Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Research Object
2.2. Description of the Technological Process at the Wastewater Treatment Plant
2.3. Statistical Analysis of Research Results
3. Results
3.1. Parameters of Raw and Treated Sewage
3.2. Energy Analysis from Biogas Production
4. Discussion
4.1. Biogas and the Circular Economy
4.2. Biogas Production Potential from Agricultural and Industrial Organic Waste
4.3. Key Indicators of Limitations in Nutrient Removal Efficiency of Wastewater Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment. J. Hazard. Mater. 2009, 162, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, H.; Tahan, M.D.D.; Abdallah, M.; Sartaj, M.; Hamza, R. Optimizing aerobic granular sludge process performance: Unveiling the power of coupling experimental factorial design methodology with artificial intelligence modeling. J. Water Process Eng. 2024, 61, 105268. [Google Scholar] [CrossRef]
- Acosta-Pavas, J.C.; Robles-Rodríguez, C.E.; Morchain, J.; Dumas, C.; Cockx, A.; Aceves-Lara, C.A. Dynamic modeling of biological methanation for different reactor configurations: An extension of the anaerobic digestion model No. 1. Fuel 2023, 344, 128106. [Google Scholar] [CrossRef]
- Mahieux, M.; Richard, C.; Aemig, Q.; Delgenès, J.P.; Juge, M.; Trably, E.; Escudié, R. Archaeal community composition as key driver of H2 consumption rates at the start-up of the biomethanation process. Sci. Total Environ. 2024, 931, 172922. [Google Scholar] [CrossRef]
- Tuncay, S.; Akcakaya, M.; Icgen, B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation. Fuel 2022, 313, 122690. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz. 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Leventaki, E.; Riddell, A.; Wojtasz-Mucha, J.; Bernin, D. Effluents and residues from industrial sites for carbon dioxide capture: A review. Environ. Chem. Lett. 2023, 21, 319–337. [Google Scholar] [CrossRef]
- François, M.; Lin, K.S.; Rachmadona, N.; Khoo, K.S. Advancement of biochar-aided with iron chloride for contaminants removal from wastewater and biogas production: A review. Sci. Total Environ. 2023, 874, 162437. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Lima, D.; Appleby, G.; Li, L. A Scoping review of options for increasing biogas production from sewage sludge: Challenges and opportunities for enhancing energy self-sufficiency in wastewater treatment plants. Energies 2023, 16, 2369. [Google Scholar] [CrossRef]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household biogas digesters—A review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Dabestani-Rahmatabad, A.; Capson-Tojo, G.; Trably, E.; Delgenès, J.P.; Escudié, R. Assessing the impact of organic loading rate on hydrogen consumption rates during in situ biomethanation. Energies 2024, 17, 2490. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas upgrading: A review of national biomethane strategies and support policies in selected countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef]
- Kumari, S.; Das, D. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour. Technol. 2015, 194, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.F.; Daud, W.W. Hydrogen production by methane decomposition: A review. Int. J. Hydrog. Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Royer, S.J.; Ferrón, S.; Wilson, S.T.; Karl, D.M. Production of methane and ethylene from plastic in the environment. PLoS ONE 2018, 13, e0200574. [Google Scholar] [CrossRef]
- Nouj, N.; Majbar, Z.; Abelouah, M.R.; Hamou, A.B.; Chaoui, A.; Hafid, N.; Cretescu, I. Eco-friendly wastewater treatment using a crab shell-based liquid bio-coagulant: Multi-criteria decision analysis related to different pollutants separation. J. Environ. Chem. Eng. 2024, 12, 112318. [Google Scholar] [CrossRef]
- Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of biogas production from solid substrates using different techniques—A review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Dar, R.A.; Parmar, M.; Dar, E.A.; Sani, R.K.; Phutela, U.G. Biomethanation of agricultural residues: Potential, limitations and possible solutions. Renew. Sustain. Energy Rev. 2021, 135, 110217. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, K.; Zhou, W.; Zhu, D.; Zhou, Y.; Yuan, Y.; Zhao, J. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 2017, 223, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Michailos, S.; Walker, M.; Moody, A.; Poggio, D.; Pourkashanian, M. Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real wastewater treatment plant: A techno-economic assessment. Energy Convers. Manag. 2020, 209, 112663. [Google Scholar] [CrossRef]
- Thakur, N.; Sharma, M.; Alghamdi, H.; Zheng, Y.; Xue, W.; Jeon, B.H.; Li, X. A recent trend in anaerobic digestion (AD): Enhancement of microbiome and digestibility of feedstocks via abiotic stress factors for biomethanation. Chem. Eng. J. 2023, 472, 145047. [Google Scholar] [CrossRef]
- Feng, X.; Qian, Y.; Xi, P.; Cao, R.; Qin, L.; Zhang, S.; Wang, D. Partial nitrification and enhanced biological phosphorus removal in a sequencing batch reactor treating high-strength wastewater. Int. J. Environ. Res. Public Health 2022, 19, 5653. [Google Scholar] [CrossRef]
- Wrzesińska-Jędrusiak, E.; Czarnecki, M.; Szufa, S.; Maj, G.; Čabalová, I.; Grześkowiak, M. Analysis of Opportunities for Performance Improvement Based on Data from Agricultural Mono Substrate Biogas Plant. J. Water Land Dev. 2024, 55, 55–61. [Google Scholar] [CrossRef]
- Wałowski, G. Assessment of Technological Simulation of an Agricultural Biogas Installation Using Integration Mechanisms. J. Water Land Dev. 2023, 283, 283–290. [Google Scholar] [CrossRef]
- Czekała, W.; Pulka, J.; Jasiński, T.; Szewczyk, P.; Bojarski, W.; Jasiński, J. Waste as Substrates for Agricultural Biogas Plants: A Case Study from Poland. J. Water Land Dev. 2023, 45, 45–50. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Monlau, F.; Abdelouahdi, K.; Oukarroum, A.; Barakat, A. Pretreatment and Co-Digestion of Wastewate Sludge for Biogas Production: Recent Research Advances and Trends. Renew. Sustain. Energy Rev. 2019, 114, 1092. [Google Scholar] [CrossRef]
- Singh, P.; Kalamdhad, A.S. Biomethane plants based on municipal solid waste and wastewater and its impact on vehicle sector in India—An environmental-economic-resource assessment. Environ. Technol. Innov. 2022, 26, 102330. [Google Scholar] [CrossRef]
- Ogejo, J.A.; Li, L. Enhancing biomethane production from flush dairy manure with turkey processing wastewater. Appl. Energy 2010, 87, 3171–3177. [Google Scholar] [CrossRef]
- Paolini, V.; Petracchini, F.; Carnevale, M.; Gallucci, F.; Perilli, M.; Esposito, G.; Frattoni, M. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Pazera, A.; Slezak, R.; Krzystek, L.; Ledakowicz, S.; Bochmann, G.; Gabauer, W.; Kara, J. Biogas in Europe: Food and beverage (FAB) waste potential for biogas production. Energy Fuels 2015, 29, 4011–4021. [Google Scholar] [CrossRef]
- Beyene, A.; Yemane, D.; Addis, T.; Assayie, A.A.; Triest, L. Experimental evaluation of anaerobic digestion for coffee wastewater treatment and its biomethane recovery potential. Int. J. Environ. Sci. Technol. 2014, 11, 1881–1886. [Google Scholar] [CrossRef]
- Brar, A.; Kumar, M.; Singh, R.P.; Vivekanand, V.; Pareek, N. Phycoremediation coupled biomethane production employing sewage wastewater: Energy balance and feasibility analysis. Bioresour. Technol. 2020, 308, 123292. [Google Scholar] [CrossRef]
