Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization of Catalysts
2.3. Hydrodeoxygenation of Oleic Acid
2.4. Development of Box–Behnken and Artificial Neural Networks Optimization Models to Predict n-Alkanes
2.5. Development of Artificial Neural Networks Models to Predict n-Alkanes
2.6. Metrics of Comparison
3. Results
3.1. Ni/C Catalyst Characterization
3.2. Conversion of Oleic Acid to n-C17 and n-C18 by Hydrodeoxygenation
3.3. Box–Behnken Results
3.4. ANN Results
3.5. Comparison of Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Cárdenas, M.; Medina-Valtierra, J.; Kamaraj, S.K.; Trejo-Zárraga, F.; Antonio Sánchez-Olmos, L. Physicochemical Effect of Pt Nanoparticles/γ-Al2O3 on the Oleic Acid Hydrodeoxygenation to Biofuel. Environ. Prog. Sustain. Energy 2017, 36, 1224–1233. [Google Scholar] [CrossRef]
- Sánchez-Cárdenas, M.; Medina-Valtierra, J.; Kamaraj, S.K.; Ramírez, R.R.M.; Sánchez-Olmos, L.A. Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes. Catalysts 2016, 6, 156. [Google Scholar] [CrossRef]
- Wathakit, K.; Sukjit, E.; Kaewbuddee, C.; Maithomklang, S.; Klinkaew, N.; Liplap, P.; Arjharn, W.; Srisertpol, J. Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine. Energies 2021, 14, 2230. [Google Scholar] [CrossRef]
- Kittisupakorn, P.; Sae-ueng, S.; Suwatthikul, A. Optimization of Energy Consumption in a Hydrotreating Process for Green Diesel Production from Palm Oil. Comput. Aided Chem. Eng. 2016, 38, 751–756. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Wang, W.; Zheng, Y.; Hu, P. Hydroprocessing of Waste Cooking Oil over a Dispersed Nano Catalyst: Kinetics Study and Temperature Effect. Appl. Catal. B 2014, 150–151, 238–248. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S.; Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Int. J. Engines 2008, 1, 1251–1262. [Google Scholar] [CrossRef]
- Hulkkonen, T.; Hillamo, H.; Sarjovaara, T.; Larmi, M.; Hulkkonen, T.; Hillamo, H.; Sarjovaara, T.; Larmi, M. Experimental Study of Spray Characteristics Between Hydrotreated Vegetable Oil (HVO) and Crude Oil Based EN 590 Diesel Fuel; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Sugiyama, K.; Goto, I.; Kitano, K.; Mogi, K.; Honkanen, M. Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine. SAE Int. J. Fuels Lubr. 2011, 5, 205–217. [Google Scholar] [CrossRef]
- Sánchez-Cárdenas, M.; Sánchez-Olmos, L.A.; Sathish-Kumar, K.; Trejo-Zarraga, F.; Maldonado-Ruelas, V.A.; Ortiz-Medina, R.A. Controlled Evaluation in a Diesel Engine of the Biofuel Obtained with Ni/γ-Al2O3 Nanoparticles in the Hydrodeoxygenation of Oleic Acid. Int. J. Chem. React. Eng. 2020, 18, 20190136. [Google Scholar] [CrossRef]
- Yfanti, V.L.; Lemonidou, A.A. Effect of Hydrogen Donor on Glycerol Hydrodeoxygenation to 1,2-Propanediol. Catal. Today 2020, 355, 727–736. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Monnier, J.; Sulimma, H.; Dalai, A.; Caravaggio, G. Hydrodeoxygenation of Oleic Acid and Canola Oil over Alumina-Supported Metal Nitrides. Appl. Catal. A Gen. 2010, 382, 176–180. [Google Scholar] [CrossRef]
