Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivation, Contributions and Organisation
- A quadratically constrained quadratic optimisation problem to determine the optimum seller/buyer bids is formulated to maximise the profit at the sellers and the savings at the buyers. The problem is solved simultaneously for both the amount of energy sold (purchased) and the seller (or buyer) price on the seller (or buyer) side.
- The optimised bids from the sellers and buyers are integrated with a double auction market and three different market clearing mechanisms; namely, average, trade reduction (TR) and Vickrey—Clarke—Groves (VCG) mechanisms are evaluated in comparing the market clearing prices.
- Numerical simulations are performed on the P2P energy trading model developed using a real-life solar generation and electricity demand dataset over 8 months of data during 2012–2013. The comparative analysis demonstrates a lower market clearing price for the VCG mechanism in comparison to the two other market clearing mechanisms.
2. Optimisation of the Price Bids in a P2P Energy Market
2.1. The Seller Side
2.2. The Buyer Side
3. Double-Auction-Based Market Clearing
3.1. The Average Mechanism
3.2. The Trade Reduction Mechanism
3.3. The Vickrey–Clarke–Groves (VCG) Mechanism
4. Results of the Comparative Analysis and Discussion
4.1. Bidding Patterns of the Sellers and Buyers
4.2. Seasonal Trends in Market Clearing Prices
4.3. Statistical Analysis of the Market Clearing Prices
4.4. Comparison of the Different Market Clearing Prices
4.5. Comparison with Random Bidding
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Australian Renewable Energy Agency. Distributed Energy Resources. 2024. Available online: https://arena.gov.au/renewable-energy/distributed-energy-resources/ (accessed on 31 October 2024).
- Long, C.; Wu, J.; Zhang, C.; Thomas, L.; Cheng, M.; Jenkins, N. Peer-to-peer energy trading in a community microgrid. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- International Renewable Energy Agency. Peer-to-Peer Electricity Trading Innovation Landscape Brief. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jul/IRENA_Peer-to-peer_electricity_trading_2020.pdf (accessed on 1 November 2024).
- Zhou, Y.; Wu, J.; Long, C. Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Appl. Energy 2018, 222, 993–1022. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Morstyn, T.; McCulloch, M.D.; Poor, H.V.; Wood, K.L. A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid. Appl. Energy 2019, 243, 10–20. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef]
- Morstyn, T.; McCulloch, M.D. Multiclass Energy Management for Peer-to-Peer Energy Trading Driven by Prosumer Preferences. IEEE Trans. Power Syst. 2019, 34, 4005–4014. [Google Scholar] [CrossRef]
- Hanumantha Rao, B.; Arun, S.L.; Selvan, M.P. An electric power trading framework for smart residential community in smart cities. IET Smart Cities 2019, 1, 40–51. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, H.; Wang, P.; Huang, Q.; Lee, W.J. Two-Stage Bidding Strategy for Peer-to-Peer Energy Trading of Nanogrid. IEEE Trans. Ind. Appl. 2020, 56, 1000–1009. [Google Scholar] [CrossRef]
- Yao, H.; Xiang, Y.; Hu, S.; Wu, G.; Liu, J. Optimal Prosumers’ Peer-to-Peer Energy Trading and Scheduling in Distribution Networks. IEEE Trans. Ind. Appl. 2022, 58, 1466–1477. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, L.; Shi, M.; Qiao, J.; Jia, H.; Mu, Y.; Pu, T. Market power modeling and restraint of aggregated prosumers in peer-to-peer energy trading: A game-theoretic approach. Appl. Energy 2023, 348, 121550. [Google Scholar] [CrossRef]
- Khorasany, M.; Mishra, Y.; Ledwich, G. A Decentralized Bilateral Energy Trading System for Peer-to-Peer Electricity Markets. IEEE Trans. Ind. Electron. 2020, 67, 4646–4657. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Y.; Jiao, M.; Liu, Z.; Hao, J. Bilateral energy-trading model with hierarchical personalized pricing in a prosumer community. Int. J. Electr. Power Energy Syst. 2022, 141, 108179. [Google Scholar] [CrossRef]
