An Approach for Detecting Faulty Lines in a Small-Current, Grounded System Using Learning Spiking Neural P Systems with NLMS
Abstract
:1. Introduction
2. Preliminaries
- 1.
- Let b represent a spike;
- 2.
- The configuration of the proposition neuron is defined as where m denotes the layer index.
- (a)
- 0 indicates the absence of an initial potential in the proposition neurons.
- (b)
- The weights follow the forms and , where , .
- (c)
- The firing rules are included in the set , where each rule follows the pattern , with and . The final neuron is termed the bias neuron, and , where , and . Here, will be defined in the following paragraph. The rule lacks a firing condition, implying it is always active when the incoming potential reaches 1.
- (3)
- A rule neuron is characterized by , where l specifies the layer.
- (a)
- The initial potential for rule neurons is set to zero.
- (b)
- All rule neurons have a fixed factor of 1.
- (c)
- The synaptic weight from rule neurons is designated as 1, implying that the output weights of standard neurons do not influence the weight adjustment in the LSN P system.
- (d)
- Firing rules for are structured as , where , , with . Neurons have the spiking rules , where . This ignition rule signifies that the output spiking value from the previous layer’s proposition neurons functions as the ignition threshold for the current layer’s neurons. Only one neuron in this layer activates, and, after the specified delay steps, a spike is generated by the following layer’s proposition neurons.
- (4)
3. Simulation and Analysis
3.1. Neutral-Point, Ungrounded System
3.2. The Neutral-Point Grounded System with the Arc Suppression Coil
4. Faulty Line Selection Models with LSNPSn
4.1. Learning Spiking Neural P Systems with NLMS
4.2. Small-Current Grounding Faulty Line Selection Methods
4.3. The Pseudocode of the Algorithm
Algorithm 1 Faulty line detection models with LSNPSn |
|
5. Experimental Results and Analysis
5.1. The Description of the Datasets
5.2. Selecting Parameters
5.3. Experimental Results
5.3.1. The Datasets of the Neutral-Point Ungrounded System
5.3.2. The Datasets of the Neutral-Point Grounded System with the Arc Suppression Coil
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Z.; Wang, L.; Zhang, H. A fault line selection method for small current grounding system based on big data. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2470–2474. [Google Scholar]
- Rong, H.; Ge, M.; Zhang, G.; Zhu, M. An approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural p systems. Int. J. Comput. Commun. Control 2018, 13, 521–536. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, B.; He, X.; Stuart, P. Application of steady-state detection method based on wavelet transform. Comput. Chem. Eng. 2003, 27, 569–578. [Google Scholar] [CrossRef]
- Cao, S.; Rhinehart, R.R. An efficient method for on-line identification of steady state. J. Process Control 1995, 5, 363–374. [Google Scholar] [CrossRef]
- Loos, M.; Werben, S.; Kereit, M.; Maun, J.C. Fault direction method in compensated network using the zero sequence active energy signal. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 717–723. [Google Scholar]
- Zhang, X.; Wang, K. Current prediction based zero sequence current suppression strategy for the semicontrolled open-winding PMSM generation system with a common DC bus. IEEE Trans. Ind. Electron. 2017, 65, 6066–6076. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Cong, W.; Yuan, T. Location method of single line-to-ground faults in low-resistance grounded distribution networks based on ratio of zero-sequence admittance. Int. J. Electr. Power Energy Syst. 2023, 146, 108777. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, C.; Zeng, D.; Li, H.; Wang, G. An FTU-based method for locating single-phase high-impedance faults using transient zero-sequence admittance in resonant grounding systems. IEEE Trans. Power Deliv. 2021, 37, 913–922. [Google Scholar] [CrossRef]
