Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities
Abstract
:1. Introduction
2. Earthquake Damage in Electric Power Facilities
Country (Year) | Location | Damage | Failure Mode |
---|---|---|---|
Mexico (1985) | Yautepec substation |
|
|
Oaxaca substation |
|
| |
The U.S. (Loma prieta) (1989) | Moss Landing substation |
|
|
Iran (2003) | substation in Tehran and Tabriz |
|
|
China (2008) | more than 100 substations including Ertaishan substation |
|
|
Haiti (2010) | Ancien Delmas substation and Nouveau Delmas substation [30] |
|
|
Chile (2010) | substation near Quillota |
|
|
Türkiye (2023) | İskenderun, Elbistan and antakya area [28] |
|
3. Unit Under Tests
4. Shaking Table Tests
4.1. Resonance Search Test
4.2. Time History Test
5. Test Equipment and Measurement
5.1. Test Equipment
5.2. Measurement
6. Test Results and Analysis
6.1. Estimation of the Resonant Frequency and Damping Ratio
6.2. Acceleration Amplification Ratio
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Zhang, M.; Wu, L. Vulnerability Study of Electric Power Grid in Different Intensity Area in Wenchuan Earthquake. In Proceedings of the 15th World Conference of Earthquake Engineering (WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Cruz, E.F.; Valdivia, D. Performance of industrial facilities in the Chilean earthquake of 27 February 2010. Struct. Des. Tall Spec. Build. 2011, 20, 83–101. [Google Scholar] [CrossRef]
- Xue, Y.; Cheng, Y.; Zhu, Z.; Li, S.; Liu, Z.; Guo, H.; Zhang, S. Study on seismic performance of porcelain pillar electrical equipment based on nonlinear dynamic theory. Adv. Civ. Eng. 2021, 2021, 8816322. [Google Scholar] [CrossRef]
- Fujisaki, E.; Takhirov, S.; Xie, Q.; Mosalam, K.M. Seismic Vulnerability of Power Supply: Lessons Learned from Recent Earthquakes and Future Horizons of Research. In Proceedings of the 9th International Conference on Structural Dynamics (EURODYN 2014), Porto, Portugal, 30 June–2 July 2014. [Google Scholar]
- Wang, L.; Shi, W.; Li, X.; Zhang, Q.; Zhou, Y. An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency. Struct. Control Health Monit. 2019, 26, 2377. [Google Scholar] [CrossRef]
- ACSE/SEI 7-16; Minimum Design Loads for Buildings and Other Structures. ASCE: Reston, VA, USA, 2017.
- KDS 41 17 00; Seismic Design Code for Buildings. MOLIT: Sejong, Republic of Korea, 2019.
- Korea Electric Power Cooperation (KEPCO). Earthquake Resistant Design Guidelines of Transmission, Substation and Distribution Facilities; KEPCO: Naju, Republic of Korea, 2019. [Google Scholar]
- IEEE 693-2005; Recommended Practice for Seismic Design of Substations. IEEE: Piscataway, NJ, USA, 2005.
- IEC TS 61463; Technical Specification. IEC: Geneva, Switzerland, 2016.
- IEC 62271-207; High-Voltage Switchgear and Controlgear—Part 207: Seismic Qualification for Gas-Insulated Switchgear Assemblies for Rated Voltages Above 52kV. IEC: Geneva, Switzerland, 2007.
- IEC 62271-210; Seismic Qualification for Metal Enclosed and Solid-Insulation Enclosed Switchgear and Controlgear Assemblies for Rated Voltages Above 1 kV and up to and Including 52 kV. IEC: Geneva, Switzerland, 2013.
- IEC 60068 3-3; Environmental Testing—Part 3: Guidance—Seismic Test Methods for Equipments. IEC: Geneva, Switzerland, 1991.