- Attia, M.; Farag, S.; Chaouki, J. Upgrading of Oils from Biomass and Waste: Catalytic Hydrodeoxygenation. Catalysts 2020, 10, 1381. [Google Scholar] [CrossRef]
- Pinna, F. Supported Metal Catalysts Preparation. Catal. Today 1998, 41, 129–137. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–536. [Google Scholar] [CrossRef]
- Murillo, R.; Navarro, M.V.; López, J.M.; García, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of Pyrolytic Tire Char with CO2: Kinetic Study. J. Anal. Appl. Pyrolysis 2004, 71, 945–957. [Google Scholar] [CrossRef]
- El-Sheikh, A.H.; Newman, A.P.; Al-Daffaee, H.; Phull, S.; Cresswell, N.; York, S. Deposition of Anatase on the Surface of Activated Carbon. Surf. Coat. Technol. 2009, 187, 284–292. [Google Scholar] [CrossRef]
- Do, P.T.; Chiappero, M.; Lobban, L.L.; Resasco, D.E. Catalytic Deoxygenation of Methyl-Octanoate and Methyl-Stearate on Pt/Al2O3. Catal. Lett. 2009, 130, 9–18. [Google Scholar] [CrossRef]
- Lestari, S.; Simakova, I.; Tokarev, A.; Mäki-Arvela, P.; Eränen, K.; Murzin, D.Y. Synthesis of Biodiesel via Deoxygenation of Stearic Acid over Supported Pd/C Catalyst. Catal. Lett. 2008, 122, 247–251. [Google Scholar] [CrossRef]
- Zuo, H.; Liu, Q.; Wang, T.; Ma, L.; Zhang, Q.; Zhang, Q. Hydrodeoxygenation of Methyl Palmitate over Supported Ni Catalysts for Diesel-like Fuel Production. Energy Fuels 2012, 26, 3747–3755. [Google Scholar] [CrossRef]
- Şenol, O.I.; Ryymin, E.M.; Viljava, T.R.; Krause, A.O.I. Effect of Hydrogen Sulphide on the Hydrodeoxygenation of Aromatic and Aliphatic Oxygenates on Sulphided Catalysts. J. Mol. Catal. A Chem. 2007, 277, 107–112. [Google Scholar] [CrossRef]
- Phan, D.P.; Lee, E.Y. Phosphoric Acid Enhancement in a Pt-Encapsulated Metal-Organic Framework (MOF) Bifunctional Catalyst for Efficient Hydro-Deoxygenation of Oleic Acid from Biomass. J. Catal. 2020, 386, 19–29. [Google Scholar] [CrossRef]
- Nur Azreena, I.; Lau, H.L.N.; Asikin-Mijan, N.; Hassan, M.A.; Izham, S.M.; Safa Gamal, M.; Nor Adira Wan Khalit, W.; Arumugam, M.; Kennedy, E.; Stockenhuber, M.; et al. Hydrodeoxygenation of Fatty Acid over La-Modified HZSM5 for Premium Quality Renewable Diesel Production. J. Anal. Appl. Pyrolysis 2022, 161, 105406. [Google Scholar] [CrossRef]
- Chang, H.; Abdulkareem-Alsultan, G.; Taufiq-Yap, Y.H.; Mohd Izham, S.; Sivasangar, S. Development of Porous MIL-101 Derived Catalyst Application for Green Diesel Production. Fuel 2024, 355, 129459. [Google Scholar] [CrossRef]
- Aziz, I.; Sugita, P.; Darmawan, N.; Dwiatmoko, A.A.; Rustyawan, W. Green Diesel Synthesis from Palm Fatty Acid Distillate Using a Nickel Phosphide Catalyst: Optimization by Box Behnken Design. Bioresour. Technol. Rep. 2024, 27, 101897. [Google Scholar] [CrossRef]
