Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
4. Results
4.1. Sedimentary Fillings
4.2. Abundance of Organic Matter
4.3. Maturity of Organic Matter
4.4. Type of Organic Matter
5. Discussion
5.1. Source Rock Formation Influenced by Sedimentary Environment
5.2. Source Rock Evolution Influenced by Thermal Variation
5.3. Influence of Source Rock Evolution on Oil-Gas Exploration
6. Conclusions
- (1)
- Two types of oil- and coal-bearing source rocks are developed in the fault subsidence phase of the Fuxin Basin. These are deposited in semi-deep lake facies of K1jf2-3 and K1sh4, and shore–shallow lake facies of K1sh3 and K1f. The thickest oil-bearing source rocks are located in the K1jf2-3 of the central basin (~700 m). Whereas the thickest coal- and oil-bearing source rocks are present in the K1sh3 (~250 m) and K1sh4 (~500 m) of the eastern basin, respectively. Thus, the development of source rocks migrated eastward alongside the lacustrine depocenter since the K1jf2-3 period, influenced by basin evolution associated with extensional detachment tectonism.
- (2)
- A gradual increase in thermal records was observed from west to east across the basin. The thermal variation in different source rocks across the western, central, and eastern basins exhibited early low-mature, late low-mature, and mature phases in the K1sh4, late low-mature, mature, and high-mature phases in the K1sh3, as well as mature, high- to over-mature and over-mature phases in the K1jf2-3. Furthermore, the emplacement of the Oligocene dolerite dyke significantly elevated thermal values in shallow stratum.
- (3)
- The quality of source rocks is influenced by the variation in OM thermal maturity. The thermal decomposition of highly mature source rocks in the K1jf2-3 reduced OM abundance in the central and eastern basins (<2.3 wt.%) compared to the western basin (~2.8 wt.%). TOC values of low-mature source rocks in the K1sh4 of the eastern basin (~3.5 wt.%) exceed those found in central and western basins (<2.4 wt.%). Consequently, source rocks from west to east across the basin predominantly exhibit OM types ranging from kerogen type-II1/-I to type-II2/-III. This variation is influenced by strong hydrogen generation of OM in relation to thermal variability.
- (4)
- The spatiotemporal variation of mature source rocks increases the potential for diverse oil and gas exploration across different strata and locations. Our findings demonstrate that the primary sources of conventional petroleum are located in the K1sh4 of the eastern basin and the K1jf2-3 of the western basin. The primary sources of coalbed methane are situated in the K1sh3 of the eastern basin, while the significant sources of shale gas are present in the K1jf2 of the central basin and the K1jf2-3 of the eastern basin.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leythaeuser, D.; Schaefer, R.G. Effects of hydrocarbon expulsion from shale source rocks of high maturity in Upper Carboniferous strata of the Ruhr area, Federal Republic of Germany. Org. Geochem. 1984, 6, 671–681. [Google Scholar] [CrossRef]
- Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge. AAPG Bull. 2006, 90, 261–292. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, B.; Wang, X.; Wu Songtao, W.; Zhang, S.; Liu, W.; Wang, K.; Zhao, X. Differences in source kitchens for lacustrine in-source and out-of-source hydrocarbon accumulations. Petrol. Explor. Dev. 2021, 48, 541–554. [Google Scholar] [CrossRef]
- Dembicki, H., Jr. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Spacapan, J.B.; Comerio, M.; Brisson, I.; Rocha, E.; Cipollone, M.; Hidalgo, J.C. Integrated source rock evaluation along the maturation gradient. Application to the Vaca Muerta Formation, Neuquén Basin of Argentina. Basin Res. 2021, 33, 3183–3211. [Google Scholar] [CrossRef]