- Koliou, M.; Filiatrault, A.; Reinhorn, A.M.; Oliveto, N. Seismic Protection of Electrical Transformer Bushing System by Stiffening Techniques: Technical Report MCEER-12-0002; Multidisciplinary Center for Earthquake Engineering Research: New York, NY, USA, 2012. [Google Scholar]
- Amir, S.G.; Whittaker, A.S.; Fenves, G.L.; Fujisaki, E. Seismic Evaluation of 550 kV Porcelain Transformer Bearings: PEER Report 1999/05; Pacific Earthquake Engineering Research Center: Richmond, CA, USA, 1999. [Google Scholar]
- Joe, Y.H.; Cho, S.G. Modal identification and seismic performance evaluation of 154kV transformer porcelain bushing by vibration test. J. Earthq. Eng. Soc. Korea 2006, 10, 107–115. [Google Scholar]
- Kim, S.W.; Park, D.U.; Jeon, B.G.; Yun, D.W. Response of a 230 kV outdoor termination according to the frequency characteristics of input seismic waves. Energy Rep. 2020, 6, 497–503. [Google Scholar] [CrossRef]
- Ullah, K.N.; Mohammmad, A.S. Electrical and Seismic Design of Electric Supply Substation; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2015. [Google Scholar]
- Oikonomou, K.; Roh, H.; Reinhorn, A.M.; Schiff, A.; Kempner, L. Seismic performance evaluation of high voltage transformer bushings. Struct. Congr. 2010, 2010, 2724–2735. [Google Scholar]
- Yang, J.; Rustogi, S.K.; Gupta, A. Rocking stiffness of mounting arrangements in electrical cabinets and control panels. Nucl. Eng. Des. 2003, 219, 127–141. [Google Scholar] [CrossRef]
- Filiatrault, A.; Matt, H. Experimental Seismic Response of High-Voltage Transformer-Bushing Systems. Earthq. Spectra 2005, 21, 1009–1025. [Google Scholar] [CrossRef]
- Cao, M.G.; Cheng, Y.F.; Dai, Z.B.; Zhou, F.L.; Tan, P. Parameter Analysis and Shaking Table Test on Seismic Isolation System of Transformer with Bushings. In Proceedings of the 15th World Conference of Earthquake Engineering (WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Chun, N.H.; Jeon, B.G.; Kim, S.W.; Chang, S.J.; Son, S.W. Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests. Struct. Eng. Mech. 2022, 84, 155–165. [Google Scholar]
- Jeon, B.G.; Jung, C.Y.; Jin, J.W.; Kim, H.H.; Cheung, J.H. Seismic performance evaluation of 500 kV EBA. Trans. Korean Soc. Noise Vib. Eng. 2015, 25, 496–502. [Google Scholar] [CrossRef]
- Soto, D.O.; Angulo, E.R. Tiempo de interrupción de negocios en la Ciudad de México por daños directos y efectos indirectos en edificios a causa del sismo del 19S de 2017. Rev. De Ing. Sismica 2020, 104, 1–31. [Google Scholar]
- Fujisaki, E. Seismic Performance of Electric Transmission Systems. In Proceedings of the Pacific Earthquake Engineering Research Center 2009 Peer Annual Meeting, San Francisco, CA, USA, 15–16 October 2009. [Google Scholar]
- Fallahi, K. Study of Seismic Damage to Power Generation and Distribution Network and Remedy for Improving the Existing Safety Criteria. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Çetin, K.O.; Bray, J.D.; Frost, J.D.; Hortacsu, A.; Miranda, E.; Moss, R.E.; Stewart, J.P. February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts: Report No. GEER Association Report 082; Earthquake Engineering Research Institute (EERI): Berkeley, CA, USA, 2023. [Google Scholar]
- Schiff, A.J. The Lorna Prieta, California, Earthquake of October 17, 1989-Lifelines; United States Government Publishing Office: Washington, DC, USA, 1998.
- Bellerive, J.M. Haiti Earthquake PDNA: Assessment of Damage, Losses, General and Sectoral Needs; Annex to the Action Plan for National Recovery and Development of Haiti: Port-au-Prince, Haiti, 2010. [Google Scholar]
- Institute of Electrical and Electronics Engineers (IEEE). Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Station: IEEE 344; IEEE: Piscataway, NJ, USA, 1987. [Google Scholar]
- Seismic Research and Test Center (SESTEC). Seismic Qualification Test Report of 500 kV Termination on Support; Report No. 2014-R-094; SESTEC: Yangsan, Republic of Korea, 2014. [Google Scholar]
- Seismic Research and Test Center (SESTEC). Seismic Qualification Test of Outdoor Sealing End for 230kV XLPE Power Cable; Report No. SESTEC-2017-R-016-Rev.0; SESTEC: Yangsan, Republic of Korea, 2017. [Google Scholar]
- Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E. Dynamic Amplification of Electrical Cabinets: NUREG/CR-5203; Nuclear Regulatory Commission: Washington, DC, USA, 1988.
- IEEE 693-2018; Recommended Practice for Seismic Design of Substations. IEEE: Piscataway, NJ, USA, 2018.
