Model Predictive Control for Three-Phase, Four-Leg Dynamic Voltage Restorer
Abstract
:1. Introduction
2. Description of the System
3. Control Loop Description
3.1. SOGI Structure
3.2. Decoupling of Positive and Negative Sequences
4. Model Predictive Control
4.1. Voltage Vector Analysis of Three-Phase, Four-Leg Inverter
4.2. Discrete Model of Three-Phase, Four-Leg DVR
4.3. Estimation of the Reference
4.4. Establishment of Cost Function
5. Simulation Results
5.1. Setup
5.2. Overview of Results
5.2.1. Symmetrical Voltage Sag
5.2.2. Asymmetrical Voltage Sag
5.2.3. Voltage Sag Compensation for Non-Linear Loads
5.2.4. Harmonic Mitigation Performance Analysis
5.3. Discussion and Analysis
6. Conclusions
- (1)
- Compared to a traditional DVR with a three-phase, three-leg inverter, a DVR with a three-phase, four-leg inverter can be used to compensate for the unbalanced voltage and load effectively.
- (2)
- The MPC method for a three-phase, four-leg inverter can enhance its dynamic response without requiring a double control loop or PWM.
- (3)
- The control parameter is easily designed in the MPC method. Positive and negative control loops are not necessary in MPC.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arias-Guzman, S.; Ruiz-Guzman, O.A.; Garcia-Arias, L.F.; Jaramillo-Gonzales, M.; Cardona-Orozco, P.D.; Ustariz-Farfan, A.J.; Cano-Plata, E.A.; Salazar-Jimenez, A.F. Analysis of voltage sag severity case study in an industrial circuit. In Proceedings of the 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, USA, 18–22 October 2015; pp. 1–6. [Google Scholar]
- Aldi, P.; Shrigiri, S.; Smita, K. Study of Topologies, Power Converters, and Control Techniques for the Dynamic Voltage Restorer (DVR). In Proceedings of the 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS), Kalaburagi, India, 24–25 November 2023; pp. 1–7. [Google Scholar]
- Zhang, H.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Wang, P.; Guo, Q.; Sun, H. A Stochastic Bi-level Optimal Allocation Approach of Intelligent Buildings Considering Energy Storage Sharing Services. IEEE Trans. Consum. Electron. 2024. [Google Scholar] [CrossRef]
- Ding, B.; Li, Z.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Jin, X.; Sun, H. A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings. Appl. Energy 2024, 365, 123275. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sul, S.-K. A carrier-based PWM method for three-phase four-leg voltage source converters. IEEE Trans. Power Electron. 2004, 19, 66–75. [Google Scholar]
- Wang, H.; Lei, H.; Pei, X. Research on an Adaptive Compound Control Strategy of a Hybrid Compensation System. Processes 2023, 11, 2109. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P. Efficient controller of DSTATCOM based on combination of Adaline and SOGI-FLL for power quality improvement. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 1543–1566. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.M.; Vasquez, J.C.; Abusorrah, A.M.; Al-Turki, Y. Modeling, Tuning, and Performance Comparison of Second-Order-Generalized-Integrator-Based FLLs. IEEE Trans. Power Electron. 2018, 33, 10229–10239. [Google Scholar] [CrossRef]
- Qing, H.; Zhang, C.; Chai, X.; He, H.; Wang, X. Research on grid-connected harmonic current suppression of three-phase four-wire energy storage inverters. J. Power Electron. 2023, 23, 972–983. [Google Scholar] [CrossRef]
- Quan, X. Improved Dynamic Response Design for Proportional Resonant Control Applied to Three-Phase Grid-Forming Inverter. IEEE Trans. Ind. Electron. 2021, 68, 9919–9930. [Google Scholar] [CrossRef]
- Peng, L.; Fu, Z.; Xiao, T.; Qian, Y.; Zhao, W.; Zhang, C. An Improved Dual Second-Order Generalized Integrator Phased-Locked Loop Strategy for an Inverter of Flexible High-Voltage Direct Current Transmission Systems under Nonideal Grid Conditions. Processes 2023, 11, 2634. [Google Scholar] [CrossRef]
- Xu, C.; Hou, S.; Chen, J. An Improved High Bandwidth DSOGI-PLL and its Optimized Digital Implementation. In Proceedings of the 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, China, 4–7 November 2022; pp. 1063–1068. [Google Scholar]
- Ranjan, A.; Kewat, S.; Singh, B. DSOGI-PLL Based Solar Grid Interfaced System for Alleviating Power Quality Problems. In Proceedings of the 2019 National Power Electronics Conference (NPEC), Tiruchirappalli, India, 13–15 December 2019; pp. 1–6. [Google Scholar]
- Srivastava, A.; Bajpai, R.S. Comparative Analysis of PI & MPC Controllers for Dynamic Voltage Restorer using Wind Energy Conversion System. In Proceedings of the 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 15–16 January 2021; pp. 1–6. [Google Scholar]
- Rauf, A.M.; Khadkikar, V. An Enhanced Voltage Sag Compensation Scheme for Dynamic Voltage Restorer. IEEE Trans. Ind. Electron. 2015, 62, 2683–2692. [Google Scholar] [CrossRef]
