Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns
Abstract
:1. Introduction
2. Methodology
2.1. Computational Domain and Boundary Conditions
2.2. Numerical Setup
2.3. Grid Independence Study
2.4. Global Performance Criteria
3. Results
3.1. Inlet Velocity Profile
3.2. Grid Independence Study (GIS)
3.3. Experimental Model Validation
3.4. Comparison of the Three Setups
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | |
CFD | Computational fluid dynamics |
GGI | General grid interface |
GIS | Grid independence study |
Abbreviations | |
h | Heat transfer coefficient () |
Pressure difference (bar) | |
Temperature spread (°C) | |
Volume (m3) | |
Drag coefficient (-) | |
Parameter for GIS (undefined) | |
Density () | |
Thermal conductivity () | |
Viscosity () | |
A | Total brick surface (m2) |
CFL | Courant–Friedrichs–Lewy number (-) |
Specific heat coefficient () | |
h | Representative cell height (m) |
Mass flow () | |
N | Number of cells (-) |
p | Pressure (bar) |
Order of accuracy (-) | |
R | Discriminating ratio (-) |
r | Refinement factor (-) |
T | Temperature (°C) |
v | Velocity () |
Dimensionless wall distance (-) | |
x | x-direction (m) |
y | y-direction (m) |
z | z-direction, main flow direction (m) |
Subscripts | |
1 | Fine mesh |
2 | Medium mesh |
3 | Course mesh |
ave | Average |
eff | Effective |
ext | Extrapolated |
i | Counter cell number |
in | Inlet |
max | Maximum |
min | Minimum |
out | Outlet |
∞ | Undisturbed inflow |
References
- Abbas, A.; Sajid, M.B.; Iftikhar, M.A.; Khoja, A.H.; Ahmad, M.M.; Shahid, M.; Ullah, K. Assessment of long-term energy and environmental impacts of the cleaner technologies for brick production. Energy Rep. 2021, 7, 7157–7169. [Google Scholar] [CrossRef]
- Galan-Marin, C.; Rivera-Gomez, C.; Garcia-Martinez, A. Use of natural-fiber bio-composites in construction versus traditional solutions: Operational and embodied energy assessment. Materials 2016, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S. Benefits and boundary conditions of fast firing clay building products (Part 1). ZI Brick Tile Ind. Int. 2017, 5, 35–43. [Google Scholar]
- Brick Development Association. UK Brick Sustainability Report 2022. Available online: https://www.brick.org.uk/uploads/downloads/Sustainability-Report-Template-1.8.f1675267411.pdf (accessed on 8 August 2024).
- Gomes, E.; Hossain, I. Transition from traditional brick manufacturing to more sustainable practices. Energy Sustain. Dev. 2003, 7, 66–76. [Google Scholar] [CrossRef]
- Weyant, C.; Kumar, S.; Maithel, S.; Thompson, R.; Baum, E.; Floess, E.; Bond, T. Brick kiln measurement guidelines: Emissions and energy performance. Paris Clim. Clean Air Coalit. 2016. [Google Scholar]
- Schieder, M.; Unterluggauer, J.; Puskas, S.; Vogt, S. Numerical simulations of a novel electrical heated brick firing kiln. In Proceedings of the 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Rhodes, Greece, 30 June–5 July 2024. [Google Scholar]
- Vogt, S. Benefits and boundary conditions of fast firing clay building products (Part 2). ZI Brick Tile Ind. Int. 2017, 6, 29–38. [Google Scholar]
- Dondi, M.; Marsigli, M.; Venturi, I. Microstructure and mechanical properties of clay bricks: Comparison between fast firing and traditional firing. Br. Ceram. Trans. 1999, 98, 12–18. [Google Scholar] [CrossRef]
- Hauck, D.; Ruppik, M.; Petereit, S. Laborsimulation des Durchströmungsbrandes an Hochlochziegeln. In Zi-Jahrbuch 2005; Bauverlag BV GmbH Gütersloh: Gütersloh, Germany, 2005; pp. S.50–S.77. [Google Scholar]
- Gencel, O.; Sutcu, M.; Erdogmus, E.; Koc, V.; Cay, V.V.; Gok, M.S. Properties of bricks with waste ferrochromium slag and zeolite. J. Clean. Prod. 2013, 59, 111–119. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Karalis, K. Optimizing Building Thermal Insulation: The Impact of Brick Geometry and Thermal Coefficient on Energy Efficiency and Comfort. Ceramics 2023, 6, 1449–1466. [Google Scholar] [CrossRef]
- Tasnim, F.; Istiaque, F.; Morshed, A.; Ahmad, M.U. A CFD investigation of conventional brick kilns. In Proceedings of the AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2019; Volume 2121. [Google Scholar]
- Refaey, H.; Alharthi, M.A.; Salem, M.; Abdel-Aziz, A.A.; Abdelrahman, H.; Karali, M. Numerical investigations of convective heat transfer for lattice settings in brick tunnel Kiln: CFD simulation with experimental validation. Therm. Sci. Eng. Prog. 2021, 24, 100934. [Google Scholar] [CrossRef]
- Alrahmani, M.; Almesri, I.; Almutairi, J.; Abou-Ziyan, H. Combined Effect of Brick Surface Roughness and Lattice Setting Density on Brick Firing in Tunnel Kilns. Energies 2022, 15, 5670. [Google Scholar] [CrossRef]
