The Estimation of Power Losses in Composite Cores Excited by Harmonic Flux Density Waveforms †
Abstract
:1. Introduction
2. Sample and Measurements
3. Empirical Model of Harmonic Losses
4. Validation of the Harmonic Loss Model: Results and Discussion
- 50 Hz sine + 3rd harmonic, = 0.5, = 115°;
- 50 Hz sine + 3rd harmonic, = 0.7, = 145°;
- 50 Hz sine + 3rd harmonic, = 0.9, = 80°;
- 50 Hz sine + 5th harmonic, = 0.3, = 45°;
- 50 Hz sine + 5th harmonic, = 0.5, = 135°;
- 50 Hz sine + 5th harmonic, = 0.7, = 75°;
- 50 Hz sine + 7th harmonic, = 0.3, = 15°;
- 50 Hz sine + 7th harmonic, = 0.5, = 60°;
- 50 Hz sine + 7th harmonic, = 0.7, = 25°,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEC 60404-2:1996; Magnetic Materials. Part 2: Methods of Measurements of the Magnetic Properties of Electrical Steel Sheet by Means of an Epstein Frame. International Electrotechnical Commission: Geneva, Switzerland, 1996. Available online: https://webstore.iec.ch/en/publication/2063 (accessed on 15 September 2024).
- IEC 60404-3:2022; Magnetic Materials. Part 3: Methods of Measurement of the Magnetic Properties of Magnetic Sheet and Strip by Means of a Single Sheet Tester. International Electrotechnical Commission: Geneva, Switzerland, 2022. Available online: https://webstore.iec.ch/en/publication/66641 (accessed on 15 September 2024).
- IEC 60404-6:2018; Magnetic Materials. Part 6: Methods of Measurement of the Magnetic Properties of Magnetically Soft Metallic and Powder Materials at Frequencies in the Range 20 Hz to 100 kHz by the Use of Ring Specimens. International Electrotechnical Commission: Geneva, Switzerland, 2018. Available online: https://webstore.iec.ch/en/publication/27825 (accessed on 15 September 2024).
- Van den Bossche, A.; Valchev, V.C.; Van den Sype, D.M.; Van den Bossche, L.P. Ferrite losses of cores with square wave voltage and dc bias. J. Appl. Phys. 2006, 99, 08M908. [Google Scholar] [CrossRef]
- Górecki, K.; Detka, K. Improved method for measuring power losses in the inductor core. IEEE Trans. Instrum. Meas. 2021, 70, 1500710. [Google Scholar] [CrossRef]
- Petrescu, L.-G.; Petrescu, M.-C.; Cazacu, E.; Constantinescu, C.-D. Estimation of energy losses in nanocrystalline FINEMET alloys working at high frequency. Materials 2021, 14, 7745. [Google Scholar] [CrossRef] [PubMed]
- Najgebauer, M.; Gzieł, D. The analysis of magnetic core properties under non-sinusoidal excitation waveforms. Przegląd Elektrotechniczny 2023, 99, 234–237. (In Polish) [Google Scholar] [CrossRef]
- Ionita, V.; Cazacu, E.; Petrescu, L. Effect of voltage harmonics on iron losses in magnetic cores with hysteresis. In Proceedings of the 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kaihara, H.; Takahashi, N.; Nakano, M.; Kawabe, M.; Nomiyama, T.; Shiozaki, A.; Miyagi, D. Effect of carrier frequency and circuit resistance on iron loss of electrical steel sheet under Single-Phase Full-Bridge PWM inverter excitation. IEEE Trans. Magn. 2012, 48, 3454–3457. [Google Scholar] [CrossRef]
- Rupanagunta, P.; Hsu, J.S.; Weldon, W.F. Determination of iron core losses under influence of third-harmonic flux component. IEEE Trans. Magn. 1991, 27, 768–777. [Google Scholar] [CrossRef]
- Guo, P.; Li, Y.; Lin, Z.; Li, Y.; Su, P. Characterization and calculation of losses in soft magnetic composites for motors with SVPWM excitation. Appl. Energy 2023, 349, 121631. [Google Scholar] [CrossRef]
