Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources
Abstract
:1. Introduction
- (I).
- Jurassic source rocks. At the early stage of petroleum exploration, the Carboniferous, Permian and Jurassic source rocks were discovered in the northern area of the southwestern margin of the Tarim Basin, the Carboniferous and Permian source rocks were deposited in the marine setting and the Jurassic source rocks were deposited in the terrestrial environments [3,14]. Previous investigators thought that these three sources were also developed in the Kekeya area. The occurrence of spore pollen, V/Ni < 1 and the enrichment of C29 regular steranes for crude oils from the Kekeya Oilfield led some investigators to believe that crude oils were generated mainly from the Jurassic lacustrine source rocks [15], since the spore pollen can only be detected in the Jurassic Yangye Formation [3,15];
- (II).
- Permian shales. Some investigators have suggested that crude oils from the Kekeya Oilfield were originated mainly from the Permian source rocks, the relevant evidence refers to the enrichments of Ts, C30 rearranged hopanes, and C27 or C29 regular steranes and depletion of hopanes in oils. The δ13C value of individual n-alkanes range from −32% to −28% [6,8,9,10];
- (III).
- Permian and Jurassic source rocks. Diterpenoids are considered to be the typical biomarkers to indicate the inputs of higher plants [16]. With the development of petroleum exploration in this region, these compounds were detected in the newly produced crude oils, and these oils are isotopically 2–3% heavier than the Permian-sourced oils. The higher plants act as the major role in the Jurassic source rocks [5]. This indicates that except for the Permian lacustrine shales, the Jurassic source rocks may also have a major contribution [5];
- (IV).
- Carboniferous and Permian source rocks. Crude oils from the Kekeya Oilfield are relatively enriched in dibenzothiophene, tricyclic and tetracyclic diterpanes and 3β-methyl steranes [17,18]. This indicates that these oils may be originated from pre-Mesozoic formations. The δ13C values of saturated and aromatic fractions suggest the mixed contributions of terrigenous and aquatic alge [19]. These two lines of evidence highlight the major contribution of Carboniferous and Permian source rocks in study area [19]. In fact, only the Permian lacustrine shales and Jurassic source rocks were discovered in this region later [8,11].
2. Samples and Methods
2.1. Oil Samples
2.2. Gas Chromatography (GC)
2.3. Gas Chromatography-Mass Spectrometry (GC-MS)
2.4. Gas Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS)
3. Results
3.1. Terpenoids, Steranes and Oil Groups
- (1)
- Group I: oil samples from KS101. These samples are depleted in tricyclic terpanes, Ts, C30H rearranged hopane and enriched in C29 Norhopane, C30-C35 hopanes and C29 steranes (Figure 3a), resulting in low ratios of C19-C23TT/C30H, Ts/(Ts + Tm) and DiaC30H/C30H (Table 1). C20 TT is the peak of C19-C23TT (Figure 3a). Regular steranes decrease with the order of C29 ααα20R > C27 ααα20R > C28 ααα20R (Figure 3a);
- (2)
- (3)
- Group: oil samples from FS4, KZ104, KZ106, KZ107, KZ108H, K6, KS7009, K2 (N1x5) and KS103 (E2k). Compared with Group I/II oils, Group III oils contain much less C19-C23TT, C30-C35 hopanes and C27-C29 steranes, but present much higher ratios of C19-C23TT/C30H, Ts/(Ts + Tm), DiaC30H/C30H (Figure 3c and Table 1).
- (4)
- Group IV: oil samples from K1, K2 (N1x4, N1x7, N1x8), K9, K10, K30, K35, K51, K8001, KX3 and KS103 (N1x8). These oils are even more depleted in C19-C23TT, C30-C35 hopanes and C27-C29 steranes than Group III oils (Figure 3d). The ratios of C19-C23TT/C30H, DiaC30H/C30H and C29 ααα20R/C27 ααα20R are greater than those for Group III oils (Table 1).