- Linli, Z.; Houlei, G.; Bingyin, X.; Yongduan, X. Fault location method based on zero sequence admittance measurement in non-effectively earthed system. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Washington, DC, USA, 16–20 January 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–4. [Google Scholar]
- Yumei, W.; Hao, G. Fault line selection method for single phase earth fault based on transient signals in the frequency band. In Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 738–741. [Google Scholar]
- Gao, L.; Wu, S.; Wang, M.; Wang, Z.; Yang, Y. Single-line-to-ground fault line selection method in distribution network based on multi-scale wavelet decomposition of transient signals. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Virtual, 15–17 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2052–2057. [Google Scholar]
- Li, H.; Luan, Y.; Zeng, R.; Shan, H.; Zhang, L.; Li, M. Fault line selection method for small-current grounding system based on VMD-DTW transient energy ratio. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China (Virtual), 16–17 April 2022; IEEE: Piscataway, NJ, USA; pp. 1426–1430. [Google Scholar]
- Yilong, Q.; Weipu, T.; Shuan, C.; Yihan, Y. Study on fault line selection based on transient and mathematical morphology in resonant grounded system. In Proceedings of the 2006 International Conference on Power System Technology, Chongqing, China, 22–26 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–5. [Google Scholar]
- Buchaiah, S.; Shakya, P. Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection. Measurement 2022, 188, 110506. [Google Scholar] [CrossRef]
- Kumar, T.P.; Saimurugan, M.; Haran, R.H.; Siddharth, S.; Ramachandran, K. A multi-sensor information fusion for fault diagnosis of a gearbox utilizing discrete wavelet features. Meas. Sci. Technol. 2019, 30, 085101. [Google Scholar] [CrossRef]
- Shifat, T.A.; Hur, J.W. ANN assisted multi sensor information fusion for BLDC motor fault diagnosis. IEEE Access 2021, 9, 9429–9441. [Google Scholar] [CrossRef]
- Ren, X.; Li, C.; Ma, X.; Chen, F.; Wang, H.; Sharma, A.; Gaba, G.S.; Masud, M. Design of multi-information fusion based intelligent electrical fire detection system for green buildings. Sustainability 2021, 13, 3405. [Google Scholar] [CrossRef]
- Cheng, X.R.; Cui, B.J.; Hou, S.Z. Fault line selection of distribution network based on modified CEEMDAN and GoogLeNet neural network. IEEE Sens. J. 2022, 22, 13346–13364. [Google Scholar] [CrossRef]
- Liang, J.; Jing, T.; Niu, H.; Wang, J. Two-terminal fault location method of distribution network based on adaptive convolution neural network. IEEE Access 2020, 8, 54035–54043. [Google Scholar] [CrossRef]
- Wang, N. Fault line selection of power distribution system via improved bee colony algorithm based deep neural network. Energy Rep. 2022, 8, 43–53. [Google Scholar] [CrossRef]
- Bo, Z.; Aggarwal, R.; Johns, A.; Li, H.; Song, Y. A new approach to phase selection using fault generated high frequency noise and neural networks. IEEE Trans. Power Deliv. 1997, 12, 106–115. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Li, Y.; Guo, F. Series arc fault diagnosis and line selection method based on recurrent neural network. IEEE Access 2020, 8, 177815–177822. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, W. Fault line selection method based on transfer learning depthwise separable convolutional neural network. J. Electr. Comput. Eng. 2021, 2021, 9979634. [Google Scholar] [CrossRef]
- Samanta, B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech. Syst. Signal Process. 2004, 18, 625–644. [Google Scholar] [CrossRef]
- Jensen, C.A.; El-Sharkawi, M.A.; Marks, R.J. Power system security assessment using neural networks: Feature selection using Fisher discrimination. IEEE Trans. Power Syst. 2001, 16, 757–763. [Google Scholar] [CrossRef]
- Ghosh-Dastidara, S.; Adeli, H. Spiking neural networks. Int. J. Neural Syst. 2009, 19, 295–308. [Google Scholar] [CrossRef]