- Abdullah, N.H.B.; Mijan, N.A.; Taufiq-Yap, Y.H.; Ong, H.C.; Lee, H.V. Environment-Friendly Deoxygenation of Non-Edible Ceiba Oil to Liquid Hydrocarbon Biofuel: Process Parameters and Optimization Study. Environ. Sci. Pollut. Res. 2022, 29, 51143–51152. [Google Scholar] [CrossRef] [PubMed]
- Yusuff, A.S.; Ishola, N.B.; Gbadamosi, A.O.; Azeez, T.M.; Onibonoje, M.O. An Artificial Intelligence Approach to Model and Optimize Biodiesel Production from Used Cooking Oil Using CaO Incorporated Zeolite Catalyst. Energy Convers. Manag. X 2023, 20, 100452. [Google Scholar] [CrossRef]
- Sumayli, A.; Alshahrani, S.M. Modeling and Prediction of Biodiesel Production by Using Different Artificial Intelligence Methods: Multi-Layer Perceptron (MLP), Gradient Boosting (GB), and Gaussian Process Regression (GPR). Arab. J. Chem. 2023, 16, 104801. [Google Scholar] [CrossRef]
- Pflaum, H.; Hofmann, P.; Geringer, B.; Weissel, W.; Pflaum, H.; Hofmann, P.; Geringer, B.; Weissel, W. Potential of Hydrogenated Vegetable Oil (HVO) in a Modern Diesel Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Singh, D.; Subramanian, K.A.; Singal, S.K. Emissions and Fuel Consumption Characteristics of a Heavy Duty Diesel Engine Fueled with Hydroprocessed Renewable Diesel and Biodiesel. Appl. Energy 2015, 155, 440–446. [Google Scholar] [CrossRef]
- Gong, S.; Shinozaki, A.; Shi, M.; Qian, E.W. Hydrotreating of Jatropha Oil over Alumina Based Catalysts. Energy Fuels 2012, 26, 2394–2399. [Google Scholar] [CrossRef]
- Calzada, L.A.; Pérez-Estrada, D.; Sánchez-Ramírez, M.; Gómora-Herrera, D.; Gómez-Cortés, A.; Díaz, G.; Klimova, T.E. Boosting the Hydrodeoxygenation Activity and Selectivity of Ni/(M)-SBA-15 Catalysts by Chemical Alteration of the Support. ACS Omega 2023, 8, 42849–42866. [Google Scholar] [CrossRef]
- Madsen, A.T.; Ahmed, E.H.; Christensen, C.H.; Fehrmann, R.; Riisager, A. Hydrodeoxygenation of Waste Fat for Diesel Production: Study on Model Feed with Pt/Alumina Catalyst. Fuel 2011, 90, 3433–3438. [Google Scholar] [CrossRef]
- Kumar, V.; Muthuraj, M.; Palabhanvi, B.; Ghoshal, A.K.; Das, D. Evaluation and Optimization of Two Stage Sequential in Situ Transesterification Process for Fatty Acid Methyl Ester Quantification from Microalgae. Renew. Energy 2014, 68, 560–569. [Google Scholar] [CrossRef]
- Das, A.; Kumawat, P.K.; Chaturvedi, N.D. A Study to Target Energy Consumption in Wastewater Treatment Plant Using Machine Learning Algorithms. Comput. Aided Chem. Eng. 2021, 50, 1511–1516. [Google Scholar] [CrossRef]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O. Neural Network Design, 2nd ed.; Campus Pub. Service, University of Colorado Bookstore: Boulder, CO, USA, 1996; ISBN 9780971732117. [Google Scholar]
- Lederer, J. Activation Functions in Artificial Neural Networks: A Systematic Overview. arXiv 2021, arXiv:2101.09957. [Google Scholar]