3.2. n-Alkanes and Isoprenoids
3.3. Diamondoids
3.4. Aromatic Compounds
3.5. Carbon Isotopic Composition of Individual n-Alkanes for Crude Oils
4. Discussion
4.1. Depositional Environments and Organic Matter Inputs of Oil Sources
4.2. Thermal Maturity of Crude Oils and Hydrocarbon Mixing
4.3. Possible Oil Sources
5. Conclusions
- (1)
- Lacustrine shale sequences within the Upper-Middle Permian Pusige Formation (P3–2p) are the major effective oil sources. In the Kekeya structural belt, crude oils were generated from deeply buried P3–2p at the late-to-high maturity stage. In the Fusha structural belt, oils produced from the Lower-Jurassic reservoirs (J1s) were generated from the local P3–2p at the middle to late mature stage. The P3–2p-associated oils in the Kekeya structural belt can migrate laterally to the Fusha structural belt, but not to the location of Well FS8;
- (2)
- The Middle-Lower Jurassic lacustrine shales (J1–2) as the second effective sources are only confined to the area of Well KS101 in the Kekeya structural belt. The J1–2 generated oils can migrate upward and into the Cretaceous sandstone reservoirs of Well KS101, and then mingle with the early charged oils derived from the Permian source rocks;
- (3)
- The comprehensive quantitative data of crude oils can provide a better understanding of hydrocarbon groups, sources and accumulation process in the Kekeya area of the Southwest Depression, Tarim Basin. Our future work will combine the results of 1D and 2D basin modeling with geochemical data together to make a more sophisticated constrains. This should be useful for petroleum exploration in this region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, C. Tectonic Charactersitics and Petroleum of Tarim Basin China; Petroleum Industry Press: Beijing, China, 1997; pp. 205–389. [Google Scholar]
- Chen, J.; Yin, J.; Zhang, Y. Formation conditions of Kekeya anticlinal oil and gas reservoir. Xinjiang Pet. Geol. 1996, 17, 219–224. [Google Scholar]
- Yang, B.; Liu, Y. Source rock evaluation and exploration direction in southwest depression of Tarim Basin. Xinjiang Pet. Geol. 1992, 13, 339–350. [Google Scholar]
- He, D.; Chen, H.; Liu, S.; Zhu, R.; Deng, X. Reservoir formation mechanism of Kekeya condensate oil and gas field. Pet. Explor. Dev. 1997, 24, 28–32. [Google Scholar]
- Huang, W.; Pan, C.; Yu, S.; Zhang, H.; Xiao, Z.; Zhang, Z. Source and filling process of crude oil from Fusha 4 well in the Kedong structural belt of the southwestern Tarim depression. Nat. Gas Geosci. 2022, 32, 1836–1847. [Google Scholar]
- Mo, W.; Lin, T.; Zhang, Y.; Yi, S.; Wang, D.; Zhang, L. Oil and gas sources and reservoir formation models of the Kedong Kekeya structural belt in the front of the West Kunlun Mountains. Pet. Exp. Geol. 2013, 35, 364–371. [Google Scholar]
- Wang, J.; Gao, Z.; Kang, Z.; Yang, Y.; Wei, D.; Qin, N. Sedimentary environment and organic geochemical characteristics of hydrocarbon source rocks of Pusige Formation in Hetian Sag, Southwest Tarim Depression, Tarim Basin. Nat. Gas Geosci. 2017, 28, 1723–1734. [Google Scholar]
- Tang, Y.; Hou, D.; Xiao, Z. Geochemical Characteristics and Oil Source of Crude Oil in the Kekeya Oilfield. Miner. Rock Geochem. Bull. 2006, 25, 160–162. [Google Scholar]
- Du, Z.; Zeng, C.; Qiu, H.; Yang, Y.; Zhang, L. Characteristics of two sets of Permian source rocks and oil source analysis of Kedong 1 well in Yecheng Depression, southwestern Tarim Basin. J. Jilin Univ. Earth Sci. Ed. 2016, 46, 651–660. [Google Scholar]
- Wang, Q.; Peng, P.; Zeng, J.; Zou, Y.; Yu, C.; Zhang, B.; Xiao, Z. Oil source analysis of condensate oil and Kekeya crude oil from Kedong 1 well in Yecheng Depression. Geochemistry 2014, 43, 469–476. [Google Scholar]
- Xiao, Z.; Tang, Y.; Hou, Y.; Zhang, Q.; Wang, F.; Lu, Y. Oil source study of Kekeya condensate reservoir. J. Sedimentol. 2002, 20, 716–720. [Google Scholar]
- Li, S.; Kang, Z.; Qiu, H.; Meng, M.; Feng, Z.; Li, S. Hydrocarbon accumulation model in southwest depression of Tarim Basin. Geol. China 2014, 41, 387–398. [Google Scholar]
