Study of Gas Amplification Impact on Plateau Curve Characteristics in Boron-Coated Proportional Counters
Abstract
:1. Introduction
2. Analysis of Factors Influencing the Proportional Counters Plateau Curve
2.1. Diethorn Formula
2.2. Formation and Influencing Factors of Plateau Curve
- Dimensions of detector anode and cathode;
- Composition and pressure of gas.
3. Research on Influencing Factors
3.1. Dimensions of Anode and Cathode
3.1.1. Vmin
3.1.2. Gas Amplification
3.2. Composition and Pressure of Gas
3.2.1. Vmin
3.2.2. Gas Amplification
4. Improvement Methods and an Evaluation Method for Plateau Curve Characteristics
4.1. Improvement Methods for Plateau Curve Characteristics
- Increasing the anode radius;
- Increasing the gas pressure;
- Increasing the anode radius while increasing the gas pressure.
4.2. Evaluation of Improvement Effect on Plateau Curve Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diethorn, W. A Methane Proportional Counter System For Natural Radiocarbon Measurements. Ph.D. Thesis, Carnegie Institute of Technology, Pittsburgh, PA, USA, 1956. [Google Scholar]
- Mazed, D.; Baaliouamer, M. A semi-microscopic derivation of gas gain formula for proportional counters. Nucl. Instrum. Methods Phys. Res. 1999, 437, 381–392. [Google Scholar] [CrossRef]
- Mazed, D. Experimental gas amplification study in boron-lined proportional counters for neutron detection. Radiat. Meas. 2007, 42, 245–250. [Google Scholar] [CrossRef]
- Mazed, D.; Mameri, S.; Ciolini, R. Design parameters and technology optimization of 3He-filled proportional counters for thermal neutron detection and spectrometry applications. Radiat. Meas. 2012, 47, 577–587. [Google Scholar] [CrossRef]
- Storrs, C.D.; Riser, R.W. Characteristic parameters of geigermüller counter gases. Appl. Sci. Res. 1960, 8, 387–396. [Google Scholar] [CrossRef]
- Pannbacker, R.G.; Kiser, R.W. Characteristic parameters of geigermüller counter gases. Propane-argon and propane-helium mixtures. Appl. Sci. Res. 1962, 10, 41–48. [Google Scholar] [CrossRef]
- Kiser, R.W. Characteristic parameters of gas-tube proportional counters. Appl. Sci. Res. 1960, 8, 183–200. [Google Scholar] [CrossRef]
- Kowalski, T.Z. Gas amplification factor in kr + iso-pentane filled proportional counters. Nucl. Instrum. Methods Phys. Res. 1983, 216, 447–454. [Google Scholar] [CrossRef]
- Baaliouamer, M.; Belaragueb, C.; Mazed, D. Gas gain measurement in helium-isobutane mixtures filled-proportional counters. Nucl. Instrum. Methods Phys. Res. 1996, 382, 490–494. [Google Scholar] [CrossRef]
- Broni, I.K.; Grosswendt, B. Gas amplification and ionization coefficients in isobutane and argon-isobutane mixtures at low gas pressures. Nucl. Instrum. Methods Phys. Res. 1998, 142, 219–244. [Google Scholar]
- Aleksa, M.; Riegler, W. Non-Linear MDT Drift Gases like Ar/CO2. 1998. Available online: https://cds.cern.ch/record/683777 (accessed on 20 September 2024).
- Dané, E.; Penso, G.; Pinci, D.; Sarti, A. Detailed study of the gain of the MWPCS for the LHCB muon system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 572, 682–688. [Google Scholar] [CrossRef]
- Pinci, D.; Sarti, A. Study of the MWPC Gas Gain Behaviour as a Function of the Gas Pressure and Temperature. 2005. Available online: https://cds.cern.ch/record/897202 (accessed on 20 September 2024).