- Farouk, S.; Saada, S.A.; Fagelnour, M.; Tawfik, A.Y.; Arafat, M.; El-Kahtany, K. Geochemical evaluation and basin modelling of the Cretaceous succession in the Azhar Oil field, West Beni Suef Basin, Egypt. Geol. J. 2024, 59, 1949–1967. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, S.; Li, J.; Li, X.; Wang, Y.; Li, D.; Cheng, K. Geological characteristics and resource potential of shale gas in China. Petrol. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Wang, D.; Xu, L.; Li, Z.; Niu, J.; Chen, L.; Sun, Y.; Li, Q.; Yang, Z.; et al. Shale gas accumulation patterns in China. Nat. Gas. Ind. 2022, 42, 78–95. [Google Scholar] [CrossRef]
- Carminati, E.; Cavazza, D.; Scrocca, D.; Fantoni, R.; Scotti, P.; Doglioni, C. Thermal and tectonic evolution of the southern Alps (northern Italy) rifting: Coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bull. 2010, 94, 369–397. [Google Scholar] [CrossRef]
- Hudson, S.M.; Hanson, A.D. Thermal maturation and hydrocarbon migration within La Popa Basin, northeastern Mexico, with implications for other salt structures. AAPG Bull. 2010, 94, 273–291. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Bernard, S.; Horsfield, B. Thermal maturation of gas shale systems. Annu. Rev. Earth Planet. Sci. 2014, 42, 635–651. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Huang, J.; Fang, C.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Yang, T.; Wang, S.; Huang, J. Geological difference and its significance of marine shale gases in South China. Petrol. Explor. Dev. 2016, 43, 547–559. [Google Scholar] [CrossRef]
- Ransom, B.; Kim, D.; Kastner, M.; Wainwright, S. Organic matter preservation on continental slops: Importance of mineralogy and surface area. Geochim. Cosmochim. Acta 1998, 62, 1329–1345. [Google Scholar] [CrossRef]
- Nederbragt, A.J.; Thurow, J.; Vonhof, H.; Brumsack, H.J. Modelling oceanic carbon and phosphorus fluxes: Implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2). J. Geol. Soc. 2004, 161, 721–728. [Google Scholar] [CrossRef]
- Galy, V.; France-Lanord, C.; Beyssac, O.; Faure, P.; Kudrass, H.; Palhol, F. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 2007, 450, 407–411. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Wagner, T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proc. Natl. Acad. Sci. USA 2011, 108, 9776–9781. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Wang, H.; Su, J.; He, K.; Yu, W.; Wang, X. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China. Petrol. Explor. Dev. 2017, 44, 32–39. [Google Scholar] [CrossRef]
- Yin, H.; Xie, S.; Yan, J.; Hu, C.; Huang, J.; Tenger; Qie, W.; Qiu, X. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon. Sci. China Earth Sci. 2011, 54, 1121–1135. [Google Scholar] [CrossRef]
- Jia, J.; Wu, Y.; Miao, C.; Fu, C.; Xie, W.; Qin, J.; Wang, X. Tectonic Controls on the Sedimentation and Thermal History of Supra-detachment Basins: A Case Study of the Early Cretaceous Fuxin Basin, NE China. Tectonics 2021, 40, e2020TC006535. [Google Scholar] [CrossRef]
- Meng, Q.; Zhou, Z.; Zhu, R.; Xu, Y.; Guo, Z. Cretaceous basin evolution in northeast Asia: Tectonic responses to the paleo-Pacific plate subduction. Natl. Sci. Rev. 2022, 9, nwab088. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Y.; Wang, X.; Jiang, L.; Wang, H.; Ji, Z. The oil-gas exploration direction of Fuxin Basin. Geol. Resour. 2015, 24, 473–477. [Google Scholar]
- Jia, J.; Wu, Y.; Yang, D.; Qin, J. Discovery and accumulation mechanism of Early Cretaceous volcanogenic buried-hill reservoir in the Fuxin basin. Acta Geol. Sin. 2022, 96, 3977–3993. [Google Scholar]
- Xie, W.; Jia, J.; Mansour, A.; Wang, X. Hydrocarbon generation and migration in the Fuxin Basin during the Cretaceous evolution of the North China Craton, NE China. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 148. [Google Scholar] [CrossRef]
