Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model
Abstract
:1. Introduction
2. Methodology
2.1. Process Description
2.2. Selection of Accident Scenarios
3. Results and Discussion
3.1. Scenario and Damage Prediction Results
3.2. Results for Jet Fire
3.3. Results for Vapor Cloud Explosion (VCE)
3.4. Results for Flash Fire
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lui, S.; Kuramochi, T.; Smit, S.; Roelfsema, M.; Hsu, A.; Weinfurter, A.; Chan, S.; Hale, T.; Fekete, H.; Lütkehermöller, K.; et al. Correcting course: The emission reduction potential of international cooperative initiatives. Clim. Policy 2021, 21, 232–250. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Cheung, A. New Energy Outlook 2021—Roads to Carbon Neutrality: COP26 Nordic Pavilion; Bloomberg NEF: London, UK, 2021; p. 11. [Google Scholar]
- Hydrogen Coalition Members’ Study Team. Hydrogen Roadmap Korea—A Vision, Roadmap and Recommendation to Develop Korea’s Hydrogen Economy; Hydrogen Council: Brussels, Belgium, 2018; p. 8. [Google Scholar]
- Ministry of Employment and Labor Press Release. Ministry of Employment and Labor Holds a Meeting to Prevent Accidents Preemptively in New Industries and Distributes ‘Hydrogen Safety Manual’; Ministry of Employment and Labor: Sejong City, Republic of Korea, 2022; p. 3. [Google Scholar]
- Lee, M.H.; Yoon, Y.J.; Lee, W.Y. Hydrogen Economy—2050 Carbon Emission Zero, Hydrogen Is the Answer; Max Media: Seoul, Republic of Korea, 2022; pp. 134–135. [Google Scholar]
- Kwak, J.B.; Lee, H.T.; Park, S.M.; Park, J.H.; Jung, S.H. Risk Assessment of a Hydrogen Refueling Station in an Urban Area. Energies 2023, 16, 3963. [Google Scholar] [CrossRef]
- Gye, H.R.; Seo, S.K.; Bach, Q.V.; Ha, D.G.; Lee, C.J. Quantitative risk assessment of an urban hydrogen refueling station. Int. J. Hydrogen Energy 2019, 44, 1288–1298. [Google Scholar] [CrossRef]
- Park, B.J.; Kim, Y.K.; Lee, K.W.; Paik, S.W.; Kang, C.K. Risk assessment method combining independent protection layers (IPL) of layer of protection analysis (LOPA) and RISKCURVES software: Case study of hydrogen refueling stations in Urban Areas. Energies 2021, 14, 4043. [Google Scholar] [CrossRef]
- Kwak, H.J.; Kim, M.J.; Min, M.M.; Park, B.J.; Jung, S.H. Assessing the Quantitative Risk of Urban Hydrogen Refueling Station in Seoul, South Korea, Using SAFETI Model. Energies 2024, 17, 867. [Google Scholar] [CrossRef]
- Jeon, B.I.; Kim, S.J.; Yoon, Y.S.; Jung, S.H. Quantitative Risk Assessment of Hydrogen Refueling Station in Cheonan City of South Korea. Energies 2023, 16, 7138. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, J.D.; Cho, J.H.; Moon, I. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Kora. Hydrog. Energy 2013, 38, 1737. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Sun, M.; Duan, L.; Zhou, Y.; Zhang, H.; Huang, L.; Zheng, N. Study on a novel hydrogen purification approach base on methane steam reforming process with CO-preferential oxidation and CO2 removal. Appl. Energy 2025, 377, 124727. [Google Scholar] [CrossRef]
- Air Products. Could On-Site Hydrogen Production Save You Money? Available online: https://www.youtube.com/watch?v=UpUxaFiDKFg (accessed on 19 October 2024).
