UV Solar Energy and Erythemal Exposure: Mathematical Models to Assess the Dose on Vertical and Inclined Planes in Different Sky Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Calculation
3. Results
3.1. UVE Ratio
3.2. UVEC Curves
3.3. UVE Mathematical Models
3.4. Application of the UVE Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Day | Hours | Planes | UVE Min | UVE Mean | UVE Max |
---|---|---|---|---|---|
28 April | 11:35–13:40 | 90° E | 0.21 | 0.34 | 0.47 |
90° W | 0.51 | 0.61 | 0.85 | ||
90° N | 0.36 | 0.39 | 0.45 | ||
8 May | 11:00–12:00 | 90° S | 0.45 | 0.54 | 0.62 |
90° E | 0.15 | 0.19 | 0.24 | ||
45° S | 0.40 | 0.46 | 0.50 | ||
12:00–13:00 | 90° W | 0.30 | 0.34 | 0.42 | |
90° S | 0.23 | 0.29 | 0.38 | ||
45° W | 0.28 | 0.35 | 0.47 | ||
12 May | 11:00–12:00 | 90° W | 0.25 | 0.37 | 0.55 |
90° S | 0.20 | 0.35 | 0.39 | ||
60° W | 0.48 | 0.61 | 0.71 | ||
45° E | 0.25 | 0.45 | 0.57 | ||
12:00–13:00 | 90° S | 0.34 | 0.44 | 0.52 | |
90° E | 0.08 | 0.11 | 0.20 | ||
60° S | 0.62 | 0.70 | 0.88 | ||
45° N | 0.19 | 0.37 | 0.52 | ||
13:00–14:00 | 90° E | 0.08 | 0.13 | 0.22 | |
90° N | 0.09 | 0.18 | 0.34 | ||
60° E | 0.26 | 0.35 | 0.48 | ||
45° W | 0.53 | 0.65 | 0.75 | ||
22 May | 11:00–12:00 | 90° S | 0.48 | 0.55 | 0.61 |
90° N | 0.46 | 0.50 | 0.52 | ||
60° N | 0.27 | 0.40 | 0.46 | ||
60° S | 0.75 | 0.81 | 0.84 | ||
5 June | 13:00–14:00 | 90° S | 0.45 | 0.51 | 0.55 |
90° E | 0.27 | 0.34 | 0.37 | ||
90° W | 0.22 | 0.30 | 0.35 | ||
90° N | 0.23 | 0.30 | 0.33 | ||
60° N | 0.31 | 0.36 | 0.38 | ||
45° S | 0.92 | 0.95 | 0.99 | ||
14:00–15:00 | 90° S | 0.24 | 0.45 | 0.62 | |
90° E | 0.14 | 0.21 | 0.31 | ||
90° W | 0.23 | 0.42 | 0.54 | ||
90° N | 0.14 | 0.24 | 0.37 | ||
60° E | 0.21 | 0.30 | 0.35 | ||
45° W | 0.85 | 0.89 | 0.93 | ||
7 June | 11:30–12:30 | 90° S | 0.31 | 0.44 | 0.58 |
90° W | 0.65 | 0.71 | 0.89 | ||
90° N | 0.20 | 0.21 | 0.32 | ||
60° S | 0.61 | 0.77 | 1.00 | ||
60° N | 0.41 | 0.49 | 0.63 | ||
45° N | 0.59 | 0.75 | 0.95 | ||
19 June | 11:20–12:20 | 90° S | 0.35 | 0.48 | 0.65 |
90° E | 0.32 | 0.44 | 0.57 | ||
60° S | 0.64 | 0.78 | 0.97 | ||
60° N | 0.41 | 0.52 | 0.69 | ||
45° N | 0.62 | 0.84 | 0.97 | ||
21 June | 12:00–16:30 | 90° S | 0.46 | 0.51 | 0.53 |
90° E | 0.18 | 0.26 | 0.47 | ||
90° N | 0.21 | 0.25 | 0.27 | ||
90° W | 0.37 | 0.81 | 1.35 | ||
60° S | 0.47 | 0.76 | 1.02 | ||
23 June | 11:20–12:20 | 90° S | 0.46 | 0.51 | 0.53 |
90° E | 0.36 | 0.48 | 0.59 | ||
60° N | 0.41 | 0.49 | 0.71 | ||
45° N | 0.64 | 0.82 | 1.13 | ||
30 June | 12:10–13:10 | 90° S | 0.39 | 0.43 | 0.47 |
60° S | 0.54 | 0.61 | 0.67 | ||
45° N | 0.87 | 0.94 | 1.13 | ||
1 July | 12:30–13:30 | 90° S | 0.25 | 0.42 | 0.63 |
90° N | 0.54 | 0.61 | 0.67 | ||
60° S | 0.48 | 0.72 | 0.89 | ||
60° N | 0.37 | 0.55 | 0.70 | ||
45° N | 0.64 | 0.82 | 0.93 | ||
21 July | 12:30–13–50 | 90° E | 0.49 | 0.60 | 0.65 |
60° S | 0.81 | 0.90 | 0.95 | ||
60° N | 0.33 | 0.40 | 0.65 | ||
45° N | 0.86 | 0.99 | 1.06 | ||
25 July | 11:30–12:40 | 90° S | 0.18 | 0.52 | 0.97 |
90° N | 0.13 | 0.17 | 0.36 | ||
60° S | 0.40 | 0.52 | 0.64 | ||
60° N | 0.33 | 0.39 | 0.54 | ||
20 August | 15:50–17:15 | 90° W | 0.77 | 0.95 | 1.23 |
22 August | 15:30–17:45 | 90° E | 0.18 | 0.23 | 0.34 |
23 August | 12:30–13:30 | 90° N | 0.14 | 0.18 | 0.22 |