- Gatti, M.; Leporati, A.; Zandron, C. On spiking neural membrane systems with neuron and synapse creation. Int. J. Neural Syst. 2022, 32, 2250036. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, G.; Wu, Y.; Hu, Y.; Rong, H.; Yu, T. A learning numerical spiking neural P system for classification problems. Knowl.-Based Syst. 2024, 296, 111914. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, G.; Hu, Y.; Wu, Y.; Rong, H. An Optimization Numerical Spiking Neural Membrane System with Adaptive Multi-Mutation Operators for Brain Tumor Segmentation. Int. J. Neural Syst. 2024, 34, 2450036. [Google Scholar] [CrossRef] [PubMed]
- Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [Google Scholar] [CrossRef]
- Zhang, G.; Pérez-Jiménez, M.J.; Riscos-Núñez, A.; Verlan, S.; Konur, S.; Hinze, T.; Gheorghe, M. Membrane Computing Models: Implementations; Springer: Berlin/Heidelberg, Germany, 2021; Volume 10. [Google Scholar]
- Pan, L.; Păun, G.; Zhang, G. Foreword: Starting JMC. J. Membr. Comput. 2019, 1, 1–2. [Google Scholar] [CrossRef]
- Orellana-Martín, D.; Valencia-Cabrera, L.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. J. Membr. Comput. 2019, 1, 85–92. [Google Scholar] [CrossRef]
- Song, B.; Pan, L.; Pérez-Jiménez, M.J. Tissue P systems with protein on cells. Fundam. Informaticae 2016, 144, 77–107. [Google Scholar] [CrossRef]
- Song, B.; Zhang, C.; Pan, L. Tissue-like P systems with evolutional symport/antiport rules. Inf. Sci. 2017, 378, 177–193. [Google Scholar] [CrossRef]
- Liu, Q.; Long, L.; Yang, Q.; Peng, H.; Wang, J.; Luo, X. LSTM-SNP: A long short-term memory model inspired from spiking neural P systems. Knowl.-Based Syst. 2022, 235, 107656. [Google Scholar] [CrossRef]
- Liu, Q.; Long, L.; Peng, H.; Wang, J.; Yang, Q.; Song, X.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Gated spiking neural P systems for time series forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 6227–6236. [Google Scholar] [CrossRef]
- Long, L.; Lugu, R.; Xiong, X.; Liu, Q.; Peng, H.; Wang, J.; Orellana-Martín, D.; Pérez-Jiménez, M.J. Echo spiking neural P systems. Knowl.-Based Syst. 2022, 253, 109568. [Google Scholar] [CrossRef]
- Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Informaticae 2006, 71, 279–308. [Google Scholar]
- Păun, A.; Păun, G. Small universal spiking neural P systems. BioSystems 2007, 90, 48–60. [Google Scholar] [CrossRef]
- Wang, J.; Hoogeboom, H.J.; Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with weights. Neural Comput. 2010, 22, 2615–2646. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Păun, G.; Zhang, G.; Neri, F. Spiking neural P systems with communication on request. Int. J. Neural Syst. 2017, 27, 1750042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 2014, 24, 1440006. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Q.; Dong, J.; Zhang, G.; Gou, X.; Rong, H.; Paul, P.; Neri, F. An adaptive optimization spiking neural P system for binary problems. Int. J. Neural Syst. 2021, 31, 2050054. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, G.; Luo, B.; Yang, Q.; Guo, D.; Rong, H.; Zhu, M.; Zhou, K. A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems. Inf. Sci. 2022, 596, 1–14. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, G.; Luo, B.; Rong, H. An optimization numerical spiking neural P system for solving constrained optimization problems. Inf. Sci. 2023, 626, 428–456. [Google Scholar] [CrossRef]
- Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. Real-Life Applications with Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2017; Volume 25. [Google Scholar]
- Zhang, G.; Verlan, S.; Wu, T.; Cabarle, F.G.C.; Xue, J.; Orellana-Martín, D.; Dong, J.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J. Spiking Neural P Systems: Theory, Applications and Implementations; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Wang, T.; Zhang, G.; Zhao, J.; He, Z.; Wang, J.; Pérez-Jiménez, M.J. Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 2014, 30, 1182–1194. [Google Scholar] [CrossRef]
- Wang, T.; Wei, X.; Wang, J.; Huang, T.; Peng, H.; Song, X.; Cabrera, L.V.; Pérez-Jiménez, M.J. A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies. Eng. Appl. Artif. Intell. 2020, 92, 103680. [Google Scholar] [CrossRef]
- Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism. Complexity 2020, 2020, 2462647. [Google Scholar] [CrossRef]
