies 2021, 14, 6396. [Google Scholar] [CrossRef]
- Delgadillo, J.E.M.; Monterrey, G.M.P.; Aguilar, J.C.T.; Casaño, R.D.L.C. Photovoltaic technology employment in Peru. A literature review. Eng. Solid Mech. 2022, 10, 387–398. [Google Scholar] [CrossRef]
- Canziani, F.; Vargas, R.; Gastelo-Roque, J.A. Hybrid Photovoltaic-Wind Microgrid With Battery Storage for Rural Electrification: A Case Study in Perú. Front. Energy Res. 2021, 8, 528571. [Google Scholar] [CrossRef]
- Caravantes, D.; Carbajal, J.; Celis, C.; Marcelo-Aldana, D. Estimation of hydrogen production potential from renewable resources in northern Peru. Int. J. Hydrog. Energy 2024, 50, 186–198. [Google Scholar] [CrossRef]
- Narvaez, G.; Bressan, M.; Pantoja, A.; Giraldo, L.F. Climate change impact on photovoltaic power potential in South America. Environ. Res. Commun. 2023, 5, 081004. [Google Scholar] [CrossRef]
- De Barbosa, L.S.N.S.; Bogdanov, D.; Vainikka, P.; Breyer, C. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America. PLoS ONE 2017, 12, e0173820. [Google Scholar] [CrossRef] [PubMed]
- Posso, F.; Zambrano, J. Estimation of electrolytic hydrogen production potential in Venezuela from renewable energies. Int. J. Hydrog. Energy 2014, 39, 11846–11853. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Guardia, X.; Villicaña, E. Implementation of Renewable Energy from Solar Photovoltaic (PV) Facilities in Peru: A Promising Sustainable Future. Sustainability 2024, 16, 4388. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Hybrid wind-solar energy resources mapping in the European Atlantic. Sci. Total Environ. 2024, 928, 172501. [Google Scholar] [CrossRef]
- Costoya, X.; deCastro, M.; Carvalho, D.; Gómez-Gesteira, M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew. Sustain. Energy Rev. 2023, 173, 113101. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, Y.; Dong, G.; Ma, S.; Miao, C.; Xiao, J.; Mao, S.; Shao, L. The wind-solar hybrid energy could serve as a stable power source at multiple time scale in China mainland. Energy 2024, 305, 132294. [Google Scholar] [CrossRef]
- Barva, A.V.; Joshi, S. Empowering hybrid renewable energy systems with BESS for self-consumption and self-sufficiency. J Energy Storage 2024, 82, 110561. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, M.; Huang, L.; Ni, M. Optimization of battery energy storage system (BESS) sizing in different electricity market types considering BESS utilization mechanisms and ownerships. J. Clean. Prod. 2024, 470, 143317. [Google Scholar] [CrossRef]
- Kurdi, Y.; Alkhatatbeh, B.J.; Asadi, S. The influence of electricity transaction models on the optimal design of PV and PV-BESS systems. Sol. Energy 2023, 259, 437–451. [Google Scholar] [CrossRef]
- Liao, J.T.; Chuang, Y.S.; Yang, H.T.; Tsai, M.S. BESS-Sizing Optimization for Solar PV System Integration in Distribution Grid. IFAC-Pap. 2018, 51, 85–90. [Google Scholar] [CrossRef]
- Pinto, G.X.A.; Naspolini, H.F.; Rüther, R. Assessing the economic viability of BESS in distributed PV generation on public buildings in Brazil: A 2030 outlook. Renew. Energy 2024, 225, 120252. [Google Scholar] [CrossRef]
- Engie. Investor Presentation Engie Energía Chile; Engie: Paris, France, 2023. [Google Scholar]