15:30–17:45 | 90° N | 0.27 | 0.42 | 0.57 |
References
- Lucas, R. Solar Ultraviolet Radiation: Assessing the Environmental Burden of Disease at National and Local Levels; Environmental Burden of Disease Series; No. 17; Prüss-Ustün, A., Perkins van Deventer, E., Eds.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Chawda, D.; Shinde, P. Effects of Solar Radiation on the Eyes. Cureus 2022, 14, e30857. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.P.; Lee, T.K. Adverse effects of ultraviolet radiation: A brief review. Prog. Biophys. Mol. Biol. 2006, 92, 119–131. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/ultraviolet-radiation#:~:text=Excessive%20exposure%20to%20UVR%20caused,skin%20in%20the%20year%202020 (accessed on 17 July 2024).
- Commission Internationale de l’Eclairage. Erythema Reference Action Spectrum and Standard Erythema Dose; CIE S007/E; Commission Internationale de l’Eclairage: Vienna, Austria, 1998. [Google Scholar]
- Commission Internationale de l’Eclairage. Rationalizing Nomenclature for UV Doses and Effects on Humans; CIE TR 209; Commission Internationale de l’Eclairage: Vienna, Austria, 2014. [Google Scholar]
- World Health Organization. Global Solar UV Index: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. ICNIRP statement—Protection of workers against ultraviolet radiation. Health Phys. 2010, 99, 66–87. [Google Scholar] [CrossRef]
- Schmalwieser, A.W.; Casale, G.R.; Cosimo, A.; Schmalwieser, S.S.; Siani, A.M. Review on Occupational Personal Solar UV Exposure Measurements. Atmosphere 2021, 12, 142. [Google Scholar] [CrossRef]
- Linde, K.; Wright, C.Y.; du Plessis, J.L. Personal Solar Ultraviolet Radiation Exposure of Farmworkers: Seasonal and Anatomical Differences Suggest Prevention Measures Are Required. Ann. Work Expo. Health 2022, 66, 41–51. [Google Scholar] [CrossRef]
- Burattini, C.; Pompei, L.; Modenese, A.; Salvadori, G.; Militello, A.; Leccese, F.; Borra, M.; Gobba, F.; Bisegna, F. UV solar exposure of outdoor workers in Mediterranean area. In Proceedings of the 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC/I and CPS Europe 2021, Bari, Italy, 7–10 September 2021; Code 176982. [Google Scholar] [CrossRef]
- Wittlich, M.; John, S.M.; Tiplica, G.S.; Sălăvăstru, C.M.; Butacu, A.I.; Modenese, A.; Paolucci, V.; D’Hauw, G.; Gobba, F.; Sartorelli, P.; et al. Personal solar ultraviolet radiation dosimetry in an occupational setting across Europe. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1835–1841. [Google Scholar] [CrossRef]
- Modenese, A.; Bisegna, F.; Borra, M.; Burattini, C.; Gugliermetti, L.; Larese Filon, F.; Militello, A.; Toffanin, P.; Gobba, F. Occupational Exposure to Solar UV Radiation in a Group of Dock-workers in North-East Italy. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2020, Madrid, Spain, 9–12 June 2020; p. 9160703. [Google Scholar]
- Kovačić, J.; Wittlich, M.; John, S.M.; Macan, J. Personal ultraviolet radiation dosimetry and its relationship with environmental data: A longitudinal pilot study in Croatian construction workers. J. Photochem. Photobiol. B 2020, 207, 111866. [Google Scholar] [CrossRef]