- Browne, J.D.; Allen, E.; Murphy, J.D. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ. Technol. 2013, 34, 2027–2038. [Google Scholar] [CrossRef]
- Molino, A.; Nanna, F.; Ding, Y.; Bikson, B.; Braccio, G. Biomethane production by anaerobic digestion of organic waste. Fuel 2013, 103, 1003–1009. [Google Scholar] [CrossRef]
- Rogala, Z.; Stanclik, M.; Łuszkiewicz, D.; Malecha, Z. Perspectives for the use of biogas and biomethane in the context of the green energy transformation on the example of an EU country. Energies 2023, 16, 1911. [Google Scholar] [CrossRef]
- Bodík, I.; Sedláček, S.; Kubaská, M.; Hutňan, M. Biogas production in municipal wastewater treatment plants–current status in EU with a focus on the Slovak Republic. Chem. Biochem. Eng. Q. 2011, 25, 335–340. [Google Scholar]
- Zupančič, M.; Možic, V.; Može, M.; Cimerman, F.; Golobič, I. Current status and review of waste-to-biogas conversion for selected European countries and worldwide. Sustainability 2022, 14, 1823. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Kanchinadham, S.B.K.; Kalyanaraman, C. Nutrient requirement of tannery wastewater containing tannins. Environ. Technol. Innov. 2021, 23, 101776. [Google Scholar] [CrossRef]
- Phanwilai, S.; Noophan, P.; Li, C.W.; Choo, K.H. Effect of COD ratio on biological nitrogen removal using full-scale step-feed in municipal wastewater treatment plants. Sustain. Environ. Res. 2020, 30, 24. [Google Scholar] [CrossRef]
- Płuciennik-Koropczuk, E.; Jakubaszek, A. Susceptibility of wastewater for biochemical decomposition in mechanical-biological wastewater treatment processes. Zesz. Nauk. 2012, 148, 73–84. [Google Scholar]
- Silva, J.; Gonçalves, J.C.; Rocha, C.; Vilaça, J.; Madeira, L.M. Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis. Renew. Energy 2024, 220, 119469. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Csedő, Z.; Magyari, J.; Zavarkó, M. Biofuel supply chain planning and circular business model innovation at wastewater treatment plants: The case of biomethane production. Cleaner Logist. Supply Chain 2024, 11, 100158. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Malico, I.; Marques, I.P. Promoting sustainability: Wastewater treatment plants as a source of biomethane in regions far from a high-pressure grid: A real Portuguese case study. Sustainability 2021, 13, 8933. [Google Scholar] [CrossRef]
- Gavlak, G.; Aguiar Battistelli, A.; Pedroso, C.R.; Magno de Sousa Vidal, C.; Viviane de Souza, K. Evaluating the performance and membrane fouling of a submerged membrane bioreactor (MBR) treating plywood industry wastewater. Water Sci. Technol. 2024, 89, 187–198. [Google Scholar] [CrossRef]
- Raich-Montiu, J.; Ribas-Font, C.; De Arespacochaga, N.; Roig-Torres, E.; Broto-Puig, F.; Crest, M.; Cortina, J.L. Analytical methodology for sampling and analysing eight siloxanes and trimethylsilanol in biogas from different wastewater treatment plants in Europe. Anal. Chim. Acta 2014, 812, 83–91. [Google Scholar] [CrossRef]
- Serrat, L.; Linares, J.I.; Cledera, M.M.; Morales, C.; Hueso, K. Ground source heat pump driven by reciprocating engine firing biomethane from wastewater treatment plant sludge in a cogeneration for district heating and cooling: A case study in Spain. Appl. Therm. Eng. 2023, 219, 119586. [Google Scholar] [CrossRef]
Year | BOD5 | COD | TSS | NT | PT |
---|---|---|---|---|---|
(mg∙dm−3) | |||||
2014 | 259 | 590 | 316 | 43 | 6.58 |
2015 | 289 | 584 | 324 | 43.2 | 6.19 |
2016 | 220 | 487 | 240 | 39 | 5 |
2017 | 231 | 503 | 265 | 41.2 | 4.98 |
2018 | 266 | 597 | 287 | 47.4 | 5.9 |
2019 | 241 | 564 | 299 | 42.7 | 5.42 |