- Mohamed, A. A finite control set model predictive control scheme for single-phase grid-connected inverters. Renew. Sustain. Energy Rev. 2021, 135, 110131. [Google Scholar]
- Zhu, Y.; Wen, H.; Yang, Y.; Mao, J.; Wang, P.; Huang, W.; Rodriguez, J. Decoupled Continuous Control Set Model Predictive Control for T-Type Three-Phase Four-Leg Three-Level Inverters Driving Constant Power Loads. IEEE Trans. Power Electron. 2024, 39, 7002–7015. [Google Scholar] [CrossRef]
- Zaid, S.A.; Bakeer, A.; Albalawi, H.; Alatwi, A.M.; Abdeldaim, H.; Manqarah, B. Model-Free Predictive Current Control of a 3-φ Grid-Connected Neutral-Point-Clamped Transformerless Inverter. Energies 2023, 16, 3141. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, J.; Dorrell, D.G. Model Predictive Control of Grid-Connected Inverters for PV Systems with Flexible Power Regulation and Switching Frequency Reduction. IEEE Trans. Ind. Appl. 2015, 51, 587–594. [Google Scholar] [CrossRef]
- Andang, A.; Pamungkas, T.A.; Busaeri, N.; Hartati, R.S.; Manuaba, I.B.G.; Kumara, I.N.S. Three-phase Four-leg Inverter LC Filter Using FCS MPC. In Proceedings of the International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS), Sanur, Indonesia, 28–30 October 2021. [Google Scholar]
- Ahmed, A.A.; Koh, B.K.; Lee, Y.I. A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Speed Control of Induction Motors. IEEE Trans. Ind. Inform. 2017, 14, 1334–1346. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Yan, R. A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Model Parameter Mismatch in Three-Phase APF. Front. Energy Res. 2021, 9, 727364. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Vazquez, S.; Mazumder, S.K. Sliding Mode Control in Power Converters and Drives: A Review. CAA J. Autom. Sin. 2022, 9, 392–406. [Google Scholar] [CrossRef]
- Tan, S.-C.; Lai, Y.M.; Tse, C.K. Indirect Sliding Mode Control of Power Converters Via Double Integral Sliding Surface. IEEE Trans. Power Electron. 2008, 23, 600–611. [Google Scholar]
- Komurcugil, H.; Biricik, S.; Bayhan, S.; Zhang, Z. Sliding Mode Control: Overview of Its Applications in Power Converters. IEEE Ind. Electron. Mag. 2021, 15, 40–49. [Google Scholar] [CrossRef]
- Kde Carvalho, B.; Bezerra, T.M.; Rocha, N.; de Almeida, R.G.; Fernandes, D.A. Model Predictive Current Controller for Grid Connected Photovoltaic System Based on Four-Leg Inverter. In Proceedings of the 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), Florianopolis, Brazil, 26–29 November 2023; pp. 1–7. [Google Scholar]
- Zhao, Z.; Sha, Y.; Gong, M.; Zhu, Y.; Yang, Y.; Rodriguez, J. Research on Continuous Control Set Model Predictive Control of Three-Phase Four-Leg Inverter. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024; pp. 1041–1045. [Google Scholar]
- Tran, H.N.; Dzung, P.Q.; Le, N.A.; Nguyen, T.D. Dynamic voltage restorer-multilevel inverter based on predictive voltage controller. In Proceedings of the 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 November 2016; pp. 174–179. [Google Scholar]
Num | Sa | Sb | Sc | Sn | van | vbn | vcn | vαn | vβn | vγ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | ||||
2 | 0 | 1 | 0 | 0 | 0 | 0 | ||||
3 | 0 | 1 | 1 | 0 | 0 | 0 | ||||
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
5 | 1 | 0 | 1 | 0 | 0 | |||||
6 | 1 | 1 | 0 | 0 | 0 | |||||
7 | 1 | 1 | 1 | 0 | 0 | 0 | ||||
8 | 0 | 0 | 0 | 1 | 0 | 0 | ||||
9 | 0 | 0 | 1 | 1 | 0 | |||||
10 | 0 | 1 | 0 | 1 | 0 | |||||
11 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | |||
12 | 1 | 0 | 0 | 1 | 0 | 0 | ||||
13 | 1 | 0 | 1 | 1 | 0 | 0 | ||||
14 | 1 | 1 | 0 | 1 | 0 | 0 | ||||
15 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Values |
---|---|
DC voltage source | 800 V |
RMS value of rated AC voltage source | 220 V |
Frequency of AC voltage sources | 50 Hz |
Equivalent resistance of filter inductor | 0.2 Ω |
Filter inductors | 1 mH |
Filter inductance in N-phase | 1 mH |
Filter capacitors Switching frequency Transformation ratio | 10−5 s 1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Zhang, H.; Liang, X.; Deng, S. Model Predictive Control for Three-Phase, Four-Leg Dynamic Voltage Restorer. Energies 2024, 17, 5622. https://doi.org/10.3390/en17225622
Liu D, Zhang H, Liang X, Deng S. Model Predictive Control for Three-Phase, Four-Leg Dynamic Voltage Restorer. Energies. 2024; 17(22):5622. https://doi.org/10.3390/en17225622
Chicago/Turabian StyleLiu, Decan, Huaying Zhang, Xiaorui Liang, and Shicong Deng. 2024. "Model Predictive Control for Three-Phase, Four-Leg Dynamic Voltage Restorer" Energies 17, no. 22: 5622. https://doi.org/10.3390/en17225622
APA StyleLiu, D., Zhang, H., Liang, X., & Deng, S. (2024). Model Predictive Control for Three-Phase, Four-Leg Dynamic Voltage Restorer. Energies, 17(22), 5622. https://doi.org/10.3390/en17225622