- Modenese, A.; Ruggieri, F.P.; Bisegna, F.; Borra, M.; Burattini, C.; Della Vecchia, E.; Grandi, C.; Grasso, A.; Gugliermetti, L.; Manini, M.; et al. Occupational Exposure to Solar UV Radiation of a Group of Fishermen Working in the Italian North Adriatic Sea. Int. J. Environ. Res. Public Health 2019, 16, 3001. [Google Scholar] [CrossRef]
- Modenese, A.; Korpinen, L.; Gobba, F. Solar radiation exposure and outdoor work: An underestimated occupational risk. Int. J. Environ. Res. Public Health 2018, 15, 2063. [Google Scholar] [CrossRef]
- Kutal, G.; Kolhe, A.; Varpe, S.; Mahajan, C.; Singh, P.; Aher, G. UV Erythemal Radiation and Its Sensitivity to Changes in Total Column Ozone and Aerosols. Aerosol Sci. Eng. 2022, 6, 176–185. [Google Scholar] [CrossRef]
- Becerra-Rondón, A.; Ducati, J.; Haag, R. Spatiotemporal distributions of ultraviolet radiation from OMI orbital data and relationships with total O3 and total NO2. Atmósfera 2023, 37, 311–334. [Google Scholar] [CrossRef]
- Chubarova, N.E.; Pastukhova, A.S.; Zhdanova, E.Y.; Volpert, E.V.; Smyshlyaev, S.P.; Galin, V.Y. Effects of ozone and clouds on temporal variability of surface UV radiation and UV resources over Northern Eurasia derived from measurements and modeling. Atmosphere 2020, 11, 59. [Google Scholar] [CrossRef]
- Campanelli, M.; Diémoz, H.; Siani, A.M.; di Sarra, A.; Iannarelli, A.M.; Kudo, R.; Fasano, G.; Casasanta, G.; Tofful, L.; Cacciani, M.; et al. Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index. Atmos. Meas. Tech. 2022, 15, 1171–1183. [Google Scholar] [CrossRef]
- Kazadzis, S.; Raptis, P.; Kouremeti, N.; Amiridis, V.; Arola, A.; Gerasopoulos, E.; Schuster, G.L. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment. Atmos. Meas. Tech. 2016, 9, 5997–6011. [Google Scholar] [CrossRef]
- Antόn, M.; Gil, J.E.; Fernández-Gálvez, J.; Lyamani, H.; Valenzuela, A.; Foyo-Moreno, I.; Olmo, F.J.; Alados-Arboledas, L. Evaluation of the aerosol forcing efficiency in the UV erythemal range at Granada, Spain. J. Geophys. Res. 2011, 116, D20214. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.G.; Koo, J.-H.; Lee, H. Relative Contributions of Clouds and Aerosols to Surface Erythemal UV and Global Horizontal Irradiance in Korea. Energies 2020, 13, 1504. [Google Scholar] [CrossRef]
- Calbó, J.; Pagès, D.; González, J.-A. Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys. 2005, 43, RG2002. [Google Scholar] [CrossRef]
- Silva Porfirio, A.C.; De Souza, J.L.; Bastos Lyra, G.; Maringolo Lemes, M.A. An assessment of the global UV solar radiation under various sky conditions in Maceiό-Notheastern Brazil. Energy 2012, 44, 584–592. [Google Scholar] [CrossRef]
- Bilbao, J.; Mateos, D.; Yousif, C.; Román, R.; De Miguel, A. Influence of cloudiness on erythemal solar irradiance in Marsaxlokk, Malta: Two case studies. Sol. Energy 2016, 136, 475–486. [Google Scholar] [CrossRef]
- Marín, M.J.; Serrano, D.; Utrillas, M.P.; Nunez, M.; Martínez-Lozano, J.A. Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain). Atmos. Res. 2017, 195, 1–8. [Google Scholar] [CrossRef]