- Symiakakis, M.S.; Kanellos, F.D. Towards the detailed modeling of deregulated electricity markets comprising Smart prosumers and peer to peer energy trading. Electr. Power Syst. Res. 2023, 217, 109158. [Google Scholar] [CrossRef]
- Sorin, E.; Bobo, L.; Pinson, P. Consensus-Based Approach to Peer-to-Peer Electricity Markets With Product Differentiation. IEEE Trans. Power Syst. 2019, 34, 994–1004. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.; Li, F. A Novel Peer-to-Peer Local Electricity Market for Joint Trading of Energy and Uncertainty. IEEE Trans. Smart Grid 2020, 11, 1205–1215. [Google Scholar] [CrossRef]
- Zhou, W.; Dang, W.; Peng, F.; Mahesuti, R.; Zhang, L.; Sun, K. A decentralized peer-to-peer energy trading strategy considering flexible resource involvement and renewable energy uncertainty. Int. J. Electr. Power Energy Syst. 2023, 152, 109275. [Google Scholar] [CrossRef]
- Kim, H.J.; Chung, Y.S.; Kim, S.J.; Kim, H.T.; Jin, Y.G.; Yoon, Y.T. Pricing mechanisms for peer-to-peer energy trading: Towards an integrated understanding of energy and network service pricing mechanisms. Renew. Sustain. Energy Rev. 2023, 183, 113435. [Google Scholar] [CrossRef]
- Maldet, M.; Revheim, F.H.; Schwabeneder, D.; Lettner, G.; del Granado, P.C.; Saif, A.; Löschenbrand, M.; Khadem, S. Trends in local electricity market design: Regulatory barriers and the role of grid tariffs. J. Clean. Prod. 2022, 358, 131805. [Google Scholar] [CrossRef]
- Kaur, D.; Islam, S.N.; Mahmud, M.A.; Haque, M.E.; Dong, Z.Y. Energy forecasting in smart grid systems: Recent advancements in probabilistic deep learning. IET Gener. Transm. Distrib. 2022, 16, 4461–4479. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Q.; Huang, Y.; Du, P. Peer-to-peer energy trading market considering renewable energy uncertainty and participants’ individual preferences. Int. J. Electr. Power Energy Syst. 2023, 148, 108931. [Google Scholar] [CrossRef]
- Zhang, B.; Du, Y.; Chen, X.; Lim, E.G.; Jiang, L.; Yan, K. A novel adaptive penalty mechanism for Peer-to-Peer energy trading. Appl. Energy 2022, 327, 120125. [Google Scholar] [CrossRef]
- Alsalloum, H.; Rahim, R.; Merghem-Boulahia, L. Contribution-based energy-trading mechanism: A multi-level energy management approach. Int. J. Electr. Power Energy Syst. 2022, 136, 107668. [Google Scholar] [CrossRef]
- Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy 2021, 237, 121559. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Li, Q.; Song, W.; Li, G. Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty. Appl. Energy 2019, 255, 113845. [Google Scholar] [CrossRef]
- Islam, S.N. A New Pricing Scheme for Intra-Microgrid and Inter-Microgrid Local Energy Trading. Energies 2019, 8, 898. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, S.; He, J.; Yang, B.; Guan, X. Credit rating based real-time energy trading in microgrids. Appl. Energy 2019, 236, 985–996. [Google Scholar] [CrossRef]
- Yu, A.; Tang, X.; Zhang, Y.J.; Huang, J. Continuous Group-Wise Double Auction for Prosumers in Distribution-Level Markets. IEEE Trans. Smart Grid 2021, 12, 4822–4833. [Google Scholar] [CrossRef]
- Faqiry, M.N.; Das, S. Double Auction with Hidden User Information: Application to Energy Transaction in Microgrid. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2326–2339. [Google Scholar] [CrossRef]
- Vieira, G.; Zhang, J. Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renew. Sustain. Energy Rev. 2021, 143, 110900. [Google Scholar] [CrossRef]
- Sim, J.; Lee, D.J.; Yoon, K. Trustful double auction design for Peer-to-Peer energy trading between interconnected micro-grids with supply–demand imbalance. Int. J. Electr. Power Energy Syst. 2024, 160, 110117. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, T.; Wang, Y. Peer-to-Peer energy trading in a microgrid based on iterative double auction and blockchain. Sustain. Energy Grids Netw. 2021, 27, 100524. [Google Scholar] [CrossRef]