- Nasirov, S.; Agostini, C.; Silva, C.; Caceres, G. Renewable energy transition: A market-driven solution for the energy and environmental concerns in Chile. Clean Technol. Environ. Policy 2018, 2018, 434. [Google Scholar] [CrossRef]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Albasha, L.; Mahariq, I.; Graba, B.B.; Touti, E. Reviewing floating photovoltaic (FPV) technology for solar energy generation. Energy Strategy Rev. 2024, 54, 101449. [Google Scholar] [CrossRef]
- Djalab, A.; Djalab, Z.; El Hammoumi, A.; TINA, G.M.; Motahhir, S.; Laouid, A.A. A comprehensive Review of Floating Photovoltaic Systems: Tech Advances, Marine Environmental Influences on Offshore PV Systems, and Economic Feasibility Analysis. Sol. Energy 2024, 277, 112711. [Google Scholar] [CrossRef]
- Bennagi, A.; AlHousrya, O.; Cotfas, D.T.; Cotfas, P.A. Comprehensive study of the artificial intelligence applied in renewable energy. Energy Strategy Rev. 2024, 54, 101446. [Google Scholar] [CrossRef]
- Shoaei, M.; Noorollahi, Y.; Hajinezhad, A.; Moosavian, S.F. A review of the applications of artificial intelligence in renewable energy systems: An approach-based study. Energy Convers. Manag. 2024, 306, 118207. [Google Scholar] [CrossRef]
- Balachandran, G.B.; Devisridhivyadharshini, M.; Ramachandran, M.E.; Santhiya, R. Comparative investigation of imaging techniques, pre-processing and visual fault diagnosis using artificial intelligence models for solar photovoltaic system—A comprehensive review. Meas. J. Int. Meas. Confed. 2024, 232, 114683. [Google Scholar] [CrossRef]
- Ghenai, C.; Ahmad, F.F.; Rejeb, O.; Bettayeb, M. Artificial neural networks for power output forecasting from bifacial solar PV system with enhanced building roof surface Albedo. J. Build. Eng. 2022, 56, 104799. [Google Scholar] [CrossRef]
- Sharma, M.; Pareek, S.; Singh, K. An efficient power extraction using artificial intelligence based machine learning model for SPV array reconfiguration in solar industries. Eng. Appl. Artif. Intell. 2024, 129, 107516. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Semeraro, C.; Al Radi, M.; Rezk, H.; Muhaisen, O.; Al-Isawi, O.A.; Sayed, E.T. Artificial neural networks applications in partially shaded PV systems. Therm. Sci. Eng. Prog. 2023, 37, 101612. [Google Scholar] [CrossRef]
- Al Smadia, T.; Handam, A.; Gaeid, K.S.; Al-Smadi, A.; Al-Husban, Y.; Khalid, A.s. Artificial intelligent control of energy management PV system. Results Control Optim. 2024, 14, 100343. [Google Scholar] [CrossRef]
- Hassan, G.; Sami Yilbas, B.; Al-Sharafi, A.; Al-Sulaiman, F.; Abdulhamid Abubakar, A. Dust mitigation strategies concerning solar energy applications: A comprehensive review. Sol. Energy 2024, 277, 112728. [Google Scholar] [CrossRef]
Keywords | Boolean Operator | Keywords | Boolean Operator | Keywords |
---|---|---|---|---|
Solar | AND | Energy | AND | Argentina |
Bolivia | ||||
Brazil | ||||
Chile | ||||
Colombia | ||||
Ecuador | ||||
Paraguay | ||||
Peru | ||||
Uruguay | ||||
Venezuela | ||||
South America |
Id. | Criteria | Field | Question | Data |
---|---|---|---|---|
DEM 1 | Metadata perspective | Keywords | What are the keywords? | keywords |
DEM 2 | Metadata perspective | Title | What is the name? | name |
DEM 3 | Metadata perspective | Authors | Who are the authors? | author list |
DEM 4 | Metadata perspective | Year | What is the publication year? | year |