- Turner, J.; Parisi, A.V. Ultraviolet reflection irradiances and exposures in the constructed environment for horizontal, vertical and inclined surfaces. Photochem. Photobiol. 2013, 89, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Seckmeyer, G.; Pissulla, D.; Glandorf, M.; Henriques, D.; Johnsen, B.; Webb, A. Variability of UV irradiance in Europe. Photochem. Photobiol. 2008, 84, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.A.; Yamamoto, A.L.; Corrêa, M.P. Daily maximum erythemal dose rates in the tropics. Photochem. Photobiol. 2019, 95, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Burattini, C.; Pompei, L.; Salvadori, G.; Leccese, F.; Grignaffini, S.; Bisegna, F. Criticalities in monitoring the UV solar radiation for workers’ safety. In Proceedings of the 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC/I and CPS Europe 2021, Bari, Italy, 7–10 September 2021; Code 176982. [Google Scholar] [CrossRef]
- Allen, M.W.; Swift, N.; Nield, K.M.; Liley, B.; McKenzie, R.L. Use of Electronic UV Dosimeters in Measuring Personal UV Exposures and Public Health Education. Atmosphere 2020, 11, 744. [Google Scholar] [CrossRef]
- Bisegna, F.; Burattini, C.; Pompei, L.; Rocca, M.; Leccese, F.; Salvadori, G.; Borra, M.; Militello, A. Broadband radiometers for the assessment of workers’ exposure to UV radiation: Comparison of measurement results obtained with different devices. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023. [Google Scholar] [CrossRef]
- Salvadori, G.; Leccese, F.; Lista, D.; Burattini, C.; Bisegna, F. Use of smartphone apps to monitor human exposure to solar radiation: Comparison between predicted and measured UV index values. Environ. Res. 2020, 183, 109274. [Google Scholar] [CrossRef]
- Leccese, F.; Salvadori, G.; Lista, D.; Burattini, C. Outdoor Workers Exposed to UV Radiation: Comparison of UV Index Forecasting Methods. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Palermo, Italy, 12–15 June 2018. [Google Scholar] [CrossRef]
- Militello, A.; Borra, M.; Bisegna, F.; Burattini, C.; Grandi, C. Smart Technologies: Useful Tools to Assess the Exposure to Solar Ultraviolet Radiation for General Population and Outdoor Workers. In Proceedings of the 18th Italian National Conference on Photonic Technologies, Rome, Italy, 6–8 June 2016. [Google Scholar] [CrossRef]
- Gugliermetti, L.; Burattini, C.; Militello, A.; Borra, M.; Asdrubali, F.; Salvadori, G.; Leccese, F.; Bisegna, F. Real time UV erythemal personal exposure monitoring in outdoor workplaces. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019. [Google Scholar] [CrossRef]
- Salvadori, G.; Lista, D.; Burattini, C.; Gugliermetti, L.; Leccese, F.; Bisegna, F. Exposure of Body Districts: Development and Validation of an Algorithm to Predict the Erythemal Ultra Violet Dose. Int. J. Environ. Res. Public Health 2019, 16, 3632. [Google Scholar] [CrossRef]
- Borra, M.; Grandi, C.; Militello, A.; Burattini, C.; Gugliermetti, L.; Mangione, A.; Bisegna, F.; Modenese, A.; Gobba, F. Developing an Algorithm to Assess the UV Erythemal Dose for Outdoor Workers. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Palermo, Italy, 12–15 June 2018. [Google Scholar] [CrossRef]
- Gugliermetti, L.; Burattini, C.; Bisegna, F.; Militello, A.; Borra, M. Study on the positioning of a smart sensor for the assessment of UV radiation exposure in outdoor workers. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019. [Google Scholar] [CrossRef]