- Xue, S.; Feng, J.; Guo, S.; Chen, Z.; Peng, J.; Chu, W.; Xue, P.; Zhu, Z.Q. Iron loss model for electrical machines fed by low switching frequency PWM. In Proceedings of the IEEE International Magnetics Conference (INTERMAG), Dublin, Ireland, 24–28 April 2017; p. 1. [Google Scholar] [CrossRef]
- Popescu, M.; Bitoleanu, A.; Dobriceanu, M. Analysis and optimal design of matching inductance for induction heating system with voltage inverter. In Proceedings of the 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Fiorillo, F.; Novikov, A. An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform. IEEE Trans. Magn. 1990, 26, 2904–2910. [Google Scholar] [CrossRef]
- Amar, M.; Kaczmarek, R. A general formula for prediction of iron losses under nonsinusoidal voltage waveform. IEEE Trans. Magn. 1995, 31, 2504–2509. [Google Scholar] [CrossRef]
- Barbisio, E.; Fiorillo, F.; Ragusa, C. Predicting loss in magnetic steels under arbitrary induction waveform and with minor hysteresis loops. IEEE Trans. Magn. 2004, 40, 1810–1819. [Google Scholar] [CrossRef]
- Toda, H.; Senda, K.; Morimoto, S.; Hiratani, T. Influence of various non-oriented electrical steels on motor efficiency and iron loss in switched reluctance motor. IEEE Trans. Magn. 2013, 49, 3850–3853. [Google Scholar] [CrossRef]
- Mohan Unniachanparambil, G.; Kulkarni, S.V. Comparison of dynamic loss inclusion under asymmetrical minor loops using Lavers formula and inverse Jiles-Atherton model. IEEE Trans. Magn. 2024, 60, 7000304. [Google Scholar] [CrossRef]
- Fiorillo, F.; Bertotti, G.; Appino, C.; Pasquale, M. Soft magnetic materials. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; pp. 1–42. [Google Scholar] [CrossRef]
- Rodriguez-Sotelo, D.; Rodriguez-Licea, M.A.; Soriano-Sanchez, A.G.; Espinosa-Calderon, A.; Perez-Pinal, J.F. Advanced ferromagnetic materials in power electronic converters: A state of the art. IEEE Access 2020, 8, 56238–56252. [Google Scholar] [CrossRef]
- Hultman, L.O.; Jack, A.G. Soft magnetic composites—Materials and applications. In Proceedings of the IEEE International Electric Machines and Drives Conference. IEMDC’03, Madison, WI, USA, 1–4 June 2003; pp. 516–522. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Ślusarek, B. Powder magnetic materials. Przegląd Elektrotechniczny 2010, 86, 16–19. [Google Scholar]
- Hamler, A.; Goričan, V.; Šuštaršič, B.; Sirc, A. The use of soft magnetic composite materials in synchronous electric motor. J. Magn. Magn. Mater. 2006, 304, e816–e819. [Google Scholar] [CrossRef]
- Najgebauer, M. Advances in contemporary soft magnetic materials—A review. In Proceedings of the 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), East Sarajevo, Bosnia and Hercegovina, 5–8 June 2023. [Google Scholar] [CrossRef]
- Asari, A.R.; Guo, Y.; Zhu, J. Performances of SOMALOY 700 (5P) and SOMALOY 500 materials under 1-D alternating magnetic flux density. In Proceedings of the International UNIMAS STEM 12th Engineering Conference (EnCon), Kuching, Malaysia, 28–29 August 2019; pp. 52–58. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Yang, Q.; Zhang, C.; Liu, Y.; Gong, X. Research of harmonic effects on core loss in soft magnetic composite materials. IEEE Trans. Magn. 2019, 55, 6100305. [Google Scholar] [CrossRef]
- Brockhaus GmbH & Co. KG. MPG200 Measurement Device: Operating Manual; Brockhaus GmbH & Co. KG: Lüdenscheid, Germany, 2018. [Google Scholar]
- Najgebauer, M.; Gzieł, D.; Koprivica, B.; Rosić, M. The estimation of magnetic losses in composite cores excited by harmonic magnetic flux density waveforms. In Proceedings of the XVIII Symposium of Electromagnetic Phenomena in Nonlinear Circuits (EPNC2024), Portorož, Slovenia, 18–21 June 2024. [Google Scholar]