DEM 5 | Metadata perspective | Country | What is the country of the first author? | country |
DEM 6 | Metadata perspective | Citation Count | How many citations does the document have? | number |
DEM 7 | Metadata perspective | Document Type | What is the name of the type of document? | conference paper or article or review or other |
DEC8 | Content-based perspective | Popular Clusters | RQ1: What are the main clusters of solar energy concepts applied to implement this infrastructure in South America and how do they evolve? | e.g., solar PV energy, and solar CSP energy, among others |
DEC9 | Content-based perspective | Solar Energy Potential and Installed Capacity | RQ2: What is the solar energy installed capacity (MW), solar average theoretical potential considering global horizontal irradiance (GHI) (kWh/m2), and solar average practical potential (kWh/kW) in each country of South America? | e.g., 5000 MW installed capacity and 4.654 solar average practical potential (kWh/kW), among others |
DEC10 | Content-based perspective | Solar Annual Energy Production and Reduction Rate of GHGs | RQ3: What is the annual energy production (GWh) from solar energy infrastructures and what is the related reduction rate of greenhouse gases (GHGs) in each country of South America? | e.g., 20,000 MWh, 1.2 Mt eq CO2, among others |
DEC11 | Content-based perspective | Quantity of Solar Farm Facilities | RQ4: Which South American countries have more advances in solar energy considering the quantity of solar energy infrastructures under operation? | e.g., 12, 22, 90, among others |
DEC12 | Content-based perspective | Climate Change Mitigation Progress | RQ5: What are the main policies related to climate change mitigation considering the implementation of solar energy in South America? | e.g., rural electrification and clean energy for remote places, among others |
DEC13 | Content-based perspective | Cutting-Edge technologies | RQ6: What are the main cutting-edge technologies linked with solar energy infrastructures in South America? | e.g., bifacial panel utilization, battery energy storage system (BESS) application, and floating solar PV farms, among others |
DEC14 | Content-based perspective | Challenges | RQ7: What are the main challenges facing the implementation of solar energy in South America? | e.g., economic and political, intermittent power supply, and sustainable and resilient infrastructures, among others |
DEC15 | Content-based perspective | Energy Storage Systems | RQ8: What are the main types of energy storage systems used in solar energy production in South America? | e.g., lithium BESS, hydrogen, and hydraulic storage, among others |
Cluster Name | Keywords | Cluster Definition |
---|---|---|
Cluster “Yellow” | Hydrogen fuels, hydrogen, PV energy, environment | Green hydrogen production |
Cluster “Blue” | Fossil fuels, emission control, electric power systems | Decarbonatization |
Cluster “Red” | PV systems, digital storage, distributed computer system | Energy digitalization |
Cluster “Green” | Solar energy, renewable energy, energy matrix, South America | Renewable energy |
Cluster “Orange” | CSP, heat storage, electric energy storage | Energy storage |
Cluster “Purple” | Sustainable development, hydroelectric power, energy system | Hybridization |
