Modeling and Optimization of a Nuclear Integrated Energy System for the Remote Microgrid on El Hierro
Abstract
:1. Introduction
- Presents a real microgrid scenario.
- ○
- A microreactor-powered IES microgrid was designed to provide electricity and process heat for desalination to help meet the power and water demands of the island.
- Novel use of FORCE tools for remote microgrid applications.
- ○
- This method uses stochastic time series data to help account for uncertainty for future demand and generation.
- ○
- The optimization results are analyzed, quantifying the uncertainty in this optimization method.
- A dynamic physical model of the microgrid was created.
- ○
- A dynamic model of the nuclear IES microgrid was created.
- ○
- The simplistic surrogate models used by the optimizer are compared to dynamic physics-based models.
- ○
- Reactor stability is analyzed with a dynamic multiphysics model.
1.1. Microreactors
1.2. El Hierro, Canary Islands, Spain
2. Materials and Methods
2.1. Framework for Optimization of Resources and Economics
2.1.1. HYBRID
2.1.2. Risk Analysis Virtual Environment
2.1.3. Holistic Energy Resource Optimization Network
2.2. Workflow
2.3. Modeling
2.3.1. Prismatic HTGR Microreactor
2.3.2. Multiple Effect Evaporator
2.3.3. Balance of Plant
2.3.4. Thermal Energy Storage
2.3.5. Control Systems
2.4. Microgrid Model
Additional Controls
2.5. Optimization
2.5.1. Data Generation
2.5.2. HERON Input File
3. Results
3.1. Optimization
3.1.1. Diesel Pricing
3.1.2. Optimization Surface
3.1.3. Full System Optimization
3.1.4. Fixed Reactor Optimization
3.1.5. Dispatch
3.2. Dynamic Modeling Results
3.3. Cost of Carbon Avoided
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Klouda, N.; Johnson, R.; Mills, I.; Jang, H.; Worbel, A.; Minute, M. Microreactors in Alaska Use Case Analysis: Executive Summary; The University of Alaska Center for Economic Development: Anchorage, AK, USA, 2020; p. 6. Available online: https://static1.squarespace.com/static/59f6b60bcf81e02892fd0261/t/60189a8fc18e871112eff45b/1612225177349/Use+Case+Analysis_Executive+Summary.pdf (accessed on 30 October 2020).
- Lovering, J.R. A Techno-Economic Evaluation of Microreactors for Off-Grid and Microgrid Applications. Sustain. Cities Soc. 2023, 95, 104620. [Google Scholar] [CrossRef]
- Shropshire, D.; Black, G.; Araujo, K. Global Market Analysis of Microreactors; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2021. [CrossRef]
- Bragg-Sitton, S.M.; Rabiti, C.; Boardman, R.D.; O’Brien, J.E.; Morton, T.J.; Yoon, S.; Yoo, J.S.; Frick, K.L.; Sabharwall, P.; Harrison, T.J.; et al. Integrated Energy Systems: 2020 Roadmap. United States. 2020. Available online: https://www.osti.gov/biblio/1670434 (accessed on 16 October 2024).
- Akter, A.; Zafir, E.I.; Dana, N.H.; Joysoyal, R.; Sarker, S.K.; Li, L.; Muyeen, S.M.; Das, S.K.; Kamwa, I. A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Rev. 2024, 51, 101298. [Google Scholar] [CrossRef]
- Masrur, H.; Howlader, H.O.; Elsayed Lotfy, M.; Khan, K.R.; Guerrero, J.M.; Senjyu, T. Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh. Sustainability 2020, 12, 2880. [Google Scholar] [CrossRef]
- Pecenak, Z.K.; Stadler, M.; Mathiesen, P.; Fahy, K.; Kleissl, J. Robust design of microgrids using a hybrid minimum investment optimization. Appl. Energy 2020, 276, 115400. [Google Scholar] [CrossRef]
- Stadler, M.; Groissböck, M.; Cardoso, G.; Marnay, C. Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel. Appl. Energy 2014, 132, 557–567. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Adham, M.I.; Abdussami, M.R. Analysis of nuclear-renewable hybrid energy system for marine ships. Energy Rep. 2021, 7, 2398–2417. [Google Scholar] [CrossRef]
- Dailey, R.; Lindley, B. Locational Variance in Nuclear Microreactor Performance Under Net Zero Microgrid Conditions. Nucl. Sci. Eng. 2024, 1–23. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Abdussami, M.R.; Adham, M.I. Optimal Planning of Nuclear-Renewable Micro-Hybrid Energy System by Particle Swarm Optimization. IEEE Access 2020, 8, 181049–181073. [Google Scholar] [CrossRef]
- Poudel, B.; McJunkin, T.R.; Kang, N.; Reilly, J.T.; Stadler, M. Small Reactors in Microgrids: Technoeconomic Analysis; United States. 1 August 2022. Available online: https://www.osti.gov/biblio/1879211 (accessed on 17 October 2024).
