Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Hydrogen Permeation Measurement
2.3. Hydrogen Exposure Repetitions
2.4. Scanning Electron Microscopy
2.5. Mechanical Analysis
2.6. ATR-FTIR Analysis
2.7. DSC Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szczurek, A.; Tran, T.N.L.; Kubacki, J.; Gąsiorek, A.; Startek, K.; Mazur-Nowacka, A.; Dell’Anna, R.; Armellini, C.; Varas, S.; Carlotto, A.; et al. Mazur-Nowacka, Polyethylene terephtalate (PET) optical properties deterioration induced by temperature and protective effect of organically modified SiO2-TiO2 coating. Mat. Chem. Phys. 2023, 306, 128016. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, L.; Scholes, C.A.; Kentish, S.E. Crosslinked PVA based polymer coatings with shear-thinning behaviour and ultralow hydrogen permeability to prevent hydrogen embrittlement. Int. J. Hydrogen Energy 2024, 54, 947–954. [Google Scholar] [CrossRef]
- Barth, R.R.; Simmons, K.L.; San Marchi, C. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis; Sandia Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2013. [Google Scholar]
- Karki, S.; Hazarika, G.; Yadav, D.; Ingole, P.G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination 2024, 573, 117200. [Google Scholar] [CrossRef]
- Condé-Wolter, J.; Ruf, M.G.; Liebsch, A.; Lebelt, T.; Koch, I.; Drechsler, K.; Gude, M. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Comp. Part A Appl. Sci. Manuf. 2023, 167, 107446. [Google Scholar] [CrossRef]
- Djukic, M.B.; Zeravcic, V.S.; Bakic, G.; Sedmak, A.; Rajicic, B. Hydrogen Embrittlement of Low Carbon Structural Steel. Procedia Mater. Sci. 2014, 3, 1167–1172. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Li, J.; Yu, B.; Wang, J.; Lyu, R.; Xi, Q. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation. Nat. Gas Ind. B 2023, 10, 570–582. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Yang, C.; Zhang, Y.; Cong, C.; Yuan, Y. A novel dual-functional epoxy-based composite coating with exceptional anti-corrosion and enhanced hydrogen gas barrier properties. Chem. Eng. J. 2022, 449, 137876. [Google Scholar] [CrossRef]
- Wan, H.; Cheng, Z.; Song, D.; Chen, C. Preparation and performance study of waterbone epoxy resin/non-covalent modified graphene oxide hydrogen barrier coatings. Int. J. Hydrogen Energy 2024, 53, 218–228. [Google Scholar] [CrossRef]
- Laadel, N.; El Mansori, M.; Kang, N.; Marlin, S.; Boussant-Roux, Y. Permeation barriers for hydrogen embrittlement prevention in metals- A review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen Energy 2022, 47, 32707–32731. [Google Scholar] [CrossRef]
- Rueda, F.; Torres, J.P.; Machado, M.; Frontini, P.M.; Otegui, J.L. External pressure induced buckling collapse of high density polyethylene (HDPE) liners: FEM modelling and predictions. Thin-Walled Struct. 2015, 96, 56–63. [Google Scholar] [CrossRef]
- Beber, V.C.; Abels, G.; Hesebeck, O. Material Selection of Tanks for Storage and Transport of Liquid Organic Hydrogen Carriers: A Lightweight and Lifecycle Assessment Comparative Study of Metal, Polymer, and Composite Alternatives. Energy Technol. 2024, 2401297. [Google Scholar] [CrossRef]
- Rönnebro, E.C.E.; Oelrich, R.L.; Gates, R.O. Recent Advances and Prospects in Design of Hydrogen Permeation Barrier Materials for Energy Applications—A Review. Molecules 2022, 27, 6528. [Google Scholar] [CrossRef]