Cluster “Sky Blue” | Solar radiation, amorphous silicon, amorphous films | New PV cells |
Cluster Name | Keywords | Period of Publication | Cluster Definition |
---|---|---|---|
Cluster “Blue” | PV system, solar radiation, amorphous silicon | 2014–2016 | New PV cells |
Cluster “Green” | Solar energy, renewable energy, heat storage | 2016–2020 | Solar energy storage |
Cluster “Yellow” | Solar energy, environment, water reservoirs | 2020–2022 | Green hydrogen production |
Country | Installed Capacity (MW) | Average Theoretical Potential (GHI) (kWh/m2) | Average Practical Potential (kWh/kW) |
---|---|---|---|
Argentina | 1408 | 5.124 | 4.599 |
Bolivia | 172 | 5.424 | 4.942 |
Brazil | 37,449 | 5.276 | 4.404 |
Chile | 8790 | 5.758 | 5.365 |
Colombia | 716 | 4.867 | 4.049 |
Ecuador | 31 | 4.305 | 3.402 |
Paraguay | 1 | 5.077 | 4.281 |
Peru | 398 | 5.146 | 4.901 |
Uruguay | 297 | 4.790 | 4.304 |
Venezuela | 5 | 5.350 | 4.355 |
South America | 49,267 | 5.112 | 4.460 |
Mexico | 10,893 | 5.728 | 4.924 |
USA | 137,725 | 4.498 | 4.358 |
China | 609,350 | 4.127 | 3.883 |
Parameters (Year 2020) | Units | Argentina | Brazil | Bolivia | Chile | Colombia | Ecuador | Paraguay | Peru | Uruguay | Venezuela | Mexico | USA | China |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electricity generated from solar PV energy | GWh | 1346 | 10,759 | 250 | 8141 | 206 | 38 | 0.01 | 838 | 462 | 8 | 13,528 | 115,902 | 261,369 |
GHG emissions generated from solar PV energy | Mt CO2eq | 0.1 | 0.5 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 5.3 | 12 |
Avoided GHG emissions from solar PV energy | Mt CO2eq | 0.545 | 5.157 | 0.110 | 6.210 | 0.136 | 0.028 | 0 | 0.398 | 0.367 | 0.004 | 6.182 | 51.73 | 225 |
Country | Total Installed Capacity (MW) | Number of Solar PV Farms | Average Installed Capacity per Solar PV Farm (MW) |
---|---|---|---|
Argentina | 1408 | 39 | 36 |
Bolivia | 172 | 8 | 22 |
Brazil | 37,449 | 218 | 172 |
Chile | 8790 | 335 | 26 |
Colombia | 716 | 30 | 24 |
Ecuador | 31 | 3 | 10 |
Paraguay | 1 | 1 | 1 |
Peru | 398 | 9 | 44 |
Uruguay | 297 | 15 | 20 |
Venezuela | 5 | 5 | 1 |
South America | 49,267 | 663 | 74 |
# | Authors | Year | (i) | (ii) | (iii) | (iv) |
---|---|---|---|---|---|---|
1 | Galván et al. [40] | 2022 | RE-CERP-RFFEF | BESSA-HWEFPV | EP-THTR-IPS-AEE-SRI | LIB-H-HS |
2 | Dei et al. [41] | 2005 | RE-CERP | BESSA-HWEFPV | N/E | HS |
3 | Buch and Filho [42] | 2012 | RE | SFS | EP-THTR-IPS-AEE-SRI | N/E |
4 | Silva et al. [43] | 2023 | RFFEF-IRF-II | HWEFPV | EP-THTR-IPS-SRI | LIB-TS-HS |
5 | De Sousa et al. [44] | 2023 | RFFEF-IRF | N/E | EP-THTR-IPS-AEE-SRI | LAB |
6 | David et al. [45] | 2024 | RE-FM-DPPM | BPU-BESSA-HWEFPV | EP-THTR-IPS-AEE-SRI | LIB-LAB |
7 | Matos et al. [46] | 2022 | RFFEF-IRF-II | CSE | EP-IPS | LIB-LAB-TS-HS |
8 | Barbosa de Melo et al. [47] | 2022 | IRF-II | BPU-ST | EP | LIB-LAB |
9 | Carpio [48] | 2021 | RFFEF-IRF | N/E | IPS-SRI | HS |
10 | Nadaleti et al. [49] | 2022 | II-IRF | SFS | SRI | H |
11 | de Souza et al. [50] | 2022 | RE-CERP-II-IRF | N/E | N/E | LIB |
12 | Torres et al. [51] | 2021 | RFFEF-II-IRF | SFS-CSE | EP-IPS-SRI | N/E |
13 | Martelli et al. [52] | 2020 | RFFEF-II-IRF | N/E | EP-IPS | LIB-LAB |
14 | Viviescas et al. [53] | 2019 | RFFEF-II-IRF | N/E | N/E | N/E |
15 | Sulaeman et al. [54] | 2021 | RFFEF-RE | HWEFPV | N/E | N/E |