- Lavers, J.D.; Biringer, P.P. The effect of third harmonic flux on the core loss in a magnetic frequency multiplier. IEEE Trans. Magn. 1978, 14, 993–995. [Google Scholar] [CrossRef]
- Lavers, J.D.; Biringer, P.P.; Hollitscher, H. A simple method of estimating the minor loop hysteresis loss in thin laminations. IEEE Trans. Magn. 1978, 14, 386–388. [Google Scholar] [CrossRef]
- Culity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Najgebauer, M. Application of fractional scaling in modelling of magnetic power losses. Acta Phys. Pol. A 2015, 128, 107–110. [Google Scholar] [CrossRef]
Waveform | 3rd Harmonic (0.5, 115°) | 3rd Harmonic (0.7, 145°) | 3rd Harmonic (0.9, 80°) | 3rd Harmonic (0.5, 115°) | 3rd Harmonic (0.7, 145°) | 3rd Harmonic (0.9, 80°) |
---|---|---|---|---|---|---|
(-) | 0.43011 | 0.39172 | 0.24204 | 0.42922 | ||
(%) | 7.55 | 22.40 | 9.49 | 5.80 | 4.69 | 9.41 |
(%) | 6.59 | 21.90 | 6.87 | 4.86 | 4.27 | 6.80 |
(%) | 5.24 | 20.46 | 4.06 | 3.53 | 3.03 | 3.99 |
(%) | 4.48 | 19.28 | 2.13 | 2.78 | 2.02 | 2.06 |
(%) | 3.47 | 18.64 | 1.11 | 1.79 | 1.49 | 1.04 |
(%) | 2.67 | 18.04 | 0.53 | 1.00 | 0.96 | 0.46 |
(%) | 1.65 | 16.91 | 0.07 | 0.01 | 0.03 | 0.01 |
Waveform | 5th Harmonic (0.3, 45°) | 5th Harmonic (0.5, 135°) | 5th Harmonic (0.7, 75°) | 5th Harmonic (0.3, 45°) | 5th Harmonic (0.5, 135°) | 5th Harmonic (0.7, 75°) |
---|---|---|---|---|---|---|
(-) | 0.43011 | 0.29029 | 0.40552 | 0.41030 | ||
(%) | 14.44 | 15.12 | 14.64 | 6.89 | 12.32 | 12.07 |
(%) | 13.07 | 11.16 | 10.23 | 5.59 | 8.56 | 7.76 |
(%) | 11.50 | 7.68 | 7.36 | 4.13 | 5.06 | 4.94 |
(%) | 10.12 | 9.62 | 4,57 | 2.85 | 6.95 | 2.22 |
(%) | 9.10 | 7.29 | 2,69 | 1.89 | 4.69 | 0.39 |
(%) | 8.08 | 5.27 | 1.04 | 0.94 | 2.71 | 3.26 |
(%) | 7.98 | 2.49 | 2.30 | 0.02 | 0.02 | 0.01 |
Waveform | 7th Harmonic (0.3, 15°) | 7th Harmonic (0.5, 60°) | 7th Harmonic (0.7, 25°) | 7th Harmonic (0.3, 15°) | 7th Harmonic (0.5, 60°) | 7th Harmonic (0.7, 25°) |
---|---|---|---|---|---|---|
(-) | 0.43011 | 0.38859 | 0.38850 | 0.52939 | ||
(%) | 21.21 | 33.73 | 15.49 | 16.78 | 26.27 | 3.35 |
(%) | 17.61 | 28.77 | 22.23 | 13.30 | 21.97 | 11.06 |
(%) | 14.30 | 22.68 | 23.38 | 10.12 | 16.20 | 12.29 |
(%) | 11.23 | 18.18 | 12.26 | 7.17 | 11.94 | 0.34 |
(%) | 8.84 | 15.05 | 15.60 | 4.86 | 8.97 | 3.47 |
(%) | 6.40 | 12.27 | 17.43 | 2.51 | 6.34 | 5.57 |
(%) | 3.80 | 5.58 | 12.56 | 0.03 | 0.03 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najgebauer, M.; Gzieł, D.; Kalinowski, J.; Koprivica, B. The Estimation of Power Losses in Composite Cores Excited by Harmonic Flux Density Waveforms. Energies 2024, 17, 5865. https://doi.org/10.3390/en17235865
Najgebauer M, Gzieł D, Kalinowski J, Koprivica B. The Estimation of Power Losses in Composite Cores Excited by Harmonic Flux Density Waveforms. Energies. 2024; 17(23):5865. https://doi.org/10.3390/en17235865
Chicago/Turabian StyleNajgebauer, Mariusz, Damian Gzieł, Jarosław Kalinowski, and Branko Koprivica. 2024. "The Estimation of Power Losses in Composite Cores Excited by Harmonic Flux Density Waveforms" Energies 17, no. 23: 5865. https://doi.org/10.3390/en17235865
APA StyleNajgebauer, M., Gzieł, D., Kalinowski, J., & Koprivica, B. (2024). The Estimation of Power Losses in Composite Cores Excited by Harmonic Flux Density Waveforms. Energies, 17(23), 5865. https://doi.org/10.3390/en17235865