- Wu, Z.; Yue, H.; Han, J. The Meso-Cenozoic tectonic transitions in the Fuxin Basin, Liaoning and their geological significances. Acta Geol. Sichuan 2007, 27, 239–244. [Google Scholar]
- Sun, S.; Qiu, L.; Yan, D.P.; Zhou, Z.; Zhang, J.; Wang, X.; Wu, B.; Shi, H.; Ariser, S.; Chu, R.; et al. Formation and Evolution of Supradetachment Basins During Continental Extension: Insights from the Fuxin Basin in NE China. Front. Earth Sci. 2022, 10, 845812. [Google Scholar] [CrossRef]
- Xu, X.; Shao, L.; Fu, Y.; Wang, D.; Cai, H.; Qin, J.; Hou, H.; Zhao, J. Sequence palaeogeography, lacustrine basin evolution, and coal accumulation in the Lower Cretaceous Fuxin continental faulted basin, China. Geol. J. 2020, 55, 1195–1215. [Google Scholar] [CrossRef]
- Xie, W.; Jia, J.; Miao, C.; Wu, Y.; Wang, X.; Qin, J. Formation and evolution of coal–and oil–bearing source rocks in the Lower Cretaceous Shahai Formation in the Fuxin Basin (NE China): Evidence from organic and inorganic geochemical analyses. J. Petrol. Sci. Eng. 2021, 202, 108544. [Google Scholar] [CrossRef]
- Jia, J.; Ji, Z. Progress in geological researches on the petroleum and gas exploration in the Cretaceous Shahai Formation of Fuxin Basin. News Lett. China Geol. Surv. 2017, 3, 39–42. [Google Scholar]
- Wang, H.; Liu, Y. Characteristics of cretaceous source rocks and the origin of natural gas in Fuxin sag. Mar. Geol. Front. 2013, 29, 33–40. (In Chinese) [Google Scholar]
- Zhang, B.; Zhu, G.; Jiang, D.; Li, C.; Chen, Y. Evolution of the Yiwulüshan metamorphic core complex from distributed to localized deformation and its tectonic implications. Tectonics 2012, 31, TC4018. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, D.; Zhang, B.; Chen, Y. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. 2012, 22, 86–103. [Google Scholar] [CrossRef]
- Darby, B.; Davis, G.; Zhang, X.; Wu, F.; Simon, W.; Yang, J. The newly discovered Waziyu metamorphic core complex, Yiwulüshan, western Liaoning Province, Northwest China. Earth Sci. Front. 2004, 11, 145–155. [Google Scholar]
- Li, G.; Liu, Z.; Liu, J.; Li, Y.; Xu, Z.; Dong, X. Formation and timing of the extensional ductile shear zones in Yiwulü mountain area, western Liaoning Province, North China. Sci. China Earth Sci. 2012, 55, 733–746. [Google Scholar] [CrossRef]
- Jia, J.; Miao, C.; Xie, W. Terrestrial paleoclimate transition associated with continental weathering and drift during the Aptian–Albian of East Asia. GSA Bull. 2023, 135, 467–480. [Google Scholar] [CrossRef]
- Jia, J.; Bechtel, A.; Liu, Z.; Strobl, S.A.; Sun, P.; Sachsenhofer, R.F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol. 2013, 113, 11–26. [Google Scholar] [CrossRef]
- Hackley, P.C.; Araujo, C.V.; Borrego, A.G.; Bouzinos, A.; Cardott, B.J.; Cook, A.C.; Eble, C.; Flores, D.; Gentzis, T.; Gonçalves, P.A.; et al. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Mar. Petrol. Geol. 2015, 59, 22–34. [Google Scholar] [CrossRef]
- Espitalié, J.; Marquis, F.; Barsony, I. Geochemical Logging. In Analytical Pyrolysis; Voorhess, K.J., Ed.; Butterworths: Boston, MA, USA, 1984; pp. 53–79. [Google Scholar]
- Langford, F.F.; Blanc-Valleron, M.-M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolyzable hydrocarbons vs. total organic carbon. AAPG Bull. 1990, 74, 799–804. [Google Scholar]
- Schoepfer, S.D.; Shen, J.; Wei, H.; Tyson, R.V.; Ingall, E.; Algeo, T.J. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci. Rev. 2015, 149, 23–52. [Google Scholar] [CrossRef]
- Shao, L.; Li, M.; Li, Y.; Zhang, Y.; Lu, J.; Zhang, W.; Tian, Z.; Wen, H. Geological characteristics and controlling factors of shale gas in the Jurassic of the northern Qaidam Basin. Earth Sci. Front. 2014, 21, 311–322. [Google Scholar]
- Hu, Z.; Wang, R.; Liu, Z.; Liu, G.; Feng, D.; Yang, Z.; Wang, P. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan Basin. Earth Sci. Front. 2021, 28, 261–272. [Google Scholar]