- Ding, Y.; Qiu, F.; Li, G. Comparative analysis of oil and gas sources in southwest depression of Tarim Basin. Xinjiang Geol. 2000, 18, 61–67. [Google Scholar]
- Lv, M. A preliminary study on oil source in the western Tarim Basin. J. Pet. 1981, 3, 31–36. [Google Scholar]
- Wang, Y.; Yang, B. Discussion on oil source of southwest depression in Tarim Basin. Xinjiang Pet. Geol. 1987, 4, 33–39. [Google Scholar]
- Dai, Q.; Mei, B. Diagenetic products of resin diterpenes and their thermal transformation. Oil Gas Geol. 1988, 2, 115–124. [Google Scholar]
- Gong, D.; Wang, Z.; Liu, G.; Chen, G.; Fang, C.; Xiao, Z. Re-examination of the oil and gas origins in the Kekeya gas condensate field, northwest China–a case study of hydrocarbon-source correlation using sophisticated geochemical methods. Acta Geol. Sin. 2017, 91, 186–203. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Chen, J.; Cui, J.; Zhang, B.; Shi, S.; Wang, X. Geochemical characteristics and genesis types of crude oil in the periphery of the Taxinan depression. J. Pet. 2015, 36, 1221–1233. [Google Scholar]
- Li, M.; Lin, R.; Liao, Y.; Snowdon, L.R.; Wang, P.; Li, P. Organic geochemistry of oils and condensates in the Kekeya Field, Southwest Depression of the Tarim Basin (China). Org. Geochem. 1999, 30, 15–37. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, H.; Li, Y.; Cai, Z.; Yang, X.; Xu, Z.; Chen, C.; Sun, C. Major breakthrough and exploration prospect of Carboniferous - Permian system in Well Qiatan 1, southwest mountain front area. China Pet. Explor. 2023, 28, 34–45. [Google Scholar]
- Huang, W.; Yu, S.; Zhang, H.; Xiao, Z.; Liu, D.; Pan, C. Diamondoid fractionation and implications for the Kekeya condensate field in the southwestern depression of the Tarim basin, NW China. Mar. Pet. Geol. 2022, 138, 0264–8172. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, Y.; Zhang, Y.; Chai, P. Stable carbon isotope fractionation of individual light hydrocarbons in the C6–C8 range in crude oil as induced by natural evaporation: Experimental results and geological implications. Org. Geochem. 2012, 50, 44–56. [Google Scholar] [CrossRef]
- Xiao, Q.; Cai, S.; Liu, J. Microbial and thermogenic hydrogen sulfide in the Qianjiang Depression of Jianghan Basin: Insights from sulfur isotope and volatile organic sulfur compounds measurements. Appl. Geochem. 2021, 126, 104865. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. Origin and preservation of organic matter. In The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Connan, J.; Cassou, A.M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 1980, 44, 1–23. [Google Scholar] [CrossRef]
- Sofer, Z. Stable carbon isotope compositions of crude oils: Application to source depositional environments and petroleum alteration. Am. Assoc. Pet. Geol. Bull. 1984, 68, 31–49. [Google Scholar]
- Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. Am. Assoc. Pet. Geol. Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, L.; Lei, G.; Chen, Y.; Zhang, X. Comparison of source rock biomarker characteristics and sedimentary environment indication significance in the southwestern Tarim Depression. Xinjiang Geol. 2011, 3, 319–323. [Google Scholar]
- Zhuang, X.; Xiao, L.; Yang, J. Distribution and evolution of sedimentary facies in southwest Tarim Basin. Geol. Xinjiang 2002, S1, 78–82. [Google Scholar]
- Xia, H.; Liu, Z.; Yuan, W. Jurassic sedimentary basin and sedimentary facies in the Zimgen-Sangzhuhe area. Xinjiang Geol. 2002, 20, 67–71. [Google Scholar]
- Zumber, J.E. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach. Geochim. Cosmochim. Acta 1984, 51, 1625–1637. [Google Scholar] [CrossRef]
- Smith, A.B.; Littlewood, D.T. Paleontological data and molecular phylogenetic analysis. Paleobiology 1994, 20, 259–273. [Google Scholar] [CrossRef]
- Philp, R.P.; Gilbert, T.D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Org. Geochem. 1986, 10, 73–84. [Google Scholar] [CrossRef]
- Grice, K.; Audino, M.; Boreham, C.J.; Alexander, R.; Kagi, R.I. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations. Org. Geochem. 2001, 32, 1195–1210. [Google Scholar] [CrossRef]