- Nagy, J.; Horvath, A.; Jordan, C.; Harasek, M. CFD simulation of a high temperature furnace. In Proceedings of the 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 21–23 June 2011. [Google Scholar]
- Rzig, R.; Khedher, N.B.; Nasrallah, S.B. Three-dimensional simulation of mass and heat transfer in drying unsaturated porous medium. Heat Transf. Res. 2017, 48, 985–1005. [Google Scholar] [CrossRef]
- de Vasconcellos Araújo, M.; Raquel de Brito Correia, B.; Alves Agra Brandão, V.; Rodrigues de Oliveira, I.; Sousa Santos, R.; de Oliveira Neto, G.L.; de Lucena Silva, L.P.; Gilson Barbosa de Lima, A. Convective drying of ceramic bricks by CFD: Transport phenomena and process parameters analysis. Energies 2020, 13, 2073. [Google Scholar] [CrossRef]
- Santos, R.; Delgado, J.; Silva, F.; Azevedo, A.; Farias Neto, S.; Farias, F.; Barbosa de Lima, A.; Barbosa de Lima, W.; Lima, E. Behind the manufacturing of industrial clay bricks: Drying stage predictions using CFD. Adv. Mater. Sci. Eng. 2022, 2022, 5530362. [Google Scholar] [CrossRef]
- Gutschka, S. Numerical investigations on heat transfer in a fast firing brick kiln. Master’s Thesis, TU Wien, Vienna, Austria, 2024. [Google Scholar]
- Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; p. 2906. [Google Scholar]
- Modest, M.F.; Mazumder, S. Radiative Heat Transfer; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids-Eng.Trans. Asme 2008, 130. [Google Scholar] [CrossRef]
- Richardson, L.F., IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. London. Ser. Contain. Pap. Math. Phys. Character 1911, 210, 307–357. [Google Scholar]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa: Albuquerque, NM, USA, 1998; Volume 895. [Google Scholar]
- Cadafalch, J.; Pérez Segarra, C.; Consul, R.; Oliva, A. Verification of finite volume computations on steady-state fluid flow and heat transfer. J. Fluids Eng. 2002, 124, 11–21. [Google Scholar] [CrossRef]
- Schröder, U. Modellversuche über Druckverlust und Wärmeübergang in Gitterförmigen Tunnelfenbesatz. Ph.D. Thesis, Technical University of Clausthal, Clausthal-Zellerfeld, Germany, 1971. [Google Scholar]
- Jeschar, R.; Alt, R.; Specht, E. Grundlagen der Wärmeübertragung; Viola-Jeschar-Verlag: Goslar, Germany, 1990. [Google Scholar]
- Vogt, S.; Nover, K. Zur Anwendung von Computermodellen für die Auslegung und Optimierung von grobkeramischen Tunnelöfen. In Zi-Jahrbuch 1992; Bauverlag: Wiesbaden, Germany, 1992; pp. S.74–S.87. [Google Scholar]
- Ali, M.S.M.; Doolan, C.J.; Wheatley, V. Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low Reynolds number. In Proceedings of the Seventh International Conference on CFD in The Minerals and Process Industries (ed. PJ Witt & MP Schwarz), Melbourne, Australia, 9–11 December 2009; pp. 1–6. [Google Scholar]
- Sun, Q.; Lü, C.; Cao, L.; Li, W.; Geng, J.; Zhang, W. Thermal properties of sandstone after treatment at high temperature. Int. J. Rock Mech. Min. Sci. 2016, 85, 60–66. [Google Scholar] [CrossRef]
Location | Momentum | Thermal | Radiation |
---|---|---|---|
Kiln top | no slip | adiabatic | |
Kiln bottom | no slip | adiabatic | |
Kiln side | symmetry | symmetry | - |
Flow barriers | no slip | coupled wall | |
Brick walls | no slip | coupled wall |
Property | Unit | Solid (Bricks) | Fluid (Air) |
---|---|---|---|
Density | 1650 | ideal gas | |
Specific heat coefficient | see Equation (4) | ||
Thermal conductivity | 0.265 | kinetic theory | |
Viscosity | - | see Equation (5) |
Metric | Big | Small | Offset |
---|---|---|---|
Number of elements | 6.2 m | 3.8 m | 5.5 m |
Min aspect Ratio | 0.2 | 0.17 | 0.19 |
Min determinant | 0.46 | 0.32 | 0.45 |
Min angle | 16° | 18° | 16° |
15 | 28 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unterluggauer, J.; Schieder, M.; Gutschka, S.; Puskas, S.; Vogt, S.; Streibl, B. Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns. Energies 2024, 17, 5617. https://doi.org/10.3390/en17225617
Unterluggauer J, Schieder M, Gutschka S, Puskas S, Vogt S, Streibl B. Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns. Energies. 2024; 17(22):5617. https://doi.org/10.3390/en17225617
Chicago/Turabian StyleUnterluggauer, Julian, Manuel Schieder, Stefan Gutschka, Stefan Puskas, Stefan Vogt, and Bernhard Streibl. 2024. "Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns" Energies 17, no. 22: 5617. https://doi.org/10.3390/en17225617
APA StyleUnterluggauer, J., Schieder, M., Gutschka, S., Puskas, S., Vogt, S., & Streibl, B. (2024). Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns. Energies, 17(22), 5617. https://doi.org/10.3390/en17225617