Adoption Model Choice Affects the Optimal Subsidy for Residential Solar
Abstract
:1. Introduction
1.1. Motivation
1.2. Background
1.3. Research Gap
1.4. Contributions
2. Methods
2.1. Techno–Economic Framework
2.2. Adoption Models
2.2.1. Data
2.2.2. Error Function Model
2.2.3. Log-Linear Regression Model
2.2.4. Logit Demand Function Model
3. Results
3.1. Evaluation of Adoption Models
3.2. Optimal Subsidy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EIA. Annual Energy Outlook 2023. U.S. Energy Information Administration—EIA 2023. Available online: https://www.eia.gov/outlooks/aeo/data/browser/#/?id=8-AEO2023&cases=ref2023&sourcekey=0 (accessed on 18 December 2023).
- EIA. Use of Energy in Homes—U.S. Energy Information Administration (EIA) 2021. Available online: https://www.eia.gov/energyexplained/use-of-energy/homes.php (accessed on 18 December 2023).
- EIA. Where Greenhouse Gases Come from—U.S. Energy Information Administration (EIA) 2023. Available online: https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php (accessed on 18 December 2023).
- Hagerman, S.; Jaramillo, P.; Morgan, M.G. Is rooftop solar PV at socket parity without subsidies? Energy Policy 2016, 89, 84–94. [Google Scholar] [CrossRef]
- Tibebu, T.B.; Hittinger, E.; Miao, Q.; Williams, E. What is the optimal subsidy for residential solar? Energy Policy 2021, 155, 112326. [Google Scholar] [CrossRef]
- Williams, E.; Carvalho, R.; Hittinger, E.; Ronnenberg, M. Empirical development of parsimonious model for international diffusion of residential solar. Renew. Energy 2020, 150, 570–577. [Google Scholar] [CrossRef]
- Cunningham, L.J. Renewable Energy and Energy Efficiency Incentives: A Summary of Federal Programs; Congressional Research Service: Washington, DC, USA, 2016.
- US Congress. Inflation Reduction Act of 2022. HR5376—Inflation Reduction Act of 2022. 2022. Available online: http://www.congress.gov/bill/117th-congress/house-bill/5376/text (accessed on 4 July 2023).
- van Benthem, A.; Gillingham, K.; Sweeney, J. Learning-by-Doing and the Optimal Solar Policy in California. Energy J. 2008, 29, 131–152. [Google Scholar] [CrossRef]
- Newbery, D. Evaluating the case for supporting renewable electricity. Energy Policy 2018, 120, 684–696. [Google Scholar] [CrossRef]
- Tibebu, T.B.; Hittinger, E.; Miao, Q.; Williams, E. Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US. Technol. Forecast. Soc. Change 2022, 182, 121840. [Google Scholar] [CrossRef]
- Hoekstra, A. Photovoltaic Growth: Reality Versus Projections of the International Energy Agency—With 2018 Update (by Auke Hoekstra). Steinbuch 2018. Available online: https://maartensteinbuch.com/2017/06/12/photovoltaic-growth-reality-versus-projections-of-the-international-energy-agency/ (accessed on 1 October 2022).
- EIA. Annual Energy Outlook 2000; Energy Information Administration: Washington, DC, USA, 1999.
- EIA. The United States Installed More Wind Turbine Capacity in 2020 than in Any Other Year. Today in Energy 2021. Available online: https://www.eia.gov/todayinenergy/detail.php?id=46976 (accessed on 2 October 2022).