- Feng, Z.; Fang, W.; Li, Z.; Wang, X.; Huo, Q.; Huang, C.; Zhao, J.; Zeng, H. Depositional environment of terrestrial petroleum source rocks and geochemical indicators in the Songliao Basin. Sci. China Earth Sci. 2011, 54, 1304–1317. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Flores, D.; Mendonça Filho, J.G.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, geological applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Yang, S.; Horsfield, B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. Int. J. Coal Geol. 2020, 225, 103500. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, J.; Qin, J.; Wang, X. The intrusion characteristics of Cenozoic diabase in the middle and northern Fuxin basin and its influence on source rocks. Acta Geol. Sin. 2022, 96, 1026–1040. [Google Scholar]
- Haile, B.; Klausen, T.; Jahren, J.; Braathen, A.; Hellevang, H. Thermal history of a triassic sedimentary sequence verified by a multi-method approach: Edgeøya, Svalbard, Norway. Basin Res. 2018, 30, 1075–1097. [Google Scholar] [CrossRef]
Indicator | Borehole | K1jf2 | K1jf3 | K1sh1-2 | K1sh3 | K1sh4 | K1f |
---|---|---|---|---|---|---|---|
Range/ Average | Range/ Average | Range/ Average | Range/ Average | Range/ Average | Range/ Average | ||
TOC (wt.%) | FY-2 | 0.59–1.81 1.17 (n = 12) | 1.31–3.69 2.10 (n = 25) | 0.91–3.36 2.36 (n = 14) | 1.59–5.15 3.05 (n = 14) | 0.95–5.39 2.60 (n = 20) | n.d. 1 |
FY-1 | 0.31–1.20 0.60 (n = 6) | 1.03–2.25 1.55 (n = 25) | 1.15–3.38 1.86 (n = 8) | 0.95–8.18 2.60 (n = 10) | 1.53–4.38 2.31 (n = 21) | 0.98–51.60 18.58 (n = 13) | |
DY-1 | n.d. 1 | 0.16–0.55 0.42 (n = 3) | 0.41–2.42 1.18 (n = 9) | 0.20–11.50 1.87 (n = 26) | 1.12–4.71 2.73 (n = 53) | 0.98–3.97 2.44 (n = 12) | |
S1 + S2 (mg/g) | FY-2 | 0.41–4.03 1.78 (n = 12) | 1.69–20.89 6.42 (n = 25) | 1.86–24.92 11.47 (n = 14) | 2.55–23.93 12.91 (n = 14) | 0.52–35.55 9.01 (n = 20) | n.d. 1 |
FY-1 | 0.16–0.64 0.33 (n = 6) | 0.89–2.34 1.40 (n = 25) | 1.21–3.55 2.47 (n = 8) | 1.18–15.50 4.22 (n = 10) | 0.73–76.89 7.61 (n = 21) | 0.57–143.76 47.54 (n = 13) | |
DY-1 | n.d. 1 | 0.14–0.34 0.24 (n = 3) | 0.08–1.11 0.45 (n = 9) | 0.11–18.41 1.89 (n = 26) | 0.79–12.50 6.65 (n = 53) | 0.34–3.70 1.54 (n = 12) | |
Tmax (°C) | FY-2 | 448–459 454 (n = 12) | 433–454 446 (n = 25) | 437–441 439 (n = 14) | 432–443 437 (n = 14) | 431–439 435 (n = 20) | n.d. 1 |
FY-1 | 480–492 488 (n = 6) | 443–489 463 (n = 25) | 449–456 453 (n = 8) | 443–451 448 (n = 10) | 429–450 442 (n = 21) | 424–443 433 (n = 13) | |
DY-1 | n.d. 1 | 513–527 520 (n = 3) | 482–529 519 (n = 9) | 457–519 487 (n = 26) | 435–465 443 (n = 53) | 425–439 435 (n = 12) | |
Ro (%) | FY-2 | 0.99–1.06 1.03 (n = 5) | 0.84–1.00 0.92 (n = 12) | 0.74–0.82 0.78 (n = 4) | 0.60–0.75 0.66 (n = 9) | 0.51–0.61 0.56 (n = 10) | n.d. 1 |
FY-1 | 1.94%–2.25 2.10 (n = 2) | 1.50%–2.12 1.75 (n = 11) | 1.31%–1.45 1.38 (n = 3) | 0.77%–1.27 0.98 (n = 7) | 0.61%–0.75 0.68 (n = 8) | 0.59–0.59 0.59 (n = 1) | |
DY-1 | n.d. 1 | 2.03%–2.25 2.14 (n = 2) | 1.99%–2.19 2.08 (n = 3) | 1.23%–1.98 1.68 (n = 6) | 0.62%–1.11 0.80 (n = 9) | 0.55%–0.62 0.58 (n = 3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Jia, J.; Wang, X. Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China. Energies 2024, 17, 5654. https://doi.org/10.3390/en17225654
Su X, Jia J, Wang X. Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China. Energies. 2024; 17(22):5654. https://doi.org/10.3390/en17225654
Chicago/Turabian StyleSu, Xin, Jianliang Jia, and Xiaoming Wang. 2024. "Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China" Energies 17, no. 22: 5654. https://doi.org/10.3390/en17225654
APA StyleSu, X., Jia, J., & Wang, X. (2024). Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China. Energies, 17(22), 5654. https://doi.org/10.3390/en17225654