- Xiao, S.; Meng, X.; Shi, K.; Liu, L.; Wu, H.; Lian, W. Hydrogen permeation barriers and preparation techniques: A review. J. Vac. Sci. Technol. 2022, A40, 060803. [Google Scholar] [CrossRef]
- Shi, K.; Meng, X.; Xiao, S.; Chen, G.; Wu, H.; Zhou, C.; Jiang, S.; Chu, P.K. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels. Nanomaterials 2021, 11, 2737. [Google Scholar] [CrossRef]
- Ke, N.; Huang, H.; Wang, F.; Dong, B.; Huang, A.; Hao, L.; Xu, X. Study on the hydrogen barrier performance of the SiOC coating. Int. J. Hydrogen Energy 2023, 48, 8286–8295. [Google Scholar] [CrossRef]
- Fite, S.; Zukerman, I.; Ben Shabat, A.; Barzilai, S. Hydrogen protection using CrN coatings: Experimental and theoretical study. Sur. Int. 2023, 37, 102629. [Google Scholar] [CrossRef]
- Lotkov, A.; Latushkina, S.; Kopylov, V.; Grishkov, V.; Baturin, A.; Girsova, N.; Zhapova, D.; Timkin, V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals 2021, 11, 1332. [Google Scholar] [CrossRef]
- Zirbel, A.; Müller, M.; Ulrich, S. Plasma Deposition of Thin Hydrogen Barrier Coatings. 2024. Available online: https://ssrn.com/abstract=4959171 (accessed on 15 September 2024). [CrossRef]
- Yang, Y.H.; Haile, M.; Park, Y.T.; Malek, F.A.; Grunlan, J.C. Super gas barrier of all-polymer multilayer thin films. Macromolecules 2011, 44, 1450–1459. [Google Scholar] [CrossRef]
- Li, P.; Chen, K.; Zhao, L.; Zhang, H.; Sun, H.; Yang, X.; Kim, N.H.; Lee, J.H.; Niu, Q.J. Preparation of modified graphene oxide/polyethyleneimine film with enhanced hydrogen barrier properties by reactive layer-by-layer self-assembly. Composites 2019, 166, 663–672. [Google Scholar] [CrossRef]
- Hiroaki, O.; Hirotada, F.; Kiyoaki, O.; Shin, N. Influence of repetitions of the high-pressure hydrogen gas exposure on the internal damage quantity of high-density polyethylene evaluated by transmitted light digital image. Int. J. Hydrogen Energy 2019, 44, 23303–23319. [Google Scholar] [CrossRef]
- Lin, J.; Shenogin, S.; Nazarenko, S. Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephtalate). Polymer 2002, 43, 4733–4743. [Google Scholar] [CrossRef]
- Michaels, A.S.; Vieth, W.R.; Barrie, J.J. Diffusion of Gases in Polyethylene Terephtalate. J. Appl. Phys. 1963, 34, 13–20. [Google Scholar] [CrossRef]
- Sekelik, D.J.; Stepanov, E.V.; Nazarenko, S.; Schiraldi, D.; Hiltner, A.; Baer, E. Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephatalate). J. Polym. Sci. 1999, 37, 847. [Google Scholar] [CrossRef]
- Minelli, M.; Baschetti, M.G.; Doghieri, F. A comprehensive model for mass transport properties in nanocomposites. J. Membr. Sci. 2011, 381, 10–20. [Google Scholar] [CrossRef]
- Chen, X.; Papathanosiou, T.D. Barrier Properties of Flake-Filled Membranes: Review and Numerical Evaluation. J. Plast. Film Sheeting 2007, 23, 319–345. [Google Scholar] [CrossRef]
- Federico, R.; José Luis, O.; Patricia, F. Numerical tool to model collapse of polymeric liners in pipelines. Eng. Fail. Anal. 2012, 20, 25–34. [Google Scholar] [CrossRef]
- Bo, K.; Feng, H.; Jiang, Y.; Deng, G.; Wang, D.; Zhang, Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int. J. Hydrogen Energy 2024, 54, 922–936. [Google Scholar] [CrossRef]
- Kis, D.I.; Kókai, E. A review on the factors of liner collapse in type IV hydrogen storage vessels. Int. J. Hydrogen Energy 2024, 50, 236–253. [Google Scholar] [CrossRef]
- Koga, A.; Yamabe, T.; Sato, H.; Uchida, K.; Nakayama, J.; Yamabe, J.; Nishimura, S. A Visualizing Study of Blister Initiation Behavior by Gas Decompression. Tribol Online 2013, 8, 68–75. [Google Scholar] [CrossRef]