16 | da Rocha Santos et al. [55] | 2019 | II-IRF | HWEFPV | EP-AEE | LIB-LAB |
17 | Vilaça Gomes et al. [56] | 2018 | II-IRF | N/E | EP-IPS-SRI | N/E |
18 | Urbanetz et al. [57] | 2019 | II-IRF | SFS | EP-THTR-IPS-AEE-SRI | LIB-TS |
19 | Soria et al. [58] | 2016 | RFFEF-II-IRF | BESSA-HWEFPV | EP-THTR-IPS-AEE-SRI | LIB-LAB-TS-HS |
20 | Fichter et al. [59] | 2017 | RFFEF-II-IRF | HWEFPV | EP-IPS-THTR | LIB-LAB-TS |
21 | Ferreira et al. [60] | 2018 | RE-CERP | CSE | EP-THTR-IPS-AEE-SRI | N/E |
22 | Malagueta et al. [61] | 2014 | RFFEF-II-IRF | CSE | EP-THTR-IPS-SRI | TS |
23 | Nogueira et al. [62] | 2014 | RE-CERP | HWEFPV | EP-IPS | LIB-LAB-HS |
24 | Jannuzzi and de Melo [63] | 2013 | RE-IRF | SFS | EP-SRI | N/E |
25 | Viana et al. [64] | 2011 | RE-CERP | CSE | IPS | LIB-LAB-TS |
26 | do Sacramento et al. [65] | 2008 | RFFEF-CERP | HWEFPV | N/E | H |
27 | Martins et al. (1) [66] | 2008 | RE-CERP | HWEFPV | EP-IPS-SRI | LIB-LAB-TS |
28 | Martins et al. (2) [67] | 2008 | RE-CERP | HWEFPV | EP-IPS-AEE | N/E |
29 | Dhere [68] | 1989 | RE-CERP | N/E | EP-THTR-SRI | N/E |
30 | Da Silva et al. [69] | 2005 | RE-CERP | HWEFPV | N/E | H-HS |
31 | Quiñones et al. [70] | 2020 | RFFEF-II | HWEFPV | EP-THTR-IPS-AEE-SRI | N/E |
32 | Maximov et al. [71] | 2021 | RFFEF-IRF | N/E | EP-IPS-SRI | TS |
33 | Viole et al. [72] | 2023 | RE-CERP | BESSA-SFS | EP-IPS-SRI | LIB-H |
34 | Vargas Gil et al. [73] | 2020 | RFFEF-IRF | BESSA | EP-IPS-SRI | LIB-LAB |
35 | León et al. [74] | 2023 | CERP | N/E | N/E | N/E |
36 | Cornejo-Ponce et al. [75] | 2022 | RE-CERP | N/E | EP-IPS-AEE-SRI | LIB-LAB-TS |
37 | Behar et al. [76] | 2021 | II-RFFEF-CERP | SFS | EP-IPS-SRI | LIB-LAB-TS |
38 | Haas et al. [77] | 2020 | RFFEF-II-IRF | HWEFPV | EP-THTR-IPS-AEE-SRI | N/E |
39 | Bayo-Besteiro et al. [78] | 2023 | RFFEF-II-IRF | SFS-CSE | IPS | TS |
40 | Hernández et al. [79] | 2020 | RFFEF-II | CSE | EP-THTR-SRI | TS-LIB-LAB-H-F |
41 | Cardemil et al. [80] | 2016 | RFFEF-II | HWEFPV | N/E | N/E |
42 | Suuronen et al. [81] | 2017 | RE-RFFEF | N/E | EP-IPS-SRI | N/E |
43 | Starke et al. [82] | 2016 | RFFEF-II | HWEFPV | EP-IPS-SRI | TS |
44 | Mena et al. [83] | 2019 | CERP-RFFEF | CSE | EP-IPS-SRI | LIB-LAB-TS |
45 | Grágeda et al. [84] | 2016 | RFFEF-II-IRF | SFS | EP-SRI | N/E |
46 | Girard et al. [85] | 2019 | RFFEF-II-IRF | N/E | EP-IPS-SRI | N/E |
47 | Agostini et al. [86] | 2016 | RFFEF-CERP | N/E | EP-SRI | N/E |
48 | Moreno-Leiva et al. [87] | 2017 | II | SFS-CSE | N/E | TS |
49 | Vega and Zaror [88] | 2018 | II | SFS | EP-IPS-SRI | N/E |
50 | Valenzuela et al. [89] | 2017 | RFFEF-II | HWEFPV | IPS-SRI | LIB-LAB-TS |
51 | Ferrada et al. [90] | 2015 | II-IRF | N/E | N/E | LIB-LAB-H-TS-F |
52 | Jiménez-Estévez et al. [91] | 2015 | RFFEF-II-IRF | HWEFPV | EP-THTR-IPS-SRI | TS |
53 | Escobar et al. [92] | 2015 | RFFEF-II-IRF | N/E | EP-SRI | N/E |
54 | Cáceres et al. [93] | 2013 | RFFEF-II-IRF | CSE | EP-IPS-SRI | TS |
55 | Fuentealba et al. [94] | 2015 | II-IRF | N/E | AEE-SRI | LIB-LAB-TS |
56 | Marcher et al. [95] | 2015 | RFFEF-CERP | N/E | IPS | HS |
57 | Larraín and Escobar [96] | 2012 | IRF-II | N/E | EP-IPS-SRI | N/E |
58 | Parrado et al. [97] | 2016 | RE-CERP-IRF | HWEFPV | EP-IPS | LIB-LAB-TS |
59 | Betancur et al. [98] | 2024 | RE-RFFEF-IRF-II | HWEFPV | REP-THTR-IPS-AEE | TS |