- Passaleva, G.; Pinci, D. MWPC Gain Monitoring Through Time Measurements. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 27 October–3 November 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Davydov, Y.I. On the first townsend coefficient at high electric field. IEEE Trans. Nucl. Sci. 2004, 53, 2931–2935. [Google Scholar] [CrossRef]
- Loyola, H.; Birstein, L.; Hevia, A. Multiplication factors in ethylene-filled proportional counters. Radiat. Prot. Dosim. 2008, 132, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Ouyang, Q.; Zheng, S.; Yang, Y.; Xie, Y.; Cheng, S.; Han, H. The performance study on monitored drift tube at high pressure. Nucl. Electron. Detect. Technol. 2004, 24, 661–666. [Google Scholar]
- Ma, Y.Y.; Liu, J.B.; Chen, C.; Chen, Y.B.; Jin, Y.; Liu, R.G.; Ma, X.-Y.; Tang, X.; Wang, L.; Xu, M.-H.; et al. Experimental study of the gas gain of HE/C3H8(60/40). Chin. Phys. C 2005, 29, 481–484. [Google Scholar]
- Hou, L.; Ren, Y.; Zhang, J.; Meng, D. Three kinds of gas-flow proportional counter performance comparison. Nucl. Electron. Detect. Technol. 2011, 31, 933–942. [Google Scholar]
- Chen, G.Y.; Wei, Z.Y.; Xin, Y.; Fang, M.H.; Zhao, S.Y. Study of multiplication in cylindrical proportional counter. At. Energy Ence Technol. 2011, 45, 1356–1360. [Google Scholar]
- Wang, J.; Wu, W.; Hu, W.; Huang, G.; Zhang, H.; Fu, Y.; Wang, X. Study on the Effect of Working Gas on the Performance of Boron Lined Proportional Counter. Nucl. Electron. Detect. Technol. 2021, 2, 226–229. [Google Scholar]
- Gianotti, P.; Kashchuk, A.; Levitskaya, O.; Passamonti, L.; Pierluigi, D.; Russo, A.; Savrie, M. Measurement of the absolute gas gain and gain variations study in straw-tube detectors. J. Instrum. 2013, 8, T08001. [Google Scholar] [CrossRef]
- Şahin, Ö.; Kowalski, T.Z.; Veenhof, R. High-precision gas gain and energy transfer measurements in Ar–CO2 mixtures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 768, 104–111. [Google Scholar] [CrossRef]
- Kowalski, T.Z. Gas gain limitation in low pressure proportional counters filled with teg mixtures. J. Instrum. 2014, 9, C12007. [Google Scholar] [CrossRef]
- Şahin, Ö.; Kowalski, T.Z.; Veenhof, R. Systematic gas gain measurements and penning energy transfer rates in NE-CO2 mixtures. J. Instrum. 2016, 11, P01003. [Google Scholar] [CrossRef]
- Fares, M.; Debili, M.Y.; Messaoudi, M.; Begaa, S.; Negara, K.; Messai, A. Boron-10 lined proportional counter development for thermal neutron detection. Radiat. Detect. Technol. Methods 2021, 5, 110–116. [Google Scholar] [CrossRef]
- Chen, B.-X.; Zhang, Z.; Yang, Y. Nuclear Radiation Physics and Detection; Harbin Engineering University Press: Harbin, China, 2011. [Google Scholar]
Gas Mixtures | K (V·m−1·Pa−1) | ΔV (eV) |
---|---|---|
90% Ar + 10% CH4 (P10) | 48.4 | 23.6 |
95% Ar + 5% CH4 (P5) | 45.0 | 21.8 |
90% Xe + 10% CH4 | 36.2 | 33.9 |
95% Ar + 5% CH4 | 36.6 | 31.4 |
96% He + 4% C4H10(isomer) | 14.8 | 27.6 |
100% CH4 | 69.0 | 36.5 |
100% C3H8 | 100.0 | 29.5 |
75% Ar + 15% Xe + 10% CO2 | 51.0 | 20.2 |
64.6% Ar + 24.7% Xe + 10.7% CO2 | 60.0 | 18.3 |
90% Ar + 10% CH4 (P10) | 48.4 | 23.6 |
b | 6.35 mm | 10 mm | 12.7 mm | 13.5 mm | 15 mm | 17.5 mm | 21.5 mm | 25.4 mm | 35 mm | |
---|---|---|---|---|---|---|---|---|---|---|
a | ||||||||||
6 μm | 60.7 | 64.6 | 66.7 | 67.2 | 68.2 | 69.5 | 71.3 | 72.8 | 75.5 | |
8 μm | 77.6 | 82.8 | 85.6 | 86.3 | 87.5 | 89.3 | 91.7 | 93.7 | 97.4 | |
10 μm | 93.7 | 100.3 | 103.8 | 104.7 | 106.2 | 108.4 | 111.4 | 113.8 | 118.5 | |
12.5 μm | 113.1 | 121.3 | 125.7 | 126.8 | 128.7 | 131.5 | 135.2 | 138.2 | 144.1 | |
15 μm | 131.7 | 141.6 | 146.8 | 148.2 | 150.5 | 153.8 | 158.3 | 161.9 | 168.9 | |
20 μm | 167.3 | 180.5 | 187.4 | 189.2 | 192.2 | 196.7 | 202.7 | 207.5 | 216.9 | |
25 μm | 201.0 | 217.5 | 226.2 | 228.4 | 232.2 | 237.8 | 245.3 | 251.3 | 263.0 | |