- Persson, N. Fracture of poylmers. J. Chem. Phys. 1999, 110, 19. [Google Scholar] [CrossRef]
- Langer, J.S. Models of crack propagation. Phys. Rev. A 1992, 46, 3123. [Google Scholar] [CrossRef] [PubMed]
- Sixou, B. Molecular dynamics simulation of the first stages of the cavitation process in amorphous polymers. Mol. Simul. 2007, 33, 965–973. [Google Scholar] [CrossRef]
- Daynes, H.A. The process of diffusion through a rubber membrane. Proc. R. Soc. London 1920, 97, 286–307. [Google Scholar] [CrossRef]
- Barrer, R.M.; Rideal, R.M. Permeation, diffusion and solution of gases in organic polymers. Trans. Faraday Soc. 1939, 35, 628–643. [Google Scholar] [CrossRef]
- Brubaker, W.; Kammermeyer, K. Flow of Gases through Plastic Membranes. Ind. Eng. Chem. 1953, 45, 1148–1152. Available online: https://pubs.acs.org/doi/abs/10.1021/ie50521a069 (accessed on 15 September 2024). [CrossRef]
- Fraga, S.C.; Monteleone, M.; Lanc, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnacek, K.; Friess, K.; Carta, M.; McKeown, N.B.; et al. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. J. Membr. Sci. 2018, 561, 39–58. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Kim, K.T. Evaluation of hydrogen permeation characteristics in rubbery polymers. J. App. Phys. 2021, 21, 43–49. [Google Scholar] [CrossRef]
- Humpenoder, J. Gas Permeation of Fibre Reinforced Plastics. Cryogenics 1998, 38, 1. Available online: https://api.semanticscholar.org/CorpusID:119536134 (accessed on 15 September 2024). [CrossRef]
- Beckman, I.N.; Syrtsova, D.A.; Shalygin, M.G.; Kandasamy, P.; Teplyakov, V.V. Transmembrane gas transfer: Mathematics of diffusion and experimental practice. J. Membr. Sci. 2020, 601, 117737. [Google Scholar] [CrossRef]
- Zafra, A.; Harris, Z.; Korec, E.; Martínez-Pañeda, E. On the relative efficacy of electropermeation and isothermal desorption approaches for measuring hydrogen diffusivity. Int. J. Hydrogen Energy 2023, 48, 1218–1233. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, H.; Zhou, W.; Zhang, C. Research on hydrogen permeability of polyamide 6 as liner material for type IV hydrogen storage tank. Int. J. Hydrogen Energy 2020, 45, 24980–24990. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-pressure gaseous hydrogen permeation test method -property of polymeric materials for high-pressure hydrogen devices (1)-. Int. J. Hydrogen Energy 2020, 45, 29082–29094. [Google Scholar] [CrossRef]
- Baehr, H.D.; Stephan, K. Wärme- und Stoffübertragung, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 103–273. ISBN 978-3-642-36557-7. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Claredon Press: Oxford, UK, 1975; pp. 47–61. ISBN 0-19-853344-6. [Google Scholar]
- Mehrer, H. Diffusion in Solids; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–60. ISBN 978-3-540-71486-6. [Google Scholar]
- Extrand, W.; Monson, L. Gas permeation resistance of a perfluoroalkoxy-tetrafluoroethylene copolymer. J. Appl. Polym. Sci. 2006, 100, 2122–2125. [Google Scholar] [CrossRef]
- DIN EN ISO 11357-3-2018-07; Determination of Temperature and Enthalpy of Melting and Crystallization (ISO 11357-3:2018). German Version EN ISO 11357-3:2018. DIN Media: Berlin, Germany, 2018. Available online: https://www.dinmedia.de/de/norm/din-en-iso-11357-3/282639092 (accessed on 2 January 2024).