- DNV. PHAST Save Lives by Understanding Fire, Explosion, and Toxic Effects, Phast Flyer; DNV: Oslo, Norway, 2023. [Google Scholar]
- Korea Occupational Safety and Health Agency. Technical Guidelines on Consequence Analysis (CA) Techniques (P-102-2021); Korea Occupational Safety and Health Agency: Ulsan Metropolitan City, Republic of Korea, 2021. [Google Scholar]
- Korea Occupational Safety and Health Agency. Technical Guidelines on Leaking Source Modeling (P-92-2023); Korea Occupational Safety and Health Agency: Ulsan Metropolitan City, Republic of Korea, 2023. [Google Scholar]
- Korea Occupational Safety and Health Agency. Technical Guidelines on Selection of Worst and Alternative Leakage Scenarios (P-107-2020); Korea Occupational Safety and Health Agency: Ulsan Metropolitan City, Republic of Korea, 2020. [Google Scholar]
- Pandya, N.; Gabas, N.; Marsden, E. Sensitivity analysis of Phast’s atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine). Loss Prev. 2012, 25, 20. [Google Scholar] [CrossRef]
- Witlox, H.; Fernandez, M.; Harper, M.; Oke, A.; Stene, J.; Xu, Y. Verification and validation of Phast consequence models for accidental releases of toxic or flammable chemicals to the atmosphere. Loss Prev. 2018, 55, 457–470. [Google Scholar] [CrossRef]
Step | Process | Description | Condition |
---|---|---|---|
1 | Pre- Treatment |
| - |
2 | Natural Gas Compressing | Compression of natural gas to provide heat to the process. |
|
3 | Steam Methane Reforming | Natural gas and steam react under a nickel catalyst to produce syngas (synthesis gas). (Reaction formula: CH4 + H2O↔3H2 + CO) |
|
4 | Shift Reaction | Carbon monoxide (CO) among syngas components reacts with steam (H2O) to produce additional hydrogen (H2) and carbon dioxide (CO2). (Reaction formula: CO + H2O↔H2 + CO2) |
|
5 | Steam Generating | Using waste heat and deionized water from the process, steam is produced for the reforming reaction. |
|
6 | Condensate Separating | Remove moisture before syngas moves to the PSA process. |
|
7 | Pressure Swing Adsorber | Purity of hydrogen, the final product, is increased through the adsorbent, and off-gas is recycled as a heat source to heat the reformer. |
|
Name | Description | Leak Size |
---|---|---|
Worst scenario | Reformer outlet syngas pipe flange leak (total failure) | 65 mm (2.56″) |
Alternative scenario 1 | Reformer outlet syngas pipe flange leak (large leak) | 50.8 mm (2″) |
Alternative scenario 2 | Reformer outlet syngas pipe flange leak (medium leak) | 30.48 mm (1.2″) |
Item | Worst | Alternative |
---|---|---|
Wind Speed/ Atmospheric Stability | 1.5/F | 3.0/D |
Air Temperature | 25 °C | 13.2 °C |
Ground Temperature | 9.85 °C | 15.3 °C |
Atmosphere Pressure | 1.013 bar | 1.013 bar |
Relative Humidity | 50.0% | 69.2% |
Solar Radiation Heat | 0.5 kW/m2 | 0.5 kW/m2 |
Item | Input Data | Remark |
---|---|---|
Leak Source | Pipe Flange | - |
Leak Source Diameter | 65 mm | Reformer outlet pipe |
Operation Pressure | 9.32 Bar, g | Gauge Pressure |
Operation Temperature | 565 °C | - |
Total Leak Quantity | 349.9 kg/h | Total leak |