- Moore, F.C.; Diaz, D.B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 2015, 5, 127–131. [Google Scholar] [CrossRef]
- Morgan, M.G.; Henrion, M.; Small, M. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Pizer, W.A. The optimal choice of climate change policy in the presence of uncertainty. Resour. Energy Econ. 1999, 21, 255–287. [Google Scholar] [CrossRef]
- Paltsev, S. Energy scenarios: The value and limits of scenario analysis. WIREs Energy Environ. 2017, 6, e242. [Google Scholar] [CrossRef]
- Olaleye, O.; Baker, E. Large scale scenario analysis of future low carbon energy options. Energy Econ. 2015, 49, 203–216. [Google Scholar] [CrossRef]
- Clarke, L.; Edmonds, J.; Krey, V.; Richels, R.; Rose, S.; Tavoni, M. International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Econ. 2009, 31, S64–S81. [Google Scholar] [CrossRef]
- Gillingham, K.; Nordhaus, W.D.; Anthoff, D.; Blanford, G.; Bosetti, V.; Christensen, P.; McJeon, H.; Reilly, J.; Sztorc, P. Modeling Uncertainty in Climate Change: A Multi-Model Comparison; National Bureau of Economic Research: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- El Zarwi, F.; Vij, A.; Walker, J.L. A discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services. Transp. Res. Part C Emerg. Technol. 2017, 79, 207–223. [Google Scholar] [CrossRef]
- Bistline, J.E.T.; Brown, M.; Siddiqui, S.A.; Vaillancourt, K. Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system. Energy Policy 2020, 145, 111707. [Google Scholar] [CrossRef]
- Bistline, J.; Blanford, G.; Brown, M.; Burtraw, D.; Domeshek, M.; Farbes, J.; Fawcett, A.; Hamilton, A.; Jenkins, J.; Jones, R.; et al. Emissions and energy impacts of the Inflation Reduction Act. Science 2023, 380, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Goulder, L.H.; Mathai, K. Optimal CO2 Abatement in the Presence of Induced Technological Change. J. Environ. Econ. Manag. 2000, 39, 1–38. [Google Scholar] [CrossRef]
- Cohen, M.C.; Lobel, R.; Perakis, G. The Impact of Demand Uncertainty on Consumer Subsidies for Green Technology Adoption. Manag. Sci. 2016, 62, 1235–1258. [Google Scholar] [CrossRef]
- Dong, C.; Sigrin, B.; Brinkman, G. Forecasting residential solar photovoltaic deployment in California. Technol. Forecast. Soc. Chang. 2017, 117, 251–265. [Google Scholar] [CrossRef]
- Kobos, P.H. The Implications of Renewable Energy Research and Development: Policy Scenario Analysis with Experience and Learning Effects; Rensselaer Polytechnic Institute: Troy, NY, USA, 2002. [Google Scholar]
- Davidson, C.; Drury, E.; Lopez, A.; Elmore, R.; Margolis, R. Modeling photovoltaic diffusion: An analysis of geospatial datasets. Environ. Res. Lett. 2014, 9, 074009. [Google Scholar] [CrossRef]
- Lobel, R.; Perakis, G. Consumer Choice Model for Forecasting Demand and Designing Incentives for Solar Technology; MIT Sloan Research Paper: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Arrow, K.J. The Economic Implications of Learning by Doing. Rev. Econ. Stud. 1962, 29, 155–173. [Google Scholar] [CrossRef]
- Azevedo, I.; Donti, P.; Horner, N.; Schivley, G.; Siler-Evans, K.; Vaishnav, P. Electricity Marginal Factors Estimates 2020. Available online: https://cedm.shinyapps.io/MarginalFactors/ (accessed on 4 July 2023).
- Interagency Working Group on Social Cost of Greenhouse Gases, US Government. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis. 2016. Available online: https://www.epa.gov/sites/default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf (accessed on 5 July 2023).
- Heo, J.; Adams, P. The Estimating Air Pollution Social Impact Using Regression (EASIUR) Model 2015. Available online: https://barney.ce.cmu.edu/~jinhyok/easiur/ (accessed on 4 July 2023).
- Zhai, P.; Williams, E.D. Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model. Renew. Energy 2012, 41, 350–357. [Google Scholar] [CrossRef]
- Jeon, C.; Lee, J.; Shin, J. Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case. Appl. Energy 2015, 142, 33–43. [Google Scholar] [CrossRef]
- Drury, E.; Miller, M.; Macal, C.M.; Graziano, D.J.; Heimiller, D.; Ozik, J.; Iv, T.D.P. The transformation of southern California’s residential photovoltaics market through third-party ownership. Energy Policy 2012, 42, 681–690. [Google Scholar] [CrossRef]
- Barbose, G.; Darghouth, N.; O’Shaughnessy, E.; Forrester, S. Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Systems in the United States, 2021 Edition 2021. Available online: https://emp.lbl.gov/publications/tracking-sun-pricing-and-design-0 (accessed on 7 July 2023).
- Census Bureau. Historical Census of Housing Tables: Units in Structure n.d. Available online: https://www.census.gov/data/tables/time-series/dec/coh-units.html (accessed on 7 July 2023).