- Huang, X.; Chalmers, A.N. Review of Wearable and Portable Sensors for Monitoring Personal Solar UV Exposure. Ann. Biomed. Eng. 2021, 49, 964–978. [Google Scholar] [CrossRef]
- Parisi, A.V.; Igoe, D.; Downs, N.J.; Turner, J.; Amar, A.; A Jebar, M.A. Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2. Remote Sens. 2021, 13, 752. [Google Scholar] [CrossRef]
- Singh, S.; Lodhi, N.K.; Mishra, A.K.; Jose, S.; Kumar, S.N.; Kotnala, R.K. Assessment of satellite-retrieved surface UVA and UVB radiation by comparison with ground-measurements and trends over Mega-city Delhi. Atmos. Environ. 2018, 188, 60–70. [Google Scholar] [CrossRef]
- Utrillas, M.; Marín, M.; Esteve, A.; Salazar, G.; Suárez, H.; Gandía, S.; Martínez-Lozano, J. Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina. Energy 2018, 162, 136–147. [Google Scholar] [CrossRef]
- Malinović-Milićević, S.; Vyklyuk, Y.; Radovanović, M.M.; Petrović, M.D. Long-term erythemal ultraviolet radiation in Novi Sad (Serbia) reconstructed by neural network modelling. Int. J. Clim. 2018, 38, 3264–3272. [Google Scholar] [CrossRef]
- VoPham, T.; Hart, J.E.; Bertrand, K.A.; Sun, Z.; Tamimi, R.M.; Laden, F. Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation. Environ. Health 2016, 15, 111. [Google Scholar] [CrossRef] [PubMed]
- Buntoung, S.; Janjai, S.; Nunez, M.; Choosri, P.; Pratummasoot, N.; Chiwpreecha, K. Sensitivity of erythemal UV/global irradiance ratios to atmospheric parameters: Application for estimating erythemal radiation at four sites in Thailand. Atmos. Res. 2014, 149, 24–34. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Schmalwieser, A.W.; Raptis, P.I.; Papachristopoulou, K.; Fountoulakis, I.; Masoom, A.; Bais, A.F.; Bilbao, J.; Blumthaler, M.; et al. Real-time UV index retrieval in Europe using Earth observation-based techniques: System description and quality assessment. Atmos. Meas. Tech. 2021, 14, 5657–5699. [Google Scholar] [CrossRef]
- Lakkala, K.; Kujanpää, J.; Brogniez, C.; Henriot, N.; Arola, A.; Aun, M.; Auriol, F.; Bais, A.F.; Bernhard, G.; De Bock, V.; et al. Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product. Atmos. Meas. Tech. 2020, 13, 6999–7024. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software pack-age for radiative transfer calculations (version 2.0.1). Geosci. Model. Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Madronich, S.; Flocke, S. Theoretical Estimation of Biologically Effective UV Radiation at the Earth’s Surface, in Solar Ultraviolet Radiation—Modeling, Measurements and Effects; Zerefos, C., Ed.; NATO ASI Series; Springer: Berlin, Germany, 1997; Volume 52. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- De Paula Correa, M. UVBoost: An erythemal weighted ultraviolet radiation estimator based on machine learning gradient boosting algorithm. J. Quant. Spectrosc. Radiat. Transf. 2023, 298, 108490. [Google Scholar] [CrossRef]
- Kazantzidis, A.; Smedley, A.; Kift, R.; Rimmer, J.; Berry, J.L.; Rhodes, L.E.; Webb, A.R. A modeling approach to determine how much UV radiation is available across the UK and Ireland for health risk and benefit studies. Photochem. Potobiol. Sci. 2015, 14, 1073. [Google Scholar] [CrossRef]
- Malinovic-Milicevic, S.; Mihailovic, D.T.; Radovanovic, M.M. Reconstruction of the erythemal UV radiation data in Novi Sad (Serbia) using the NEOPLANTA parametric model. Theor. Appl. Climatol. 2015, 121, 131–138. [Google Scholar] [CrossRef]