60 | Villamizar et al. [99] | 2023 | RE-CERP | N/E | EP-THTR | N/E |
61 | López et al. [100] | 2020 | RE-CERP | BESSA-HWEFPV | EP-THTR-IPS | LIB |
62 | Abril et al. [101] | 2021 | RE-CERP-RFFEF | N/E | EP-THTR-IPS | LIB-LAB |
63 | Carvajal-Romo et al. [102] | 2019 | RE-CERP-IRF | BESSA-HWEFPV | EP-IPS-SRI | LAB-TS |
64 | Mulcué-Nieto et al. [103] | 2020 | RE-CERP-RFFEF | N/E | N/E | N/E |
65 | Aristizabal et al. [104] | 2019 | RFFEF-IRF | N/E | EP-IPS | N/E |
66 | Sandoval-Rodriguez et al. [105] | 2023 | N/E | N/E | N/E | N/E |
67 | Orjuela-Abril et al. [106] | 2023 | RE-CERP-II-IRF | N/E | N/E | H |
68 | Moreno et al. [107] | 2022 | RE-CERP-RFFEF | N/E | EP-THTR-IPS | N/E |
69 | Becerra-Fernandez et al. [108] | 2023 | RE-CERP-RFFEF | N/E | EP-THTR | LIB |
70 | Pedraza-Yepes et al. [109] | 2023 | CERP-RFFEF | BESSA | EP-THTR-IPS | LIB |
71 | Murillo et al. [110] | 2023 | RE-CERP-RFFEF | BESSA | EP-IPS | LAB |
72 | Rodríguez-Urrego et al. [111] | 2018 | RE-CERP | HWEFPV | EP-THTR-IPS | N/E |
73 | Ariza Taba et al. [112] | 2017 | RE-CERP-RFFEF | N/E | EP-IPS-SRI | N/E |
74 | Domenech et al. [113] | 2022 | RE-CERP-IRF | N/E | EP-IPS-AEE | LIB-LAB |
75 | Boero and Agyenim [114] | 2019 | IRF-II | N/E | EP-IPS | TS |
76 | Lata-Garcia et al. [115] | 2018 | RE-CERP | HWEFPV | IPS-SRI | LAB |
77 | Tian et al. [116] | 2021 | CERP-RFFEF-IRF | N/E | EP-AEE-SRI | N/E |
78 | Zalamea-Leon et al. [117] | 2023 | IRF-II | N/E | EP-IPS-SRI | N/E |
79 | Cevallos Escandón et al. (1) [118] | 2022 | RFFEF-IRF | N/E | EP-THTR-IPS | H |
80 | Cevallos-Escandón et al. (2) [119] | 2023 | RFFEF-II | BESSA-HWEFPV | EP-THTR-IPS | HS |
81 | Bermeo et al. [120] | 2021 | N/E | N/E | EP-THTR-IPS | N/E |
82 | Becker Pessolani [121] | 2016 | RE-CERP-RFFEF | N/E | EP-THTR-IPS | N/E |
83 | Love and Garwood [122] | 2011 | RE | N/E | EP-IPS-SRI | LAB |
84 | Canziani et al. (1) [123] | 2021 | RE-RFFEF-IRF | BESSA-HWEFPV | EP-IPS-SRI | LIB-LAB |
85 | Delgadillo et al. [124] | 2022 | RE-CERP | BESSA-HWEFPV | EP-THTR-IPS | LIB-TS |
86 | Canziani et al. (2) [125] | 2021 | RE-CERP | BESSA-HWEFPV | EP-IPS | LAB |
87 | Caravantes et al. [126] | 2024 | N/E | N/E | N/E | N/E |
88 | Narvaez et al. [127] | 2023 | N/E | N/E | N/E | N/E |
89 | De Barbosa et al. [128] | 2017 | RFFEF-II-IRF | BESSA-HWEFPV | EP-IPS | LIB-LAB-HS-CAS |
90 | Posso and Zambrano [129] | 2014 | RE-CERP- | N/E | N/E | N/E |
91 | Cacciuttolo et al. [130] | 2024 | RE-CERP-II | HWEFPV | EP-IPS-SRI | TS-H |
Ranking | Country | Installed Capacity MW | Number of Solar PV Farms | Average Theoretical Potential (GHI) kWh/m2 | Average Practical Potential kWh/kW |
---|---|---|---|---|---|
1 | Brazil | 37,449 | 218 | 5.760 | 4.404 |
2 | Chile | 8790 | 335 | 5.758 | 5.365 |
3 | Argentina | 1408 | 39 | 5.124 | 4.599 |
4 | Colombia | 716 | 30 | 4.867 | 4.049 |
5 | Peru | 398 | 9 | 5.146 | 4.901 |
6 | Uruguay | 297 | 15 | 4.790 | 4.304 |
7 | Bolivia | 172 | 8 | 5.424 | 4.942 |
8 | Ecuador | 31 | 3 | 4.305 | 3.402 |
9 | Venezuela | 5 | 5 | 5.350 | 4.355 |
10 | Paraguay | 1 | 1 | 5.077 | 4.281 |
Total | South America | 49,267 | 663 | 5.112 | 4.460 |
Ranking | Solar PV Farm Name | Country | Installed Capacity | Unit |
---|---|---|---|---|
1 | Janaúba Solar Complex | Brazil | 1200 | MW |
2 | São Gonçalo PV Park | Brazil | 864 | MW |
3 | Futura 1 Solar Complex | Brazil | 837 | MW |