- BEA. BEA Data|U.S. Bureau of Economic Analysis (BEA) 2021. Available online: https://www.bea.gov/data (accessed on 7 July 2023).
- EIA. Electric Sales, Revenue, and Average Price—Energy Information Administration 2021. Available online: https://www.eia.gov/electricity/sales_revenue_price/ (accessed on 7 July 2023).
- U.S. Bureau of Labor Statistics. Databases, Tables & Calculators by Subject 2021. Available online: https://www.bls.gov/data/ (accessed on 7 July 2023).
- U.S. Census Bureau. Data. Census Website 2021. Available online: https://data.census.gov/profile?q=United%20States&g=010XX00US (accessed on 7 July 2023).
- Dharshing, S. Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Res. Soc. Sci. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Rubin, E.S.; Azevedo, I.M.L.; Jaramillo, P.; Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 2015, 86, 198–218. [Google Scholar] [CrossRef]
- Sigrin, B.; Pless, J.; Drury, E. Diffusion into new markets: Evolving customer segments in the solar photovoltaics market. Environ. Res. Lett. 2015, 10, 084001. [Google Scholar] [CrossRef]
- Anthoff, D.; Tol, R.S.J. The uncertainty about the social cost of carbon: A decomposition analysis using fund. Clim. Chang. 2013, 117, 515–530. [Google Scholar] [CrossRef]
- Stanford University. Stanford Explainer: Social Cost of Carbon. Stanford News 2021. Available online: https://news.stanford.edu/2021/06/07/professors-explain-social-cost-carbon/ (accessed on 7 July 2023).
- Hope, C. The Social Cost of CO2 from the Page09 Model. Econ. Discuss. Pap. 2011, 1–30. [Google Scholar] [CrossRef]
Functional Forms | Model Framing | Explanatory Variable | ||
---|---|---|---|---|
NPV | NPV and Socio-Demographic | NPV and Previous Cumulative Adoption | ||
Error function (ERF) | Adoption is modeled as an integral of a Gaussian distribution | ERF_NPV | ERF_NPV+Socio | ERF_NPV+Adopt |
Mixed log-linear (MLL) | Adoption is modeled by logarithmically transformed regression model | MLL_NPV | MLL_NPV+Socio | MLL_NPV+Adopt |
Logit | Probability of adoption is modeled as integral of extreme value distribution | LOGIT_NPV | LOGIT_NPV+Socio | LOGIT_NPV+Adopt |
Variable | Unit | Mean | Std. Dev | Min | Max | Data Source |
---|---|---|---|---|---|---|
Annual adoption | MW/million free detached houses | 69 | 82 | 0.14 | 442 | [39,40] |
Annual adoption | Watt/capita | 10.6 | 0.0118 | 0.04 | 62.3 | [39,41] |
PV system price | USD/W | 5.7 | 1.6 | 3.2 | 9.3 | [39] |
Electricity price | cents/kWh | 16.5 | 3.3 | 8.8 | 25.8 | [42] |
NPV | USD/kW | 236 | 1918 | −5636 | 3305 | |
Income | USD/capita | 57,191 | 20,200 | 27,730 | 143,504 | [41] |
Unemployment | % | 7.5 | 3.9 | 2.3 | 27.5 | [43] |
Population density | Population/mile sq. | 1222 | 3066 | 24.1 | 18,880 | [41,44] |
Prior adoption | Share of households with PV | 1.2 | 1.4 | 0.004 | 7.8 | |
Number of observations | 655 |
Dependent Variable: Annual Adoption in MW/Million Free Detached Houses | |||
---|---|---|---|
Models | |||
ERF_NPV | ERF_NPV+Socio | ERF_NPV+Adopt | |
Numerator: | |||
Income | 966 | ||
Unemployment | −197 | ||
Population density | −166 | ||
Prior adoption | −12,200 | ||
Constant ( , | 8074 | 2 | 5890 |
Income | 665 | ||
Unemployment | −150 | ||
Population density | −245 | ||