- Olvera-Gonzalez, E.; Rivera, M.M.; Escalante-Garcia, N.; Flores-Gallegos, E. Modeling Energy LED Light Consumption Based on an Artificial Intelligent Method Applied to Closed Plant Production System. App. Sci. 2021, 11, 2735. [Google Scholar] [CrossRef]
- Ayodele, O.B.; Togunwa, O.S.; Abbas, H.F.; Daud, W.M.A.W. Preparation and Characterization of Alumina Supported Nickel-Oxalate Catalyst for the Hydrodeoxygenation of Oleic Acid into Normal and Iso-Octadecane Biofuel. Energy Convers. Manag. 2014, 88, 1104–1110. [Google Scholar] [CrossRef]
- Matam, S.K.; Kondratenko, E.V.; Aguirre, M.H.; Hug, P.; Rentsch, D.; Winkler, A.; Weidenkaff, A.; Ferri, D. The Impact of Aging Environment on the Evolution of Al2O3 Supported Pt Nanoparticles and Their NO Oxidation Activity. Appl. Catal. B 2013, 129, 214–224. [Google Scholar] [CrossRef]
- Lu, A.H.; Spliethoff, B.; Schüth, F. Aqueous Synthesis of Ordered Mesoporous Carbon via Self-Assembly Catalyzed by Amino Acid. Chem. Mater. 2008, 20, 5314–5319. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Peng, X. Role of Filamentous Coke in Deactivation of Ni/Bio-Char Catalyst During Dry Reforming of Non-Oxygenates Tar. J. Anal. Appl. Pyrolysis 2021, 159, 105314. [Google Scholar] [CrossRef]
- Miguel, G.S.; Fowler, G.D.; Sollars, C.J. Pyrolysis of Tire Rubber: Porosity and Adsorption Characteristics of the Pyrolytic Chars. Ind. Eng. Chem. Res. 1998, 37, 2430–2435. [Google Scholar] [CrossRef]
- Broglia, F.; Rimoldi, L.; Meroni, D.; De Vecchi, S.; Morbidelli, M.; Ardizzone, S. Guaiacol Hydrodeoxygenation as a Model for Lignin Upgrading. Role of the Support Surface Features on Ni-Based Alumina-Silica Catalysts. Fuel 2019, 243, 501–508. [Google Scholar] [CrossRef]
- Li, G.; Hu, L.; Hill, J.M. Comparison of Reducibility and Stability of Alumina-Supported Ni Catalysts Prepared by Impregnation and Co-Precipitation. Appl. Catal. A Gen. 2006, 301, 16–24. [Google Scholar] [CrossRef]
- Chen, S.; Pan, X.; Miao, C.; Xie, H.; Zhou, G.; Jiao, Z.; Zhang, X. Study of Catalytic Hydrodeoxygenation Performance for the Ni/KIT-6 Catalysts. J. Saudi Chem. Soc. 2018, 22, 614–627. [Google Scholar] [CrossRef]
- Immer, J.G.; Kelly, M.J.; Lamb, H.H. Catalytic Reaction Pathways in Liquid-Phase Deoxygenation of C18 Free Fatty Acids. Appl. Catal. A Gen. 2010, 375, 134–139. [Google Scholar] [CrossRef]
- Ahmadi, M.; Macias, E.E.; Jasinski, J.B.; Ratnasamy, P.; Carreon, M.A. Decarboxylation and Further Transformation of Oleic Acid over Bifunctional, Pt/SAPO-11 Catalyst and Pt/Chloride Al2O3 Catalysts. J. Mol. Catal. A Chem. 2014, 386, 14–19. [Google Scholar] [CrossRef]
- Srifa, A.; Faungnawakij, K.; Itthibenchapong, V.; Assabumrungrat, S. Roles of Monometallic Catalysts in Hydrodeoxygenation of Palm Oil to Green Diesel. Chem. Eng. J. 2015, 278, 249–258. [Google Scholar] [CrossRef]