30 μm | 233.3 | 253.0 | 263.5 | 266.1 | 270.7 | 277.4 | 286.4 | 293.7 | 307.6 | |
50 μm | 351.7 | 384.7 | 402.0 | 406.4 | 414.1 | 425.3 | 440.2 | 452.3 | 475.6 |
p (kPa) | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
Vmin (V) | 69.1 | 92.2 | 115.2 | 138.2 | 161.3 | 184.3 | 207.4 | 230.4 |
Part | Physical Parameters | Value or Description |
---|---|---|
cathode | radius (including thickness) | 30 mm |
length | 1000 mm | |
thickness | 1 mm | |
material and density | TA2 4.51 g/cm3 | |
potential | grounding | |
anode | radius | 12.5 μm or 20 μm |
length | 1000 mm | |
material | gold-plated tungsten wire | |
potential | positive high voltage | |
boron | material | 98% 10B + 2% 11B |
mass thickness | 0.6 mg/cm2 | |
composition | 85% Ar + 15% CO2 | |
gas | pressure | 25 kPa, 30 kPa, 35 kPa |
40 kPa, 45 kPa, 50 kPa |
Gas Pressure | Plateau Length (Anode Radius 12.5 μm) | Plateau Slope (Anode Radius 12.5 μm) | Plateau Length (Anode Radius 20 μm) | Plateau Slope (Anode Radius 20 μm) |
---|---|---|---|---|
25 kPa | 1080 V~1100 V:20 V | 53.76% (Unmatched) | 1200 V~1240 V:40 V | 39.70% |
30 kPa | 1200 V~1220 V:20 V | 40.18% (Unmatched) | 1200 V~1340 V:140 V | 39.64% |
35 kPa | 1240 V~1320 V:80 V | 40.00% | 1260 V~1460 V:200 V | 38.54% |
40 kPa | 1300 V~1420 V:120 V | 38.47% | 1320 V~1560 V:240 V | 39.79% |
45 kPa | 1340 V~1500 V:160 V | 38.95% | 1380 V~1640 V:260 V | 39.30% |
50 kPa | 1380 V~1580 V:200 V | 38.03% | 1420 V~1720 V:300 V | 39.42% |
Gas Pressure | Fitting Line Formula (Anode Radius 12.5 μm) | R-Squared (Anode Radius 12.5 μm) | Fitting Line Formula (Anode Radius 20 μm) | R-Squared (Anode Radius 20 μm) |
---|---|---|---|---|
25 kPa | y = 87.553x − 82,105 | 0.9985 | y = 77.864x − 79,190 | 0.997 |
30 kPa | y = 73.781x − 73,494 | 0.9985 | y = 67.452x − 71,065 | 0.994 |
35 kPa | y = 64.759x − 68,321 | 0.9987 | y = 57.762x − 64,634 | 0.9954 |
40 kPa | y = 58.255x − 64,589 | 0.9996 | y = 53.654x − 64,052 | 0.9979 |
45 kPa | y = 53.758x − 62,491 | 0.9992 | y = 51.107x − 64,197 | 0.9989 |
50 kPa | y = 51.608x − 62,473 | 0.9995 | y = 48.663x − 63,896 | 0.9996 |
Gas Mixtures | K (V·m−1·Pa−1) | ΔV (eV) |
---|---|---|
80% Ar + 20% CO2 | 22 | 49 |
90% Ar + 10% CO2 | 20 | 43 |
92% Ar + 8% CO2 | 19 | 42 |
93% Ar + 7% CO2 | 24 | 34 |
96% Ar + 4% CO2 | 23 | 34 |
Gas Pressure (kPa) | Measured Value (V) | Predicted Value (V) | Absolute Error Between Predicted and Measured Values (V) |
---|---|---|---|
30 | 1142.5 V | 1152.3 V | 9.8 V |
35 | 1222.8 V | 1205.8 V | 17.0 V |
40 | 1305.6 V | 1304.2 V | 1.4 V |
45 | 1373.5 V | 1374.9 V | 1.4 V |
50 | 1436.3 V | 1435.6 V | 0.7 V |
Gas Pressure (kPa) | Measured Value (V) | Predicted Value (V) | Absolute Error Between Predicted and Measured Values (V) |
---|---|---|---|
30 | 1290.8 V | 1251.4 V | 39.4 V |
35 | 1396.0 V | 1350.0 V | 46.0 V |
40 | 1492.0 V | 1481.6 V | 10.4 V |
45 | 1569.2 V | 1567.3 V | 1.9 V |
50 | 1641.8 V | 1636.3 V | 5.5 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, Z.; Huang, Y.; Luo, T.; Zhu, H.; Wu, W. Study of Gas Amplification Impact on Plateau Curve Characteristics in Boron-Coated Proportional Counters. Energies 2024, 17, 5740. https://doi.org/10.3390/en17225740
Liu Y, Chen Z, Huang Y, Luo T, Zhu H, Wu W. Study of Gas Amplification Impact on Plateau Curve Characteristics in Boron-Coated Proportional Counters. Energies. 2024; 17(22):5740. https://doi.org/10.3390/en17225740
Chicago/Turabian StyleLiu, Yaolong, Zhi Chen, Youjun Huang, Tingfang Luo, Hongliang Zhu, and Wenchao Wu. 2024. "Study of Gas Amplification Impact on Plateau Curve Characteristics in Boron-Coated Proportional Counters" Energies 17, no. 22: 5740. https://doi.org/10.3390/en17225740
APA StyleLiu, Y., Chen, Z., Huang, Y., Luo, T., Zhu, H., & Wu, W. (2024). Study of Gas Amplification Impact on Plateau Curve Characteristics in Boron-Coated Proportional Counters. Energies, 17(22), 5740. https://doi.org/10.3390/en17225740