- García-Rodríguez, S.; García-Rodríguez, A.; Granados-López, D.; García, I.; Alonso-Tristán, C. Ultraviolet Erythemal Irradiance (UVER) under Different Sky Conditions in Burgos, Spain: Multilinear Regression and Artificial Neural Network Models. Appl. Sci. 2023, 13, 10979. [Google Scholar] [CrossRef]
- González-Rodríguez, L.; de Oliveira, A.P.; Rodríguez-López, L.; Rosas, J.; Contreras, D.; Baeza, A.C. A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling. Energies 2021, 14, 368. [Google Scholar] [CrossRef]
- Boers, R.; Mitchell, R.M.; Krummel, P.B. Correction of aircraft pyranometer measurements for diffuse radiance and alignment errors. J. Geophys. Res. 1998, 103, 16753–16758. [Google Scholar] [CrossRef]
- Webb, A.R.; Weihs, P.; Blumthaler, M. Spectral UVR irradiance on vertical surfaces: A case study. Photochem. Potobiol. 1999, 69, 464–470. [Google Scholar] [CrossRef]
- Parisi, A.V.; Kimlin, M.G. Horizontal and sun-normal spectral biologically effective ultraviolet irradiances. Photochem. Photobiol. 1999, 53, 70–74. [Google Scholar] [CrossRef]
- Oppenrieder, A.; Hoeppe, P.; Koepke, P. Routine measurement of erythemally effective UV irradiances on inclined surfaces. Photochem. Potobiol. 2004, 74, 85–94. [Google Scholar] [CrossRef]
- Hu, L.W.; Gong, H.Z.; Jun Yu, D.; Gao, Q.; Gao, N.; Wang, M.; Yan, Y.; Wang, Y.; Yu, J.; Liu, Y. Diurnal Variations in Solar Ultraviolet Radiation on Horizontal and Vertical Plane. Iran. J. Public Health 2010, 39, 70–81. [Google Scholar]
- Soueid, L.; Triguero-Mas, M.; Dalmau, A.; Berrera-Gòmez, J.; Alonso, L.; Basagaña, X.; Thieden, E.; Wulf, H.C.; Diffey, B.; Young, A.R.; et al. Estimating personal solar ultraviolet radiation exposure through time spent outdoors, ambient levels and modelling approaches. Br. J. Dermatol. 2022, 186, 266–273. [Google Scholar] [CrossRef]
- Vernez, D.; Milon, A.; Vuillemier, L.; Buillard, J.-L.; Koechlin, A.; Boniol, M.; Doré, J.F. A general model to predict individual exposure to solar UV by using ambient irradiance data. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 113–118. [Google Scholar] [CrossRef]
- Schmalweiser, A.W.; Lohr, M.A.; Daly, S.M.; Williams, J.D. Modelling acute and cumulative erythemal sun exposure on vulnerable body sites during beach vacation utilizing behavior-encoded 3D body models. Photochem. Potobiol. 2023, 22, 1–20. [Google Scholar]
- Cheng, W.; Brown, R.; Vernez, D.; Goldberg, D. Estimation of Individual Exposure to Erythemal Weighted UVR by Multi-Sensor Measurements and Integral Calculation. Sensors 2020, 20, 4068. [Google Scholar] [CrossRef]
Day | Place | Hour | Sky | Planes |
---|---|---|---|---|
28 April | Rome-A | 11:35–13:40 | clear | 0° 90° E 90° W 90° N |
8 May | Rome-A | 11:00–12:00 | overcast | 0° 90° S 90° E 45° S |
12:00–13:00 | overcast | 0° 90° W 90° S 45° W | ||
12 May | Rome-C | 11:00–12:00 | overcast | 0° 90° W 90° S 60° W 45° E |
12:00–13:00 | intermediate | 0° 90° S 90° E 60° S 45° N | ||
13:00–14:00 | intermediate | 0° 90° E 90° N 60° E 45° W | ||
22 May | Rome-C | 11:00–12:00 | clear | 0° 90° S 90° N 60° N 60° S |
5 June | Rome-D | 13:00–14:00 | overcast | 0° 90° S 90° E 90° W 90° N 60° N 45° S |