- Kaewmeesri, R.; Srifa, A.; Itthibenchapong, V.; Faungnawakij, K. Deoxygenation of Waste Chicken Fats to Green Diesel over Ni/Al2O3: Effect of Water and Free Fatty Acid Content. Energy Fuels 2015, 29, 833–840. [Google Scholar] [CrossRef]
- Serrano, D.P.; Escola, J.M.; Briones, L.; Arroyo, M. Selective Hydrodecarboxylation of Fatty Acids into Long-Chain Hydrocarbons Catalyzed by Pd/Al-SBA-15. Microporous Mesoporous Mater. 2019, 280, 88–96. [Google Scholar] [CrossRef]
Independent Variable | Symbol | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Pressure (bar) | P | 20 | 22.5 | 25 |
Weight % Ni | W | 2 | 4.5 | 7 |
Temperature (°C) | T | 320 | 330 | 340 |
Reaction time (h) | t | 4 | 4.5 | 5 |
Textural Properties | ||||
---|---|---|---|---|
Catalyst | Weight % Ni | SBET (m2/g) | Vp (cm3/g) | Dp (nm) |
CTR | 0 | 114.21 | 0.39 | 12.27 |
NiC2 | 2 | 108.34 | 0.36 | 12.02 |
NiC3 | 3 | 104.32 | 0.341 | 11.77 |
NiC4 | 4 | 100.18 | 0.318 | 11.54 |
NiC5 | 5 | 95.01 | 0.31 | 11.28 |
NiC6 | 6 | 90.24 | 0.302 | 11.25 |
NiC7 | 7 | 87.75 | 0.287 | 10.99 |
Catalyst | Pressure (bar) | wt% Metal | Temperature | Reaction Time (h) | Yield of n-C17 (% Mole) | Yield of n-C18 (% Mole) |
---|---|---|---|---|---|---|
NiC2 | 20 | 2 | 340 | 5 | 48.38 | 1.29 |
NiC2 | 20 | 2 | 340 | 4 | 44.82 | 1.17 |
NiC3 | 20 | 3 | 340 | 5 | 56.95 | 1.41 |
NiC3 | 20 | 3 | 340 | 4 | 52.92 | 1.49 |
NiC4 | 20 | 4 | 340 | 5 | 59.54 | 1.61 |
NiC4 | 20 | 4 | 340 | 4 | 55.48 | 1.52 |
NiC5 | 20 | 5 | 340 | 5 | 64.55 | 1.82 |
NiC5 | 20 | 5 | 340 | 4 | 61.86 | 1.75 |
NiC6 | 20 | 6 | 340 | 5 | 65.44 | 1.83 |
NiC6 | 20 | 6 | 340 | 4 | 62.28 | 1.76 |
NiC7 | 20 | 7 | 340 | 5 | 68.94 | 1.95 |
NiC7 | 20 | 7 | 340 | 4 | 66.34 | 1.87 |
NiC2 | 20 | 2 | 320 | 5 | 46.87 | 1.27 |
NiC2 | 20 | 2 | 320 | 4 | 40.05 | 1.08 |
NiC3 | 20 | 3 | 320 | 5 | 53.33 | 1.5 |
NiC3 | 20 | 3 | 320 | 4 | 47.11 | 1.33 |
NiC4 | 20 | 4 | 320 | 5 | 56.37 | 1.56 |
NiC4 | 20 | 4 | 320 | 4 | 50.43 | 1.45 |
NiC5 | 20 | 5 | 320 | 5 | 61.7 | 1.74 |
NiC5 | 20 | 5 | 320 | 4 | 56.66 | 1.6 |
NiC6 | 20 | 6 | 320 | 5 | 63.67 | 1.75 |
NiC6 | 20 | 6 | 320 | 4 | 58.3 | 1.65 |
NiC7 | 20 | 7 | 320 | 5 | 66.17 | 1.87 |
NiC7 | 20 | 7 | 320 | 4 | 61.3 | 1.73 |
NiC4.5 | 22.5 | 4.5 | 330 | 4.5 | 60.31 | 1.72 |
NiC2 | 22.5 | 2 | 330 | 4 | 44.23 | 1.18 |
NiC4.5 | 22.5 | 4.5 | 340 | 5 | 64.42 | 1.83 |
NiC2 | 22.5 | 2 | 340 | 4.5 | 52.15 | 1.3 |
NiC4.5 | 25 | 4.5 | 330 | 5 | 64.71 | 1.91 |
NiC4.5 | 25 | 4.5 | 320 | 4.5 | 59.64 | 1.77 |
NiC4.5 | 20 | 4.5 | 320 | 4.5 | 56.29 | 1.58 |
NiC4.5 | 25 | 4.5 | 330 | 4 | 59.88 | 1.71 |
NiC2 | 20 | 2 | 330 | 4.5 | 45.03 | 1.2 |
NiC2 | 22.5 | 2 | 330 | 5 | 49.87 | 1.38 |
NiC7 | 20 | 7 | 330 | 4.5 | 65.68 | 1.85 |
NiC7 | 22.5 | 7 | 340 | 4.5 | 70.06 | 2.03 |
NiC4.5 | 25 | 4.5 | 340 | 4.5 | 64.95 | 1.85 |
NiC7 | 22.5 | 7 | 330 | 5 | 65.73 | 2.06 |
NiC4.5 | 20 | 4.5 | 330 | 4 | 48.82 | 1.36 |
NiC2 | 25 | 2 | 330 | 4.5 | 49.08 | 1.35 |
NiC4.5 | 22.5 | 4.5 | 320 | 5 | 60.83 | 1.76 |
NiC7 | 25 | 7 | 330 | 4.5 | 69.88 | 2.1 |