- Zhang, G.; Rong, H.; Paul, P.; He, Y.; Neri, F.; Pérez-Jiménez, M.J. A complete arithmetic calculator constructed from spiking neural P systems and its application to information fusion. Int. J. Neural Syst. 2021, 31, 2050055. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, G.; Mastoi, M.S.; Neri, F.; Pu, Y. A human-simulated fuzzy membrane approach for the joint controller of walking biped robots. Integr. Comput.-Aided Eng. 2023, 30, 105–120. [Google Scholar] [CrossRef]
- Zhang, G.; Shang, Z.; Verlan, S.; Martínez-Del-Amor, M.Á.; Yuan, C.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J. An overview of hardware implementation of membrane computing models. ACM Comput. Surv. (CSUR) 2020, 53, 1–38. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Y.; Kong, D.; Wu, F.; Yin, A.; Qu, J.; Liu, X. Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images. Expert Syst. Appl. 2021, 168, 114446. [Google Scholar] [CrossRef]
- Li, B.; Peng, H.; Luo, X.; Wang, J.; Song, X.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. Medical image fusion method based on coupled neural P systems in nonsubsampled shearlet transform domain. Int. J. Neural Syst. 2021, 31, 2050050. [Google Scholar] [CrossRef]
- Cai, Y.; Mi, S.; Yan, J.; Peng, H.; Luo, X.; Yang, Q.; Wang, J. An unsupervised segmentation method based on dynamic threshold neural P systems for color images. Inf. Sci. 2022, 587, 473–484. [Google Scholar] [CrossRef]
- Song, T.; Pang, S.; Hao, S.; Rodríguez-Patón, A.; Zheng, P. A parallel image skeletonizing method using spiking neural P systems with weights. Neural Process. Lett. 2019, 50, 1485–1502. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, G.; Kong, D.; Li, Q.; Dai, J.; Zhang, H.; Qu, J.; Liu, X.; Xue, J. Pancreas segmentation using a dual-input v-mesh network. Med. Image Anal. 2021, 69, 101958. [Google Scholar] [CrossRef]
- Xue, J.; He, K.; Nie, D.; Adeli, E.; Shi, Z.; Lee, S.W.; Zheng, Y.; Liu, X.; Li, D.; Shen, D. Cascaded multitask 3-D fully convolutional networks for pancreas segmentation. IEEE Trans. Cybern. 2019, 51, 2153–2165. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Z.; Kong, D.; Wang, Y.; Liu, X.; Fan, W.; Yuan, S.; Niu, S.; Li, D. Deep ensemble neural-like P systems for segmentation of central serous chorioretinopathy lesion. Inf. Fusion 2021, 65, 84–94. [Google Scholar] [CrossRef]
- Xue, J.; Yan, S.; Qu, J.; Qi, F.; Qiu, C.; Zhang, H.; Chen, M.; Liu, T.; Li, D.; Liu, X. Deep membrane systems for multitask segmentation in diabetic retinopathy. Knowl.-Based Syst. 2019, 183, 104887. [Google Scholar] [CrossRef]
- Xue, J.; Hu, J.; Wang, Y.; Kong, D.; Yan, S.; Zhao, R.; Li, D.; Liu, Y.; Liu, X. Hypergraph membrane system based F2 fully convolutional neural network for brain tumor segmentation. Appl. Soft Comput. 2020, 94, 106454. [Google Scholar] [CrossRef]
- Dong, X.; Shi, S. Identifying single-phase-to-ground fault feeder in neutral noneffectively grounded distribution system using wavelet transform. IEEE Trans. Power Deliv. 2008, 23, 1829–1837. [Google Scholar] [CrossRef]
- Barik, M.A.; Gargoom, A.; Mahmud, M.A.; Haque, M.E.; Al-Khalidi, H.; Oo, A.M.T. A decentralized fault detection technique for detecting single phase to ground faults in power distribution systems with resonant grounding. IEEE Trans. Power Deliv. 2018, 33, 2462–2473. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, K.; Wang, Y.; Xu, Y. A novel single phase grounding fault protection scheme without threshold setting for neutral ineffectively earthed power systems. CSEE J. Power Energy Syst. 2016, 2, 73–81. [Google Scholar] [CrossRef]
- Liu, P.; Huang, C. Detecting single-phase-to-ground fault event and identifying faulty feeder in neutral ineffectively grounded distribution system. IEEE Trans. Power Deliv. 2017, 33, 2265–2273. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, C.J. Fault line selection for small current neutral grounding system based on the fifth harmonic current mutation in distribution system. Proc. CSEE 2006, 18, 37–40. [Google Scholar]