- Wang, X.; Jia, H.; Wang, Z.; Jin, X.; Deng, Y.; Mu, Y.; Yu, X. A real time peer-to-peer energy trading for prosumers utilizing time-varying building virtual energy storage. Int. J. Electr. Power Energy Syst. 2024, 155, 109547. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Song, G.; Long, C. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community. Appl. Energy 2020, 278, 115671. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Wang, Y.; Qiu, J.; Zhao, J. Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries. Appl. Energy 2024, 358, 122592. [Google Scholar] [CrossRef]
- Hoque, M.M.; Khorasany, M.; Azim, M.I.; Razzaghi, R.; Jalili, M. A framework for prosumer-centric peer-to-peer energy trading using network-secure export–import limits. Appl. Energy 2024, 361, 122906. [Google Scholar] [CrossRef]
- Hayes, B.; Thakur, S.; Breslin, J. Co-simulation of electricity distribution networks and peer to peer energy trading platforms. Int. J. Electr. Power Energy Syst. 2020, 115, 105419. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Yu, L.; Goh, M.; Tang, Y.; Huang, Y. Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading. Appl. Energy 2023, 345, 121306. [Google Scholar] [CrossRef]
- Binyamin, S.S.; Ben Slama, S.A.; Zafar, B. Artificial intelligence-powered energy community management for developing renewable energy systems in smart homes. Energy Strategy Rev. 2024, 51, 101288. [Google Scholar] [CrossRef]
- Kanakadhurga, D.; Prabaharan, N. Price-based demand response with renewable energy sources and peer-to-peer trading for residential microgrid with electric vehicle uncertainty. Comput. Electr. Eng. 2024, 119, 109618. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Peng, F.; Liu, Y.; Sun, H.; Cong, Y. Distribution network congestion management considering time sequence of peer-to-peer energy trading. Int. J. Electr. Power Energy Syst. 2022, 136, 107646. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Y.; Li, Y.; Zhou, Y. An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid. Appl. Energy 2021, 298, 117088. [Google Scholar] [CrossRef]
- Malik, S.; Thakur, S.; Duffy, M.; Breslin, J.G. Comparative Double Auction Approach for Peer-to-Peer Energy Trading on Multiple microgrids. Smart Grids Sustain. Energy 2023, 8, 21. [Google Scholar] [CrossRef]
- Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Sahih, A.Z.; Abbasi, A.; Ghasri, M. Blockchain-enabled solutions for fair and efficient peer-to-peer renewable energy trading: An experimental comparison. J. Clean. Prod. 2024, 455, 142301. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain and cooperative game theory for peer-to-peer energy trading in smart grids. Int. J. Electr. Power Energy Syst. 2023, 151, 109111. [Google Scholar] [CrossRef]
- Guerrero, J.; Sok, B.; Chapman, A.C.; Verbič, G. Electrical-distance driven peer-to-peer energy trading in a low-voltage network. Appl. Energy 2021, 287, 116598. [Google Scholar] [CrossRef]
- Haggi, H.; Sun, W. Multi-Round Double Auction-Enabled Peer-to-Peer Energy Exchange in Active Distribution Networks. IEEE Trans. Smart Grid 2021, 12, 4403–4414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liyanage, K.K.G.H.; Islam, S.N. Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction. Energies 2024, 17, 5708. https://doi.org/10.3390/en17225708
Liyanage KKGH, Islam SN. Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction. Energies. 2024; 17(22):5708. https://doi.org/10.3390/en17225708
Chicago/Turabian StyleLiyanage, Kisal Kawshika Gunawardana Hathamune, and Shama Naz Islam. 2024. "Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction" Energies 17, no. 22: 5708. https://doi.org/10.3390/en17225708
APA StyleLiyanage, K. K. G. H., & Islam, S. N. (2024). Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction. Energies, 17(22), 5708. https://doi.org/10.3390/en17225708