2020 | 236 | 535 | 295 | 41.4 | 4.96 |
2021 | 259 | 575 | 302 | 43.6 | 5.9 |
2022 | 303 | 722 | 373 | 48 | 5.49 |
2023 | 250 | 583 | 342 | 41.2 | 5.37 |
Year | BOD5 | COD | TSS | NT * | PT |
---|---|---|---|---|---|
(mg∙dm−3) | |||||
2014 | 5.89 | 38.8 | 11.4 | 8.21 | 0.48 |
2015 | 5.2 | 34.6 | 10.4 | 8.78 | 0.45 |
2016 | 5.52 | 39 | 11 | 8.7 | 0.6 |
2017 | 5.4 | 35.4 | 9 | 8.56 | 0.41 |
2018 | 5.85 | 41.4 | 9.3 | 8.21 | 0.4 |
2019 | 5.68 | 39 | 8.4 | 8.14 | 0.43 |
2020 | 5.91 | 38.9 | 8.9 | 8.03 | 0.46 |
2021 | 5.71 | 38.6 | 8.4 | 8.36 | 0.48 |
2022 | 5.92 | 40.9 | 8.9 | 8.18 | 0.44 |
2023 | 6.6 | 46.5 | 11 | 8.78 | 0.5 |
Year | The Amount of Sewage Flowing from the Sewer System | The Amount of Sewage Delivered from Vacuum Trucks |
---|---|---|
Million m3∙year−1 | m3∙year−1 | |
2014 | 20.951997 | 98,000 |
2015 | 18.846241 | 54,000 |
2016 | 20.042773 | 40,000 |
2017 | 20.553211 | 30,000 |
2018 | 18.390084 | 32,000 |
2019 | 20.166631 | 38,000 |
2020 | 21.550867 | 53,000 |
2021 | 20.862850 | 63,000 |
2022 | 18.946610 | 64,000 |
2023 | 21.315280 | 105,000 |
COD/PT | COD/NT | BOD5/PT | BOD5/NT | COD/BOD5 | Sewage Type | Year |
---|---|---|---|---|---|---|
89.67 | 13.72 | 39.36 | 6.02 | 2.28 | raw | 2014 |
80.83 | 4.73 | 12.27 | 0.72 | 6.59 | treated | |
94.35 | 13.52 | 46.69 | 6.69 | 2.02 | raw | 2015 |
76.89 | 3.94 | 11.56 | 0.59 | 6.65 | treated | |
97.40 | 12.49 | 44.0 | 5.64 | 2.21 | raw | 2016 |
65.0 | 4.48 | 9.2 | 0.63 | 7.07 | treated | |
101.00 | 12.21 | 46.39 | 5.61 | 2.18 | raw | 2017 |
86.34 | 4.14 | 13.17 | 0.63 | 6.56 | treated | |
101.19 | 12.59 | 45.08 | 5.61 | 2.24 | raw | 2018 |
103.50 | 5.04 | 14.63 | 0.71 | 7.08 | treated | |
104.06 | 13.21 | 44.46 | 5.64 | 2.34 | raw | 2019 |
90.70 | 4.79 | 13.21 | 0.70 | 6.87 | treated | |
107.86 | 12.92 | 47.58 | 5.70 | 2.27 | raw | 2020 |
84.57 | 4.84 | 12.85 | 0.74 | 6.58 | treated | |
97.46 | 13.19 | 43.90 | 5.94 | 2.22 | raw | 2021 |
80.42 | 4.62 | 11.90 | 0.68 | 6.76 | treated | |
131.51 | 15.04 | 55.19 | 6.31 | 2.38 | raw | 2022 |
92.95 | 5.00 | 13.45 | 0.72 | 6.91 | treated | |
108.57 | 14.15 | 46.55 | 6.07 | 2.33 | raw | 2023 |
93.0 | 5.30 | 13.20 | 0.75 | 7.05 | treated | |
>40 | 5 ÷ 10 | >20 (optimum 25) | >2.5 (optimum 4) | <2 | The required value for effective wastewater treatment |
p | r | Error | Intercept | Error | Slope | Variable |
---|---|---|---|---|---|---|
>0.001 | 0.96 | 1.18 | 2.40 | 0.0002 | 0.012 | Methane |
0.00011 | −0.26 | 5.14 | 57.98 | 0.0010 | −0.0041 | Carbon dioxide |
>0.001 | 0.30 | 87.57 | −338.56 | 0.017 | 0.080 | Hydrogen sulfide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalski, K.; Kośka-Wolny, M.; Chmielowski, K.; Bedla, D.; Petryk, A.; Guzdek, P.; Dąbek, K.A.; Gąsiorek, M.; Grübel, K.; Halecki, W. Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant. Energies 2024, 17, 5618. https://doi.org/10.3390/en17225618
Michalski K, Kośka-Wolny M, Chmielowski K, Bedla D, Petryk A, Guzdek P, Dąbek KA, Gąsiorek M, Grübel K, Halecki W. Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant. Energies. 2024; 17(22):5618. https://doi.org/10.3390/en17225618
Chicago/Turabian StyleMichalski, Krzysztof, Magdalena Kośka-Wolny, Krzysztof Chmielowski, Dawid Bedla, Agnieszka Petryk, Paweł Guzdek, Katarzyna Anna Dąbek, Michał Gąsiorek, Klaudiusz Grübel, and Wiktor Halecki. 2024. "Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant" Energies 17, no. 22: 5618. https://doi.org/10.3390/en17225618
APA StyleMichalski, K., Kośka-Wolny, M., Chmielowski, K., Bedla, D., Petryk, A., Guzdek, P., Dąbek, K. A., Gąsiorek, M., Grübel, K., & Halecki, W. (2024). Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant. Energies, 17(22), 5618. https://doi.org/10.3390/en17225618