Prior adoption | −4900 | ||
Constant ( , | 4679 | 5 | 7790 |
Number of observations | 655 | 655 | 655 |
Dependent Variable: Annual Adoption in Watt/Capita (Log) | |||
---|---|---|---|
Models | |||
MLL_NPV | MLL_NPV+Socio | MLL_NPV+Adopt | |
NPV () | 0.000568 *** (0.000019) | 0.000544 *** (0.000018) | 0.000130 *** (0.000019) |
Income | 0.604 *** (0.169) | ||
Unemployment | −0.05 *** (0.0106) | ||
Population density | −0.288 *** (0.0329) | ||
Prior adoption | 1.3 *** (0.0425) | ||
Constant | 1.48 *** (0.0365) | −3.03 * (1.77) | 4.05 *** (0.0875) |
Number of observations | 655 | 655 | 655 |
R2 | 0.58 | 0.638 | 0.827 |
Adjusted R2 | 0.579 | 0.636 | 0.826 |
Residual std. error | 0.928 | 0.863 | 0.597 |
F Statistic | 901 *** | 287 *** | 1554 *** |
LOGIT_NPV+Prior Adoption | LOGIT_NPV | LOGIT_NPV+Socio | |
---|---|---|---|
NPV () | 0.000064 *** (0.000016) | 0.00055 *** (0.000019) | 0.000535 *** (0.000019) |
Income | 0.459 ** (−0.181) | ||
Unemployment | −0.0297 *** (−0.0114) | ||
Population density | −0.118 *** (−0.0352) | ||
Prior adoption | 1.44 *** (−0.036) | ||
Constant | −2.41 *** (0.0749) | −5.26 *** (0.037) | −9.35 *** (1.89) |
Number of Observations | 655 | 655 | 655 |
R2 | 0.869 | 0.558 | 0.575 |
Adjusted R2 | 0.869 | 0.557 | 0.572 |
Residual Std. Error | 0.511 | 0.94 | 0.92 |
F Statistic | 2171 *** | 823 *** | 220 *** |
Functional Forms | Explanatory Variable | ||
---|---|---|---|
NPV | NPV and Socio-Demographic | NPV and Previous Cumulative Adoption | |
Error function | 1400 | 1340 | 1070 |
Mixed log-linear | 1590 | 1480 | 1600 |
Logit | 1720 | 1720 | 1250 |
NPV | Income | Unemployment | Population Density | Prior Cumulative Adoption | |
---|---|---|---|---|---|
NPV | 1 | ||||
Income | 0.17 | 1 | |||
Unemployment | −0.24 | −0.60 | 1 | ||
Population density | −0.01 | 0.69 | −0.32 | 1 | |
Prior cumulative adoption | 0.82 | 0.22 | −0.32 | −0.02 | 1 |
NPV, USD/kW | ERF_NPV | ERF_NPV+Socio | ERF_NPV+Prior Adoption |
---|---|---|---|
1500 | 534 | 554 | 1066 |
949 | 356 | 373 | 924 |
500 | 251 | 265 | 819 |
0 | 167 | 178 | 715 |
(1000) | 69 | 75 | 539 |
NPV, USD/kW | MLL_NPV | MLL_NPV+Socio | MLL_NPV+Prior Adoption |
1500 | 416 | 475 | 1050 |
949 | 305 | 352 | 977 |
500 | 236 | 276 | 922 |
0 | 178 | 210 | 864 |
(1000) | 101 | 122 | 758 |
NPV, USD/kW | LOGIT_NPV | LOGIT_NPV+Socio | LOGIT_NPV+Prior Adoption |
1500 | 333 | 360 | 911 |
949 | 247 | 269 | 880 |
500 | 193 | 212 | 855 |
0 | 147 | 163 | 829 |
(1000) | 85 | 95 | 779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibebu, T.B.; Hittinger, E.; Miao, Q.; Williams, E. Adoption Model Choice Affects the Optimal Subsidy for Residential Solar. Energies 2024, 17, 728. https://doi.org/10.3390/en17030728
Tibebu TB, Hittinger E, Miao Q, Williams E. Adoption Model Choice Affects the Optimal Subsidy for Residential Solar. Energies. 2024; 17(3):728. https://doi.org/10.3390/en17030728
Chicago/Turabian StyleTibebu, Tiruwork B., Eric Hittinger, Qing Miao, and Eric Williams. 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar" Energies 17, no. 3: 728. https://doi.org/10.3390/en17030728
APA StyleTibebu, T. B., Hittinger, E., Miao, Q., & Williams, E. (2024). Adoption Model Choice Affects the Optimal Subsidy for Residential Solar. Energies, 17(3), 728. https://doi.org/10.3390/en17030728