NiC7 | 22.5 | 7 | 330 | 4 | 65.69 | 1.9 |
NiC4.5 | 20 | 4.5 | 340 | 4.5 | 60.35 | 1.67 |
NiC4.5 | 22.5 | 4.5 | 340 | 4 | 60.89 | 1.7 |
NiC7 | 22.5 | 7 | 320 | 4.5 | 65.51 | 1.92 |
NiC4.5 | 20 | 4.5 | 330 | 5 | 62.36 | 1.73 |
NiC2 | 22.5 | 2 | 320 | 4.5 | 45.23 | 1.25 |
NiC4.5 | 22.5 | 4.5 | 340 | 5 | 64.42 | 1.83 |
NiC2 | 25 | 2 | 340 | 5 | 53.38 | 1.49 |
NiC2 | 25 | 2 | 340 | 4 | 48.92 | 1.28 |
NiC3 | 25 | 3 | 340 | 5 | 61.65 | 1.62 |
NiC3 | 25 | 3 | 340 | 4 | 57.12 | 1.61 |
NiC4 | 25 | 4 | 340 | 5 | 64.44 | 1.83 |
NiC4 | 25 | 4 | 340 | 4 | 59.78 | 1.65 |
NiC5 | 25 | 5 | 340 | 5 | 69.15 | 2.06 |
NiC5 | 25 | 5 | 340 | 4 | 66.46 | 1.89 |
NiC6 | 25 | 6 | 340 | 5 | 70.54 | 2.1 |
NiC6 | 25 | 6 | 340 | 4 | 66.98 | 1.93 |
NiC7 | 25 | 7 | 340 | 5 | 74.24 | 2.25 |
NiC7 | 25 | 7 | 340 | 4 | 70.74 | 2.07 |
NiC2 | 25 | 2 | 320 | 5 | 50.87 | 1.47 |
NiC2 | 25 | 2 | 320 | 4 | 43.15 | 1.19 |
NiC3 | 25 | 3 | 320 | 5 | 57.23 | 1.71 |
NiC3 | 25 | 3 | 320 | 4 | 50.01 | 1.45 |
NiC4 | 25 | 4 | 320 | 5 | 60.07 | 1.78 |
NiC4 | 25 | 4 | 320 | 4 | 53.63 | 1.58 |
NiC5 | 25 | 5 | 320 | 5 | 65.2 | 1.98 |
NiC5 | 25 | 5 | 320 | 4 | 59.66 | 1.74 |
NiC6 | 25 | 6 | 320 | 5 | 67.37 | 2.02 |
NiC6 | 25 | 6 | 320 | 4 | 61.2 | 1.82 |
NiC7 | 25 | 7 | 320 | 5 | 70.17 | 2.17 |
NiC7 | 25 | 7 | 320 | 4 | 64.4 | 1.93 |
Yield (% Mole) | ||||||
---|---|---|---|---|---|---|
Catalyst | n-C18 | n-C17 | n-C16 | n-C15 | n-C14–n-C8 | Others |
NiC7 | 2.25 | 74.24 | 4.5 | 1.2 | 0.9 | 16.91 |
Model 1 Regression Coefficients for the Yield of n-C17 and Its F-Ratio and p-Value Values. | |||
Factor | Coefficient | F-Ratio | p-Value |
constant | 60.31 | ||
A:P | 2.4675 | 10.53 | 0.0070 |
B:W | 9.74667 | 164.33 | 0.0001 |
C:T | 1.74167 | 5.25 | 0.0409 |
D:t | 1.99917 | 6.91 | 0.0220 |
PP | −0.80875 | 0.50 | 0.4918 |
PW | 0.0375 | 0.00 | 0.9778 |
PT | 0.3125 | 0.06 | 0.8164 |
Pt | −2.1775 | 2.73 | 0.1241 |
WW | −3.125 | 7.51 | 0.0179 |
WT | −0.5925 | 0.20 | 0.6608 |
Wt | −1.4 | 1.13 | 0.3087 |
TT | 1.45 | 1.62 | 0.2277 |
Tt | 1.78 | 1.83 | 0.2014 |
tt | −0.16125 | 0.02 | 0.8899 |
Model 1 Yield of n-C17 (% mole) = 60.31 + 2.4675 × P + 9.74667 × W + 1.74167 × T + 1.99917 × t − 0.80875 × P2 + 0.0375 × P × W+ 0.3125 × P × T − 2.1775 × P × t − 3.125 × W2 − 0.5925 × W × T − 1.4 × W × t + 1.45 × T2 + 1.78 × T × t − 0.16125 × t2 | |||
Model 2 Regression Coefficients for the Yield of n-C18 and Its F-Ratio and p-Value Values. | |||
Factor | Coefficient | F-Ratio | p-Value |
constant | 1.72 | ||
A:P | 0.108333 | 30.46 | 0.0001 |
B:W | 0.35 | 317.98 | 0.0000 |
C:T | 0.0225 | 1.31 | 0.2740 |
D:t | 0.0825 | 17.67 | 0.0012 |
PP | −0.0258333 | 0.77 | 0.3975 |
PW | 0.025 | 0.54 | 0.4762 |
PT | −0.0025 | 0.01 | 0.9426 |
Pt | −0.0425 | 1.56 | 0.2351 |
WW | −0.0958333 | 10.60 | 0.0069 |
WT | 0.015 | 0.19 | 0.6669 |
Wt | −0.01 | 0.09 | 0.7737 |
TT | 0.0254167 | 0.75 | 0.4049 |
Tt | 0.05 | 2.16 | 0.1671 |
tt | 0.00791667 | 0.07 | 0.7926 |