Classification | Worst Scenario (65 mm Total Failure) | Alternative Scenario 1 (50.8 mm Large Leak) | Alternative Scenario 2 (30.48 mm Medium Leak) | ||||||
---|---|---|---|---|---|---|---|---|---|
Weather and topographic data | |||||||||
Wind Speed (m/s) | 1.5 | 3.0 | 3.0 | ||||||
Atmospheric stability | F | D | D | ||||||
Air Temperature (°C) | 25 | 13.2 | 13.2 | ||||||
Relative Humidity (%) | 50.0 | 69.2 | 69.2 | ||||||
Materials and facilities | |||||||||
Material name | Syngas | Syngas | Syngas | ||||||
Phase | Gas | Gas | Gas | ||||||
Facility name (piping part) | Reformer rear end | Reformer rear end | Reformer rear end | ||||||
Operation pressure (Bar, g) | 9.32 | 9.32 | 9.32 | ||||||
Operation temperature (°C) | 565.0 | 565.0 | 565.0 | ||||||
Size of leakage (mm2) | 3316.63 | 2025.80 | 729.29 | ||||||
Damage prediction results/leakage result | |||||||||
Calculation (kg/s or kg) | 349.9 kg/h (Reformer rear-end flow rate) | 349.9 kg/h (Reformer rear-end flow rate) | 349.9 kg/h (Reformer rear-end flow rate) | ||||||
Facility/pipe (kg/s) | 1.5 kg/s (Phast mass flow rate) | 0.9 kg/s (Phast mass flow rate) | 0.3 kg/s (Phast mass flow rate) | ||||||
Damage result | |||||||||
Fire—radioactive heat distance (m)—jet fire | 5 kW/m2 | 12.5 kW/m2 | 37.5 kW/m2 | 5 kW/m2 | 12.5 kW/m2 | 37.5 kW/m2 | 5 kW/m2 | 12.5 kW/m2 | 37.5 kW/m2 |
23.6 | 18.2 | 14.3 | 18.7 | 14.4 | 11.3 | 10.9 | 8.4 | 6.6 | |
Explosion—overpressure distance (m) | 0.07 bar | 0.138 bar | 0.207 bar | 0.07 bar | 0.138 bar | 0.207 bar | 0.07 bar | 0.138 bar | 0.207 bar |
42.6 | 37.3 | 35.5 | 38.5 | 34.9 | 33.7 | 14.8 | 12.8 | 12.1 |
Item | Worst (Total Failure) | Alternative1 (Large Leak) | Alternative2 (Medium Leak) |
---|---|---|---|
Leak Size (mm) | 65 | 50.8 | 30.48 |
Flame Length 1) (m) | 12.2 | 9.7 | 6.0 |
Radiation heat (kW/m2) | Impact Range (m) | ||
5 | 23.6 | 18.7 | 10.9 |
12.5 | 18.2 | 14.4 | 8.4 |
37.5 | 14.3 | 11.3 | 6.6 |
Item | Worst (Total Failure) | Alternative1 (Large Leak) | Alternative2 (Medium Leak) |
---|---|---|---|
Leak Size (mm) | 65 | 50.8 | 30.48 |
Overpressure (bar) | Impact Range (m) | ||
0.07 | 42.6 | 38.5 | 14.8 |
0.138 | 37.3 | 34.9 | 12.8 |
0.207 | 35.5 | 33.7 | 12.1 |
Item | Worst (Total Failure) | Alternative1 (Large Leak) | Alternative2 (Medium Leak) |
---|---|---|---|
Leak Size (mm) | 65 | 50.8 | 30.48 |
Lower Flammability Limit | Impact Range (m) | ||
LFL (4 % v/v) | 12.7 | - | - |
1/2 LFL (2 % v/v) | 29.0 | 23.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kwak, H.; Jung, S. Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model. Energies 2024, 17, 5704. https://doi.org/10.3390/en17225704
Lee J, Kwak H, Jung S. Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model. Energies. 2024; 17(22):5704. https://doi.org/10.3390/en17225704
Chicago/Turabian StyleLee, Jongseok, Hyunjun Kwak, and Seungho Jung. 2024. "Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model" Energies 17, no. 22: 5704. https://doi.org/10.3390/en17225704
APA StyleLee, J., Kwak, H., & Jung, S. (2024). Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model. Energies, 17(22), 5704. https://doi.org/10.3390/en17225704