14:00–15:00 | overcast | 0° 90° S 90° E 90° W 90° N 60° E 45° W | ||
7 June | Rome-D | 11:30–12:30 | intermediate | 0° 90° S 90° W 90° N 60° S 60° N 45° N |
19 June | Rome-D | 11:20–12:20 | intermediate | 0° 90° S 90° E 60° S 60° N |
21 June | Campo Imperatore | 12:00–16:30 | clear | 0° 90° S 90° E 90° N 90° W 60° S |
23 June | Rome-D | 11:20–12:20 | clear | 0° 90° S 90° E 45° N 60° N |
30 June | Introdaqua | 12:10–13:10 | intermediate | 0° 90° S 60° S 45° N |
1 July | Introdaqua | 12:30–13:30 | overcast | 0° 90° S 90° N 60° S 60° N 45° N |
21 July | Rome-B | 12:30–13:50 | clear | 0° 90° E 60° N 60° S 45° N |
25 July | Rome-B | 11:30–12:40 | overcast | 0° 90° S 90° N 60° S 45° N |
20 August | Pineto | 15:50–17:15 | clear | 0° 90° W |
22 August | Pineto | 15:30–17:45 | clear | 0° 90° E |
23 August | Pineto | 12:30–13:30 | clear | 0° 90° N |
15:30–17:45 | clear | 0° 90° N |
Plane | Clear Sky | Intermediate Sky | Overcast Sky |
---|---|---|---|
90° N | y = −3 × 10−7x2 + 0.0006x − 0.0176 | y = −6 × 10−7x2 + 0.0008x − 0.0945 | |
60° N | y = −7 × 10−6x2 + 0.0081x − 1.893 | y = −7 × 10−6x2 + 0.0071x − 1.5175 | |
45° N | y = −10−5x2 + 0.0073x − 0.4471 | ||
90° S | y = −8 × 10−7x2 + 0.0012x + 0.0641 | y = −7 × 10−7x2 + 0.0017x − 0.5218 | y = −0.0014x + 1.7356 |
60° S | y = −2 × 10−6x2 + 0.0017x + 0.3894 | y = −3 × 10−6x2 + 0.003x + 0.1776 | |
45° S | y = −10−5x2 + 0.0083x + 0.01 | ||
90° W | y = −5 × 10−6x2 + 0.0047x + 0.1277 | ||
45° W | y = −8 × 10−6x2 + 0.0014x + 0.8516 | ||
90° E | y = 7 × 10−7x2 − 0.0007x + 0.3691 | y = 0.1325 × 100.0019x | |
60° E | y = 0.0238 × 100.0029x |
Hour (hh:mm) | x | UVE | IUVAh (W/m2) | Iery (W/m2) |
---|---|---|---|---|
12:30 | 925 | 0.490 | 0.0257 | 0.01257 |
12:40 | 921 | 0.491 | 0.0258 | 0.01264 |
12:50 | 916 | 0.492 | 0.0261 | 0.01285 |
13:00 | 910 | 0.494 | 0.0264 | 0.01304 |
13:10 | 902 | 0.496 | 0.0265 | 0.01316 |
13:20 | 893 | 0.498 | 0.0266 | 0.01323 |
13:30 | 883 | 0.500 | 0.0265 | 0.01325 |
13:40 | 871 | 0.502 | 0.0265 | 0.01333 |
13:50 | 858 | 0.505 | 0.0267 | 0.01349 |
14:00 | 845 | 0.507 | 0.0267 | 0.01354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burattini, C.; Borra, M.; Vespasiano, F.; Bisegna, F. UV Solar Energy and Erythemal Exposure: Mathematical Models to Assess the Dose on Vertical and Inclined Planes in Different Sky Conditions. Energies 2024, 17, 5718. https://doi.org/10.3390/en17225718
Burattini C, Borra M, Vespasiano F, Bisegna F. UV Solar Energy and Erythemal Exposure: Mathematical Models to Assess the Dose on Vertical and Inclined Planes in Different Sky Conditions. Energies. 2024; 17(22):5718. https://doi.org/10.3390/en17225718
Chicago/Turabian StyleBurattini, Chiara, Massimo Borra, Flavia Vespasiano, and Fabio Bisegna. 2024. "UV Solar Energy and Erythemal Exposure: Mathematical Models to Assess the Dose on Vertical and Inclined Planes in Different Sky Conditions" Energies 17, no. 22: 5718. https://doi.org/10.3390/en17225718
APA StyleBurattini, C., Borra, M., Vespasiano, F., & Bisegna, F. (2024). UV Solar Energy and Erythemal Exposure: Mathematical Models to Assess the Dose on Vertical and Inclined Planes in Different Sky Conditions. Energies, 17(22), 5718. https://doi.org/10.3390/en17225718