Model 2 Yield of n-C18 = 1.72 + 0.108333 × P + 0.35 × W + 0.0225 × T + 0.0825 × t − 0.0258333 × P2 + 0.025 × P × W − 0.0025 × P × T − 0.0425 × P × t − 0.0958333 × W2 + 0.015 × W × T − 0.01 × W × t + 0.0254167 × T2 + 0.05 × T × t + 0.00791667 × t2 |
Metric | Value |
---|---|
MAE | 2.9109908579710146 |
MSE | 13.448980818453808 |
MAPE | 5.1193371481436586% |
R2 | 0.7880365513288001 |
Metric | Value |
---|---|
MAE | 0.09526569939130435 |
MSE | 0.014199636479194434 |
MAPE | 6.0985543534315845% |
R2 | 0.8153592131544917 |
Metric | Value |
---|---|
MAE | 1.503128278681158 |
MSE | 6.731590227466498 |
MAPE | 5.6089457507876216% |
R2 | 0.8016978822416458 |
Tested Correlation | Pearson Coefficient | p-Value |
---|---|---|
n-C17 to n-C18 BB | 0.91473 | 4.8 × 10−137 |
n-C18 to n-C18 BB | 0.912676 | 2.4 × 10−135 |
n-C17 to n-C17 BB | 0.901432 | 9.3 × 10−127 |
n-C18 to n-C17 BB | 0.860052 | 2.9 × 10−102 |
wt% metal to n-C18 BB | 0.829173 | 1.19 × 10−88 |
wt% metal to n-C17 BB | 0.80735 | 1.4 × 10−80 |
Pressure (bar) to n-C18 BB | 0.388761 | 6.81 × 10−14 |
Pressure (bar) to n-C17 BB | 0.315907 | 1.96 × 10−9 |
Reaction time (h) to n-C18 BB | 0.247907 | 3.15 × 10−6 |
Reaction time (h) to n-C17 BB | 0.214262 | 6.02 × 10−5 |
Temperature to n-C17 BB | 0.198049 | 0.000214 |
Temperature to n-C18 BB | 0.077803 | 0.149284 |
Maximum Yield of n-C17 (% Mole) = 71.5468 | |
Factor | Optimized Values |
Pressure (bar) | 24.98 |
wt% metal | 6.94 |
Temperature (°C) | 340 |
Reaction time (h) | 4.74 |
Maximum Yield of n-C18 (% Mole) = 2.22304 | |
Factor | Optimized Values |
Pressure | 24.82 |
wt% metal | 6.95 |
Temperature | 340 |
Reaction time | 5 |
Metric | Value |
---|---|
MAE | 1.5393119812011713 |
MSE | 3.7038989347370617 |
MAPE | 2.7534556120058794% |
R2 | 0.9416244842390435 |
Metric | Value |
---|---|
MAE | 0.0775767906575963 |
MSE | 0.009133386009309954 |
MAPE | 4.936592052944989% |
R2 | 0.8812367075879945 |
Metric | Value |
---|---|
MAE | 0.8084443859293845 |
MSE | 1.8565161603731877 |
MAPE | 3.8450238324754346% |
R2 | 0.911430595913519 |
Tested Correlation | Pearson Coefficient | p-Value |
---|---|---|
n-C17 to n-C17 ANN27 | 0.973276 | 3 × 10−221 |
n-C17 to n-C18 ANN27 | 0.962993 | 2.2 × 10−197 |
n-C18 to n-C18 ANN27 | 0.941994 | 1.1 × 10−164 |
n-C18 to n-C17 ANN27 | 0.921942 | 2.4 × 10−143 |
wt% metal to n-C18 ANN27 | 0.816651 | 6.9 × 10−84 |
wt% metal to n-C17 ANN27 | 0.807074 | 1.75 × 10−80 |
Pressure (bar) to n-C18 ANN27 | 0.351109 | 1.91 × 10−11 |
Temperature to n-C17 ANN27 | 0.321232 | 1.01 × 10−9 |
Reaction time (h) to n-C17 ANN27 | 0.306582 | 6.08 × 10−9 |
Reaction time (h) to n-C18 ANN27 | 0.302872 | 9.44 × 10−9 |
Pressure (bar) to n-C17 ANN27 | 0.256717 | 1.35 × 10−6 |
Temperature to n-C18 ANN27 | 0.172889 | 0.001264 |
Maximum Yield of n-C17 (% Mole) = 72.2953 | |
Factor | Optimized Values |
Pressure (bar) | 25 |
wt% metal | 7 |
Temperature (°C) | 340 |