- Onsager, L. Reciprocal Relations in Irreversible Processes. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Agren, J. The Onsager Reciprocity Relations Revisited. J. Phase Equil. Diff. 2022, 43, 640–647. [Google Scholar] [CrossRef]
- Mason, E.A.; Malinauskas, A.P. Gas Transport in Porous Media: The Dusty-Gas Model; Elsevier: Amsterdam, The Netherlands, 1983; p. 13. ISBN 10-0444421904. [Google Scholar]
- Veldsink, J.W.; Van Damme, R.M.J.; Versteeg, G.F.; Van Swaaij, W.P.M. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Chem. Eng. J. 1997, 57, 115–125. [Google Scholar] [CrossRef]
- Sangyoon, P.; Sarinthip, T.; Hojun, S.; Youngsoo, L.; Guman, T.; Jongchul, S. PET/Bio-Based Terpolyester Blends with High Dimensional Thermal Stability. Polymers 2021, 13, 728. [Google Scholar] [CrossRef]
- Schmidt, P.F. Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse; Renningen-Malmsheim Expert-Verlag: Tübingen, Germany, 1994; pp. 585–588. ISBN 3-8169-1038-6. [Google Scholar]
- Matsushige, K.; Radcliffe, S.V.; Baer, E. The pressure and temperature effects on brittle-to-ductile transition in PS and PMMA. J. Appl. Polym. Sci. 1976, 20, 1853. [Google Scholar] [CrossRef]
- Jang, B.Z.; Uhlman, D.R.; Vander Sande, J.B. Ductile-brittle transition in polymers. J. Appl. Polym. Sci. 1984, 29, 3409–3420. [Google Scholar] [CrossRef]
- Hocker, S.J.A.; Kim, W.T.; Schniepp, H.C.; Krnbuehl, D.E. Polymer crystallinity and the ductile to brittle transition. Polymer 2018, 158, 72–76. [Google Scholar] [CrossRef]
- Van Den Heuvel, C.J.M.; Heuvel, H.M.; Faassen, W.A.; Veurink, J.; Lucas, L.J. Molecular changes of PET yarns during stretching measured with rheo-optical infrared spectroscopy and other techniques. J. App. Pol. Sci. 1993, 49, 925–934. [Google Scholar] [CrossRef]
- Elsner, P.; Eyerer, P.; Hirth, P.; Hrsg, T. Kunststoffe—Eigenschaften und Anwendungen, 7th ed.; Springer: Berlin, Germany, 2007; pp. 1057–1067. ISBN 978-3-540-72400-1. [Google Scholar]
- Haji, R.S. Rahbar, Structure evolution and mechanical behavior of poly(ethylene terephtalate) fibers drawn at different number of drawing stages. Chem. Ind. Chem. Eng. 2012, 18, 233–243. [Google Scholar] [CrossRef]
- Dieval, F.; Khoffi, F.; Mir, R.; Chaouch, W.; Nouen, D.L.; Chakfe, N.; Durand, B. Long-Term Biostability of PET Vascular Prostheses. Int. J. Pol. Sci. 2012, 2012, 646578. [Google Scholar] [CrossRef]
- Perret, E.; Sharma, K.; Braun, O.; Tritsch, S.; Muff, R.; Hufenus, R. 2D Raman, ATR-FTIR, WAXD, SAXS and DSC data of PET mono- and PET/PA6 bicomponent filaments. Data Brief 2021, 38, 107416. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.H. The measurement of the crystallinity of polymers by DSC. Polymer 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
- Kaisersberger, E.; Knappe, S.; Möhler, H. TA for Polymer Engineering DSC-TG-DMA. In NETZSCH Annual for Science and Industry; TGA-DSC-DMA: Würzburg, Germany, 1993; Volume 2, pp. 13–14. [Google Scholar]
- Kale, R.D.; Banerjee, A.; Katre, G. Dyeing of polyester and polyamide at low temperature using solvent crazing technique. Fib. Pol. 2015, 16, 54–56. [Google Scholar] [CrossRef]
- Teli, M.D.; Kale, R.D. Polyester nanocomposite fibers with improved flame retardancy and thermal stability. Pol. Eng. Sci. 2012, 52, 1148–1154. [Google Scholar] [CrossRef]
- Menczel, J.; Wunderlich, B. Heat capacity hysteresis of semicrystalline macromolecular glasses. J. Pol. Sci. Pol. Lett. Ed. 1981, 19, 261–264. [Google Scholar] [CrossRef]