- Frick, K.; Talbot, P.; McDowell, D. Framework For Optimization Of Resources And Economics Ecosystem. United States; 2022. Available online: https://www.osti.gov/doecode/biblio/74301 (accessed on 22 August 2024).
- INL. FORCE Tool Suite. Available online: https://Ies.inl.gov/SitePages/FORCE.aspx (accessed on 4 October 2023).
- IAEA. Advanced Reactors Information System. Available online: https://aris.iaea.org/ (accessed on 4 October 2023).
- Santamarta, J.C.; Rubiales, I.C.; Rodríguez-Martín, J.; Cruz-Pérez, N. Water status in the Canary Islands related to energy requirements. Energy Effic. 2022, 15, 13. [Google Scholar] [CrossRef]
- Eléctrica, R. Electricity Demand Tracking in Real Time. 2023. Available online: https://demanda.ree.es/visiona/canarias/el_hierro5m/total (accessed on 20 October 2023).
- Google Maps. 2024. Available online: https://google.com/maps (accessed on 15 October 2024).
- Bayoumi, S.; Ali, M.; Amin, I.; Oterkus, S.; Shawky, H.; Oterkus, E.; El Torky, R. Environmentally-driven design of a floating desalination platform (Case study: Reverse Osmosis Floating Desalination Platform of Ras Gharib, Egypt). AIMS Energy 2021, 9, 623–650. [Google Scholar] [CrossRef]
- Saeed, R.M.; Frick, K.L.; Shigrekar, A.; Mikkelson, D.; Bragg-Sitton, S. Mapping thermal energy storage technologies with advanced nuclear reactors. Energy Convers. Manag. 2022, 267, 115872. [Google Scholar] [CrossRef]
- Williams, L.; Kim, J.; Novotny, V.; Popli, N.; Creasman, S.; Mikkelson, D. Thermal Extraction Modeling Within HYBRID: Nominal and Extraction Conditions in Advanced Reactor Systems; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2023. [CrossRef]
- Frick, K.; Talbot, P.; Wendt, D.; Boardman, R.; Rabiti, C.; Bragg-Sitton, S.; Ruth, M.; Levie, D.; Frew, B.; Elgowainy, A.; et al. Evaluation of Hydrogen Production Feasibility for a Light Water Reactor in the Midwest; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2019. [CrossRef]
- Wendt, D.; Knighton, L.; Boardman, R. High Temperature Steam Electrolysis Process Performance and Cost Estimates; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2022. [CrossRef]
- Talbot, P.; McDowell, D.; Richards, J.; Cogliati, J.; Alfonsi, A.; Rabiti, C.; Boardman, R.; Bernhoft, S.; La Chesnaye, F.; Ela, E.; et al. Evaluation of Hybrid FPOG Applications in Regulated and Deregulated Markets Using HERON; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2020. [CrossRef]
- McDowell, D.; Talbot, P.; Wrobel, A.; Frick, K.; Bryan, H.; Boyer, C.; Boardman, R.; Taber, J.; Hansen, J. A Technical and Economic Assessment of LWR Flexible Operation for Generation and Demand Balancing to Optimize Plant Revenue; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2021. [CrossRef]
- Frick, K.; Mikkelson, D.; Alfonsi, A.; Rabiti, C. HYBRID User Manual. 2022. Available online: https://github.com/idaholab/HYBRID (accessed on 21 September 2023).
- Epiney, A.; Rabiti, C.; Kim, J.; Frick, K.; Talbot, P.; Kinoshita, R.; Tang, Y.; Greenwood, M.; Pnciroli, R.; Alfonsi, A.; et al. Hybrid Simulation Framework. United States. 2021. Available online: https://www.osti.gov/doecode/biblio/53749 (accessed on 21 September 2023).
- Rabiti, C.; Alfonsi, A.; Cogliati, J.; Mandelli, D.; Kinoshita, R.; Sen, S.; Wang, C.; Talbot, P.W.; Maljovec, D.P.; Abdo, M.G. RAVEN User Manual; Idaho National Laboratory: Idaho Falls, ID, USA, 2023. Available online: https://github.com/idaholab/raven/ (accessed on 21 September 2023).
- Slaughter, A.; Miller, J.; Epiney, A.; Alfonsi, A.; Spencer, B.; Permann, C.; Wang, C.; Maljovec, D.; Andrs, D.; Gaston, D.; et al. Raven. United States; 2017. Available online: https://www.osti.gov/doecode/biblio/11682 (accessed on 21 September 2023).
- Talbot, P.W.; McDowell, D.J.; Garrett, R.D.; Hanna, B.N.; Gairola, A.; Zhou, J.; Griffith, A.; Soto, G.J. HERON User Manual; Idaho National Laboratory: Idaho Falls, ID, USA, 2023. Available online: https://github.com/idaholab/HERON/ (accessed on 21 September 2023).