- Chang, S.J.; Jeong, Y.S.; Eem, S.H.; Choi, I.K.; Park, D.U. Evaluation of MCC seismic response according to the frequency contents through the shake table test. Nucl. Eng. Technol. 2021, 53, 1345–1356. [Google Scholar] [CrossRef]
Specimen Name | Specification | Dimensions (mm) | Weight (kg) | Added Weight (kg) | ||
---|---|---|---|---|---|---|
Length | Width | Height | ||||
UUT1 | 500 kV | 2348 | 1219 | 9253 | 4900 | 12.62 |
UUT2 | 230 kV | 1212 | 1212 | 6000 | 2108 | 7.10 |
Step | Test Name |
---|---|
1 | pre-resonance search test |
2 | Time history test |
3 | post-resonance search test |
Item | Specification |
---|---|
degrees of freedom | 6DOF |
table size | 4 m × 4 m |
full payload | 30 tons |
maximum acceleration (bar table) | 3.0 g |
maximum velocity | 150 cm/s |
maximum stroke | ±30.0 cm (±20.0 cm) |
Test Name | Direction | Lowest Resonant Frequency (Hz) | Damping Ratio (%) | Remarks | ||
---|---|---|---|---|---|---|
UUT1 | UUT2 | UUT1 | UUT2 | |||
pre-resonance search test | X | 5.00 | 7.19 | 5.56 | 3.26 | half-power bandwidth |
Y | 4.50 | 7.13 | 6.06 | 3.95 | ||
Z | 24.25 | 36.75 | 1.90 | 1.62 | ||
post-resonance search test | X | 5.00 | 7.00 | 5.56 | 4.02 | |
Y | 4.50 | 6.94 | 6.06 | 3.60 | ||
Z | 24.50 | 34.94 | 1.37 | 1.34 |
Location | Direction | ZPA (g) | (g/g) | ||
---|---|---|---|---|---|
UUT1 | UUT2 | UUT1 | UUT2 | ||
shaking table | X | 1.28 | 0.86 | - | - |
Y | 1.59 | 0.56 | - | - | |
Z | 1.97 | 0.92 | - | - | |
top of sub-structure | X | 0.95 | 2.16 | 0.74 | 2.51 |
Y | 1.07 | 1.94 | 0.67 | 3.46 | |
Z | 0.80 | 1.32 | 0.41 | 1.44 | |
mass center of UUT | X | 1.21 | 2.13 | 0.96 | 2.48 |
Y | 1.21 | 2.14 | 0.76 | 3.82 | |
Z | 0.58 | 2.29 | 0.29 | 2.49 | |
top of UUT | X | 2.34 | 4.88 | 1.83 | 5.67 |
Y | 2.35 | 4.34 | 1.48 | 7.75 | |
Z | 0.96 | 2.67 | 0.49 | 2.90 |
Location | Direction | RMS of Acceleration (g) | (g/g) | ||
---|---|---|---|---|---|
UUT1 | UUT2 | UUT1 | UUT2 | ||
shaking table | X | 0.12 | 0.12 | - | - |
Y | 0.13 | 0.11 | - | - | |
Z | 0.12 | 0.10 | - | - | |
top of sub-structure | X | 0.13 | 0.25 | 1.08 | 2.08 |
Y | 0.15 | 0.24 | 1.15 | 2.18 | |
Z | 0.14 | 0.13 | 1.17 | 1.30 | |
mass center of UUT | X | 0.23 | 0.46 | 1.92 | 3.83 |
Y | 0.26 | 0.43 | 2.00 | 3.91 | |
Z | 0.10 | 0.14 | 0.83 | 1.40 | |
top of UUT | X | 0.48 | 0.74 | 4.00 | 6.17 |
Y | 0.51 | 0.73 | 3.92 | 6.64 | |
Z | 0.11 | 0.15 | 0.92 | 1.50 |
Location | Direction | (g/g) | (g/g) | |||
---|---|---|---|---|---|---|
UUT1 | UUT2 | UUT1 | UUT2 | |||
top of the support structure | amplification ratio (g/g) | X | 0.74 | 2.51 | 1.08 | 2.08 |
Y | 0.67 | 3.46 | 1.15 | 2.18 | ||
average | 0.71 | 2.99 | 1.12 | 2.13 | ||
difference (%) | 9.93 | 31.83 | 6.28 | 4.69 | ||
mass center of UUT | amplification ratio (g/g) | X | 0.96 | 2.48 | 1.92 | 3.83 |
Y | 0.76 | 3.82 | 2.00 | 3.91 | ||
average | 0.86 | 3.15 | 1.96 | 3.87 | ||
difference (%) | 23.26 | 42.54 | 4.08 | 2.07 | ||
top of UUT | amplification ratio (g/g) | X | 1.83 | 5.67 | 4.00 | 6.17 |
Y | 1.48 | 7.75 | 3.92 | 6.64 | ||
average | 1.66 | 6.71 | 3.96 | 6.41 | ||
difference (%) | 21.15 | 31.00 | 2.02 | 7.34 |
Direction | (g/g) | (g/g) | IEEE 693 Maximum Amplification Ratio of Support Structure | |||
---|---|---|---|---|---|---|
UUT1 | UUT2 | UUT1 | UUT2 | |||
horizontal | X | 0.74 | 2.51 | 1.08 | 2.08 | 2.50 |
Y | 0.67 | 3.46 | 1.15 | 2.18 | ||
vertical | Z | 0.41 | 1.44 | 1.17 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, B.-G.; Chang, S.-J.; Kim, S.-W.; Park, D.-U.; Chun, N. Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities. Energies 2024, 17, 5641. https://doi.org/10.3390/en17225641
Jeon B-G, Chang S-J, Kim S-W, Park D-U, Chun N. Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities. Energies. 2024; 17(22):5641. https://doi.org/10.3390/en17225641
Chicago/Turabian StyleJeon, Bub-Gyu, Sung-Jin Chang, Sung-Wan Kim, Dong-Uk Park, and Nakhyun Chun. 2024. "Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities" Energies 17, no. 22: 5641. https://doi.org/10.3390/en17225641
APA StyleJeon, B. -G., Chang, S. -J., Kim, S. -W., Park, D. -U., & Chun, N. (2024). Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities. Energies, 17(22), 5641. https://doi.org/10.3390/en17225641