- Heidrich, D.; Gehde, M. The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization. Polymers 2022, 14, 793. [Google Scholar] [CrossRef] [PubMed]
- Menczel, J.D. The rigid amorphous fraction in semicrystalline macromolecules. J. Therm. Anal. Calorim. 2011, 106, 7–24. [Google Scholar] [CrossRef]
- Arnoult, M.; Dargent, E.; Mano, J.F. Mobile amorphous phase fragility in semi-crystalline polymers: Comparison of PET and PLLA. Polymer 2007, 48, 1012–1019. [Google Scholar] [CrossRef]
- Oultache, A.K.; Kong, X.; Pellerin, C.; Brisson, J.; Pezolet, M.; Prud’homme, R.E. Orientation and relaxation of orientation of amorphous poly(ethylene terephthalate). Polymer 2001, 42, 9051–9058. [Google Scholar] [CrossRef]
- Atiq, O.; Ricci, E.; Bashcetti, M.G.; Grazia De Angelis, M. Multi-scale modeling of gas solubility in semi-crystalline polymers: Bridging Molecular Dynamics with Lattice Fluid. Fluid Phase Eq. 2023, 570, 113798. [Google Scholar] [CrossRef]
- Atiq, O.; Ricci, E.; Baschetti, M.G.; Grazia De Angelis, M. Molecular Simulations of Hydrogen Sorption in Semicrystalline High-Density Polyethylene: The Impact of the Surface Fraction of Tie-Chains. J. Phys. Chem. 2024, 128, 2799–2810. [Google Scholar] [CrossRef]
- Stalker, M.R.; Grant, J.; Yong, C.W.; Ohene-Yeboah, L.A.; Mays, T.J.; Parker, S.C. Molecular simulation of hydrogen storage and tansport in cellulose. Mol. Sim. 2021, 43, 170–179. [Google Scholar] [CrossRef]
Exposure Time/h | Exposure Temperature/K | Exposure Pressure/Pa | Permeation Experiment Pressure/Pa | Diffusion Coefficient/m2/s | Permeation Coefficient/mol/m s Pa | Solubility Constant/mol/m3 Pa |
---|---|---|---|---|---|---|
0 | 300 | 105 | 104 | 3.145 × 10−13 | 4.097 × 10−13 | 1.199 |
12 | 300 | 105 | 104 | 4.301 × 10−13 | 4.178 × 10−13 | 0.971 |
24 | 300 | 105 | 104 | 5.009 × 10−13 | 4.149 × 10−13 | 0.828 |
36 | 300 | 105 | 104 | 5.141 × 10−13 | 4.153 × 10−13 | 0.807 |
48 | 300 | 105 | 104 | 5.844 × 10−13 | 4.175 × 10−13 | 0.714 |
72 | 300 | 105 | 104 | 7.218 × 10−13 | 4.181 × 10−13 | 0.579 |
Specimen | Young Modulus/Pa | Ultimate Tensile Strength/Pa | Reference |
---|---|---|---|
Initial | 1.84 × 109 | 70.41 × 106 | This work |
Initial (2) | 1.99 × 109 | 66.41 × 106 | This work |
72 h | 1.59 × 109 | 53.97 × 106 | This work |
72 h (2) | 1.69 × 109 | 57.57 × 106 | This work |
PET | 2.16 × 109 | 60.1 × 106 | [56] |
Specimen | ΔHm/J/g | XC/% | Reference |
---|---|---|---|
Initial | 40.18 | 27.7 | this work |
Initial (2) | 36.27 | 25.0 | this work |
72 h | 37.5 | 25.9 | this work |
72 h (2) | 36.36 | 25.1 | this work |
PET | 145 | 100 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullayev, E.; Fladung, T.; Noeske, P.-L.M.; Mayer, B. Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies 2024, 17, 6478. https://doi.org/10.3390/en17246478
Abdullayev E, Fladung T, Noeske P-LM, Mayer B. Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies. 2024; 17(24):6478. https://doi.org/10.3390/en17246478
Chicago/Turabian StyleAbdullayev, Elman, Thorsten Fladung, Paul-Ludwig Michael Noeske, and Bernd Mayer. 2024. "Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments" Energies 17, no. 24: 6478. https://doi.org/10.3390/en17246478
APA StyleAbdullayev, E., Fladung, T., Noeske, P.-L. M., & Mayer, B. (2024). Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies, 17(24), 6478. https://doi.org/10.3390/en17246478