4 | Sol do Cerrado Solar Park | Brazil | 766 | MW |
5 | Helio Valgas Solar PV Park | Brazil | 650 | MW |
6 | CEME1 PV Park | Chile | 480 | MW |
7 | Sol do Sertão Solar PV Park | Brazil | 475 | MW |
8 | Guanchoi PV Park | Chile | 398 | MW |
9 | Pirapora PV Park | Brazil | 398 | MW |
10 | SSM 1&2 Solar PV Park | Brazil | 320 | MW |
Characteristics | Data | Units |
---|---|---|
Location | Minas Gerais Region | - |
Energy Company | Elera Renovaveis | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 2,200,000 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 545 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 1350 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 45 | ° |
Installed Capacity | 1200 | MW |
Capacity Factor | 0.33 | - |
Characteristics | Data | Units |
---|---|---|
Location | Piauí Region | - |
Energy Company | Enel Green Power S.A. | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 2,200,000 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 390 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 970 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 42 | ° |
Installed Capacity | 864 | MW |
Capacity Factor | 0.32 | - |
Characteristics | Data | Units |
---|---|---|
Location | Bahia Region | - |
Energy Company | Eneva S.A. | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 1,400,000 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 600 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 940 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 40 | ° |
Installed Capacity | 837 | MW |
Capacity Factor | 0.30 | - |
Characteristics | Value | Units |
---|---|---|
Location | Paraíba Region | - |
Concession Owner | Iberdrola S.A. | - |
Wind Farm Name | Chafariz | - |
Type of Wind Farm | Onshore | - |
Number of Turbines | 136 | - |
Turbines’ Manufacturer/Model | SG132 | - |
Diameter of Turbines | 130 | m |
Hub Height | 150 | m |
Installed Capacity per Turbine | 3.5 | MW |
Total Installed Capacity | 471 | MW |
Wind Farm Capacity Factor | 0.50 | - |
Solar Farm Name | Luzia | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 228,000 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 650 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 165 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 45 | ° |
Installed Capacity | 149 | MW |
Solar PV Farm Capacity Factor | 0.25 | - |
Total Installed Capacity Hybrid Facility | 620 | MW |
Characteristics | Value | Units |
---|---|---|
Location | Antofagasta Region | - |
Concession Owner | Enel Green Power S.A. | - |
Wind Farm Name | Valle de Los Vientos | |
Type of Wind Farm | Onshore | - |
Number of Turbines | 45 | - |
Turbines’ Manufacturer/Model | Vestas V100/2000 | - |
Diameter of Turbines | 100 | m |
Hub Height | 120 | m |
Installed Capacity per Turbine | 2.0 | MW |
Total Installed Capacity | 90 | MW |
Wind Farm Capacity Factor | 0.52 | - |
Solar Farm Name | Azabache | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 154,170 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 395 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 85 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 40 | ° |
Installed Capacity | 60.9 | MW |
Solar PV Farm Capacity Factor | 0.30 | - |
Total Installed Capacity Hybrid Facility | 150.9 | MW |