- Talbot, P.; Rabiti, C.; Gairola, A.; Frick, K.; Prateek, P.; Zhou, J. HERON. United States; 2020. Available online: https://www.osti.gov/doecode/biblio/45038 (accessed on 21 September 2023).
- Talbot, P.; Gairola, A.; Prateek, P.; Alfonsi, A.; Rabiti, C.; Boardman, R. HERON as a Tool for LWR Market Interaction in a Deregulated Market; INL/EXT-19-56933; INL: Idaho Falls, ID, USA, 2019. [Google Scholar]
- Williams, L.; Mikkelson, D.; Doster, J.M. Prismatic High Temperature Gas-Cooled Reactor Model in Support of Integrated Energy Systems. In Proceedings of the 2024 International Congress on Advances in Nuclear Power Plants, Las Vegas, NV, USA, 16–19 June 2024; pp. 624–633. [Google Scholar] [CrossRef]
- Williams, L.; Solis, E.; Terry, S.; Doster, J.M.; Mikkelson, D. Modeling Cogeneration Systems to Produce Electrical Power and Drinking Water. Altern. Energy Distrib. Gener. J. 2023, 5, 7–35. [Google Scholar]
- Kim, J.S.; Frick, K. Status Report on the Component Models Developed in the Modelica Framework: Reverse Osmosis Desalination Plant & Thermal Energy Storage; Office of Scientific and Technical Information (OSTI): Idaho Falls, ID, USA, 2018. [Google Scholar] [CrossRef]
- Frick, K.L.; Doster, J.M.; Bragg-Sitton, S.M. Auxiliary Feedwater Reheating to Mitigate Primary and Secondary Side Thermal Stressors. In Proceedings of the 11th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT) 2019, Orlando, FL, USA, 23 January 2019; Available online: https://www.osti.gov/biblio/1498075 (accessed on 30 October 2024).
- Abou-Jaoude, A.; Lin, L.; Bolisetti, C.; Worsham, E.K.; Larsen, L.M.; Epiney, A.S. Literature Review of Advanced Reactor Cost Estimates; United States. 2023. Available online: https://www.osti.gov/biblio/1986466 (accessed on 10 June 2024).
- Gautam, K.R.; Andresen, G.B.; Victoria, M. Review and Techno-Economic Analysis of Emerging Thermo-Mechanical Energy Storage Technologies. Energies 2022, 15, 6328. [Google Scholar] [CrossRef]
- Briongos, F.; Platero Gaona, C.A.; Sánchez-Fernández, J.A. Increasing Demand Covered by Renewable Energy in El Hierro Island. Sustainability 2023, 15, 16185. [Google Scholar] [CrossRef]
Actuator | Controlled Variable | Nominal Set Point |
---|---|---|
Control Rods | Core Coolant Exit Temperature | 630 °C |
He Circulator | Reactor Power | Match Demand |
Charging HX Valve | Hot Tank Inlet Temperature | 565 °C |
Discharging HX Valve | Steam Generator Pressure | 120 bar |
Turbine Control Valve | Electrical Power | Match Demand |
Feed Heating Valve | Feed Water Temperature | 200 °C |
Feed Water Pump | Steam Temperature | 540 °C |
Extraction Control Valve | Extraction Pressure | 3 bar |
Intermediate Bypass Valve | MEE Water Production | 8 kg/s |
Component | Component Type | Resource | Capacity |
---|---|---|---|
Reactor | Source | Heat | Opt |
BOP | Transfer | Heat, Electricity | Fixed |
MEE | Transfer | Heat, Water | Fixed |
TES | Storage | Heat | Opt |
Diesel | Source | Electricity | Fixed |
Wind | Source | Electricity | ARMA |
PHS | Storage | Electricity | Fixed |
Grid | Sink | Electricity | ARMA |
Water Market | Sink | Water | Fixed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, L.; Doster, J.M.; Mikkelson, D. Modeling and Optimization of a Nuclear Integrated Energy System for the Remote Microgrid on El Hierro. Energies 2024, 17, 5826. https://doi.org/10.3390/en17235826
Williams L, Doster JM, Mikkelson D. Modeling and Optimization of a Nuclear Integrated Energy System for the Remote Microgrid on El Hierro. Energies. 2024; 17(23):5826. https://doi.org/10.3390/en17235826
Chicago/Turabian StyleWilliams, Logan, J. Michael Doster, and Daniel Mikkelson. 2024. "Modeling and Optimization of a Nuclear Integrated Energy System for the Remote Microgrid on El Hierro" Energies 17, no. 23: 5826. https://doi.org/10.3390/en17235826
APA StyleWilliams, L., Doster, J. M., & Mikkelson, D. (2024). Modeling and Optimization of a Nuclear Integrated Energy System for the Remote Microgrid on El Hierro. Energies, 17(23), 5826. https://doi.org/10.3390/en17235826