- Liang, R.; Xin, J.; Wang, C.; Li, G.; Tang, J. Fault line selection in small current grounding system by improved active component method. High Volt. Eng. 2010, 36, 375–379. [Google Scholar]
- Sang, Z.; Pan, Z.c.; Li, L.; Zhang, H.f. A new approach of fault line identification, fault distance measurement and fault location for single phase-to-ground fault in small current neutral grounding system. Power Syst. Technol.-Beijing 1997, 21, 50–52. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, K.; Chen, Q.; Dong, H.B. Study on earthed fault location method in indirectly grounding power system using maximum value of absolute value summation of measurement admittance mutual difference. Proc. Chin. Soc. Electr. Eng. 2005, 25, 49–54. [Google Scholar]
- Zhang, G.; Zhang, X.; Rong, H.; Paul, P.; Zhu, M.; Neri, F.; Ong, Y.S. A layered spiking neural system for classification problems. Int. J. Neural Syst. 2022, 32, 2250023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, G.; Paul, P.; Zhang, J.; Wu, T.; Fan, S.; Xiong, X. Dissolved Gas Analysis for Transformer Fault Based on Learning Spiking Neural P System with Belief AdaBoost. Int. J. Unconv. Comput. 2021, 16, 239–258. [Google Scholar]
- Bershad, N.J.; Bermudez, J.C.M.; Tourneret, J.Y. Stochastic analysis of the LMS algorithm for system identification with subspace inputs. IEEE Trans. Signal Process. 2008, 56, 1018–1027. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 2008, 56, 543–554. [Google Scholar] [CrossRef]
- Xiao, L.; Boyd, S.; Kim, S.J. Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 2007, 67, 33–46. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Y.; Hero, A.O. Regularized least-mean-square algorithms. arXiv 2010, arXiv:1012.5066. [Google Scholar]
- Jung, S.M.; Park, P. Stabilization of a bias-compensated normalized least-mean-square algorithm for noisy inputs. IEEE Trans. Signal Process. 2017, 65, 2949–2961. [Google Scholar] [CrossRef]
- Duttweiler, D.L. Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 2000, 8, 508–518. [Google Scholar] [CrossRef]
- Jo, S.; Kim, S.W. Consistent normalized least mean square filtering with noisy data matrix. IEEE Trans. Signal Process. 2005, 53, 2112–2123. [Google Scholar]
- Cho, H.; Lee, C.W.; Kim, S.W. Derivation of a new normalized least mean squares algorithm with modified minimization criterion. Signal Process. 2009, 89, 692–695. [Google Scholar] [CrossRef]
Methods | Systems | Results |
---|---|---|
LSNPS | Neutral-point ungrounded system | 98.90% |
Neutral-point grounded system with the arc suppression coil | 99.00% | |
SVM | Neutral-point ungrounded system | 97.33% |
Neutral-point grounded system with the arc suppression coil | 98.17% | |
kNN | Neutral-point ungrounded system | 98.62% |
Neutral-point grounded system with the arc suppression coil | 98.91% | |
LSNPSn | Neutral-point ungrounded system | 98.94% |
Neutral-point grounded system with the arc suppression coil | 99.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wu, Y.; Yang, Q.; Liu, Y.; Wang, S.; Dong, J.; Zeng, X.; Zhang, D. An Approach for Detecting Faulty Lines in a Small-Current, Grounded System Using Learning Spiking Neural P Systems with NLMS. Energies 2024, 17, 5742. https://doi.org/10.3390/en17225742
Hu Y, Wu Y, Yang Q, Liu Y, Wang S, Dong J, Zeng X, Zhang D. An Approach for Detecting Faulty Lines in a Small-Current, Grounded System Using Learning Spiking Neural P Systems with NLMS. Energies. 2024; 17(22):5742. https://doi.org/10.3390/en17225742
Chicago/Turabian StyleHu, Yangheng, Yijin Wu, Qiang Yang, Yang Liu, Shunli Wang, Jianping Dong, Xiaohua Zeng, and Dapeng Zhang. 2024. "An Approach for Detecting Faulty Lines in a Small-Current, Grounded System Using Learning Spiking Neural P Systems with NLMS" Energies 17, no. 22: 5742. https://doi.org/10.3390/en17225742
APA StyleHu, Y., Wu, Y., Yang, Q., Liu, Y., Wang, S., Dong, J., Zeng, X., & Zhang, D. (2024). An Approach for Detecting Faulty Lines in a Small-Current, Grounded System Using Learning Spiking Neural P Systems with NLMS. Energies, 17(22), 5742. https://doi.org/10.3390/en17225742