Characteristics | Value | Units |
---|---|---|
Location | Antofagasta Region | - |
Concession Owner | Enel Green Power S.A. | - |
Wind Farm Name | Sierra Gorda | |
Type of Wind Farm | Onshore | - |
Number of Turbines | 56 | - |
Turbines’ Manufacturer/Model | Siemens Gamesa G114/2000 | - |
Diameter of Turbines | 114 | m |
Hub Height | 130 | m |
Installed Capacity per Turbine | 2.0 | MW |
Total Installed Capacity | 112 | MW |
Wind Farm Capacity Factor | 0.50 | - |
Solar Farm Name | Las Salinas | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 458,044 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 450 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 285 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 40 | ° |
Installed Capacity | 205 | MW |
Solar PV Farm Capacity Factor | 0.35 | - |
Total Installed Capacity Hybrid Facility | 317 | MW |
Characteristics | Value | Units |
---|---|---|
Location | Antofagasta Region | - |
Concession Owner | Engie S.A. | - |
BESS Technology | Lithium Batteries | . |
Number of BESS Units | 232 | . |
Storage Capacity | 638 | MWh |
Installed Capacity | 139 | MW |
Storage Time | 5 | h |
Annual BESS Energy Supply | 200 | GWh |
Solar Farm Name | Coya | - |
PV or CSP | Photovoltaic | - |
Quantities of PV Modules | 369,432 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 490 | W |
Modules’ Technology | Bifacial Modules | - |
Number of Inverters | 58 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 45 | ° |
Installed Capacity | 181.25 | MW |
Solar PV Farm Capacity Factor | 0.35 | - |
Characteristics | Value | Units |
---|---|---|
Location | Antofagasta Region | - |
Concession Owner | Grupo Cerro S.A. | - |
Concentrated Solar Plant Name | Cerro Dominador | |
Type of Concentrated Solar Plant | Solar Power Tower | - |
Tower Height | 252 | m |
Number of Heliostats | 10,600 | - |
Area of Heliostats | 140 | m2 |
Type of fluids | Molten salts | - |
Temperature of fluids | 550 | °C |
Total Area of Concentrated Solar Plant | 1000 | Ha |
Total Installed Capacity | 110 | MW |
Time of Stored Energy in Form of Heat | 17.5 | h |
Capacity Factor | 0.95 | - |
Solar Farm Name | Cerro Dominador | - |
Type of Solar Facility | Photovoltaic | - |
Quantities of PV Modules | 392,000 | - |
Module Type | Monocrystalline Silicon | - |
Power of Modules | 255 | W |
Module Technology | Bifacial Modules | - |
Number of Inverters | 150 | - |
Type of Structure | 1-Axis Horizontal Tracker | - |
Tracking Angle | 40 | ° |
Installed Capacity | 100 | MW |
Solar PV Farm Capacity Factor | 0.35 | - |
Total Installed Capacity Hybrid Facility | 210 | MW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciuttolo, C.; Guzmán, V.; Catriñir, P. Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies 2024, 17, 5532. https://doi.org/10.3390/en17225532
Cacciuttolo C, Guzmán V, Catriñir P. Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies. 2024; 17(22):5532. https://doi.org/10.3390/en17225532
Chicago/Turabian StyleCacciuttolo, Carlos, Valentina Guzmán, and Patricio Catriñir. 2024. "Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review" Energies 17, no. 22: 5532. https://doi.org/10.3390/en17225532
APA StyleCacciuttolo, C., Guzmán, V., & Catriñir, P. (2024). Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies, 17(22), 5532. https://doi.org/10.3390/en17225532