Reaction time (h) | 5 |
Maximum Yield of n-C18 (% Mole) = 2.1534 | |
Factor | Optimized Values |
Pressure | 25 |
wt% metal | 7 |
Temperature | 340 |
Reaction time | 5 |
Metric | Value |
---|---|
MAE | 0.6345773381772246 |
MSE | 0.6185777595032578 |
MAPE | 1.0887789453225924% |
R2 | 0.9902508690475856 |
Metric | Value |
---|---|
MAE | 0.046886737533237625 |
MSE | 0.0036509875484390993 |
MAPE | 2.9908108061085723% |
R2 | 0.952525459740136 |
Metric | Value |
---|---|
MAE | 0.34073203785523093 |
MSE | 0.31111437352584853 |
MAPE | 2.0397948757155816% |
R2 | 0.9713881643938609 |
Tested Correlation | Pearson Coefficient | p-Value |
---|---|---|
n-C17 to n-C17 ANN602020 | 0.995199804 | 0 |
n-C18 to n-C18 ANN602020 | 0.976071019 | 2.2912 × 10−229 |
n-C17 to n-C18 ANN602020 | 0.970654942 | 2.2636 × 10−214 |
n-C18 to n-C17 ANN602020 | 0.952805659 | 1.1885 × 10−179 |
wt% metal to n-C18 ANN602020 | 0.851587787 | 3.12006 × 10−98 |
wt% metal to n-C17 ANN602020 | 0.84645346 | 6.65384 × 10−96 |
Pressure (bar) to n-C18 ANN602020 | 0.364380744 | 2.84642 × 10−12 |
Temperature to n-C17 ANN602020 | 0.27855838 | 1.44305 × 10−7 |
Pressure (bar) to n-C17 ANN602020 | 0.276223795 | 1.85016 × 10−7 |
Reaction time (h) to n-C17 ANN602020 | 0.269802864 | 3.62168 × 10−7 |
Reaction time (h) to n-C18 ANN602020 | 0.22970418 | 1.64118 × 10−5 |
Temperature to n-C18 ANN602020 | 0.152945617 | 0.004409192 |
Maximum Yield of n-C17 (% Mole) = 73.8834 | |
Factor | Optimized Values |
Pressure (bar) | 25 |
wt% metal | 7 |
Temperature (°C) | 340 |
Reaction time (h) | 5 |
Maximum Yield of n-C18 (% Mole) = 2.2503 | |
Factor | Optimized Values |
Pressure | 25 |
wt% metal | 7 |
Temperature | 340 |
Reaction time | 5 |
Source of Variation | sum_sq | df | F | PR (>F) |
---|---|---|---|---|
C (Model) | 2.041302 | 2 | 252.6423 | 1.24 × 10−8 |
Residual | 0.036359 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Olmos, L.A.; Sánchez-Cárdenas, M.; Trejo, F.; Montes Rivera, M.; Olvera-Gonzalez, E.; Hernández Guerrero, B.A. Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks. Energies 2024, 17, 5717. https://doi.org/10.3390/en17225717
Sánchez-Olmos LA, Sánchez-Cárdenas M, Trejo F, Montes Rivera M, Olvera-Gonzalez E, Hernández Guerrero BA. Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks. Energies. 2024; 17(22):5717. https://doi.org/10.3390/en17225717
Chicago/Turabian StyleSánchez-Olmos, Luis A., Manuel Sánchez-Cárdenas, Fernando Trejo, Martín Montes Rivera, Ernesto Olvera-Gonzalez, and Benito Alexis Hernández Guerrero. 2024. "Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks" Energies 17, no. 22: 5717. https://doi.org/10.3390/en17225717
APA StyleSánchez-Olmos, L. A., Sánchez-Cárdenas, M., Trejo, F., Montes Rivera, M., Olvera-Gonzalez, E., & Hernández Guerrero, B. A. (2024). Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks. Energies, 17(22), 5717. https://doi.org/10.3390/en17225717