- Grantham, P.J.; Wakefield, L.L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org. Geochem. 1988, 12, 61–73. [Google Scholar] [CrossRef]
- Kodner, R.B.; Pearson, A.; Summons, R.E.; Knoll, A.H. Sterols in red and green algae: Quantification, phylogeny, and reevance for the interpretation of geologic steranes. Geobiology 2008, 6, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Meinschein, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Douaa, F.; Arafa, F.E.; Walid, A.M.; Atef, M.H. Organic geochemical signals of Paleozoic rocks in the southern Tethys, Siwa basin, Egypt: Implications for source rock characterization and petroleum system. Phys. Chem. Earth Parts A/B/C 2023, 130, 103393. [Google Scholar]
- Seifert, W.K.; Moldowan, J.M. Use of biological markers in petroleum exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Dzou, L.I.P.; Noble, R.A.; Senftle, J.T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org. Geochem. 1995, 23, 681–697. [Google Scholar] [CrossRef]
- Aqino Neto, F.R.; Trendel, J.M.; Restle, A.; Connan, J.; Albrecht, P.A. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In Advances in Organic Geochemistry 1981: International Conference Proceedings, Bergen, Norway, 14–18 September 1981; Bjory, M., Ed.; John Wiley & Sons Ltd.: New York, NY, USA, 1983; pp. 659–667. [Google Scholar]
- Peters, K.E.; Moldowan, J.M.; Sundararaman, P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey Phosphatic and Siliceous members. Org. Geochem. 1990, 15, 249–265. [Google Scholar] [CrossRef]
- Chen, J.; Fu, J.; Sheng, G.; Liu, D.; Zhang, J. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils. Org. Geochem. 1996, 25, 179–190. [Google Scholar] [CrossRef]
- Kissin, Y. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta 1987, 51, 2445–2457. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, G.; Zhao, H.; Wang, X. Genetic characteristics of condensate reservoirs in Kekeya area, Tarim Basin. Chin. Sci. Earth Sci. 2008, 38, 17–23. [Google Scholar]
- Lewan, M.D. Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of woodford shale. Geochim. Cosmochim. Acta 1983, 47, 1471–1479. [Google Scholar] [CrossRef]
- Xiao, A. Formation and hydrocarbon accumulation of Kekeya Structure in Southwest Depression of Tarim Basin. In Proceedings of the International Seminar on Hydrocarbon Accumulation Mechanism and Hydrocarbon Resource Evaluation, Beijing, China, 1996; Editorial Board of Oil and Gas Accumulation Research Series, Ed.; pp. 116–120+325. [Google Scholar]
Oil Group | Well | Depth (m) | Formation | C19-C23TT/ C30H | C24Ter/ C26TT | Ts/ (Ts + Tm) | DiaC30H/ C30H | Ga/ C30H | C29-ααα20S/ (20S + 20R) | C29-αββ/ (αββ + ααα) | C19-23TT (μg/g) | DiaC30H (μg/g) | C30-35H (μg/g) | Regular Sterane (μg/g) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C27 | C28 | C29 | ||||||||||||||
Group I | KS101 | 6664 | K1 | 0.6 | 1.5 | 0.4 | 0.1 | 0.2 | 0.4 | 0.4 | 268 | 48 | 1548 | 40 | 84 | 289 |
6821 | K1 | 0.7 | 1.2 | 0.4 | 0.1 | 0.2 | 0.4 | 0.4 | 500 | 43 | 2647 | 69 | 132 | 452 | ||
Group II | FS8 | 3882 | J1s | 0.3 | 3.0 | 0.5 | 0.2 | 0.0 | 0.5 | 0.5 | 302 | 180 | 2620 | 26 | 226 | 614 |
3899 | J1s | 0.3 | 3.0 | 0.5 | 0.2 | 0.0 | 0.5 | 0.5 | 285 | 177 | 2500 | 28 | 222 | 599 | ||
Group III | FS4 | 2394 | K2 | 1.1 | 2.0 | 0.7 | 0.6 | 0.1 | 0.6 | 0.6 | 252 | 147 | 649 | 13 | 78 | 214 |
FS4 | 2396 | K2 | 1.2 | 2.0 | 0.7 | 0.6 | 0.1 | 0.5 | 0.5 | 178 | 96 | 411 | 11 | 50 | 140 | |
FS4 | 2789 | K2 | 1.4 | 1.4 | 0.8 | 0.7 | 0.1 | 0.5 | 0.6 | 139 | 75 | 283 | 9 | 33 | 99 | |
KS103 | 6336 | E2k | 4.2 | 1.1 | 0.8 | 1.8 | 0.1 | 0.5 | 0.6 | 196 | 91 | 136 | 11 | 58 | 147 | |
KZ108H | 6755 | E2k2 | 3.2 | 1.2 | 0.8 | 1.1 | 0.1 | 0.5 | 0.6 | 216 | 77 | 182 | 10 | 50 | 129 | |
K2 | 3323 | N1 | 3.8 | 1.3 | 0.8 | 1.6 | 0.3 | 0.5 | 0.5 | 167 | 76 | 142 | 17 | 69 | 172 | |
K2 | 3776 | N1x7 2 | 3.6 | 0.7 | 0.6 | 0.3 | 0.2 | 0.5 | 0.5 | 2 | 0 | 1 | 0 | 1 | 2 | |
K10 | / | N1 | 1.0 | 0.5 | 0.7 | 0.5 | 0.3 | 0.5 | 0.5 | 13 | 8 | 39 | 1 | 14 | 33 | |
KS7009 | 3877 | N1x7 2 | 0.7 | 0.8 | 0.7 | 0.4 | 0.4 | 0.5 | 0.5 | 123 | 72 | 440 | 22 | 57 | 154 | |
KS7009 | 3944 | N1x7 2 | 3.4 | 0.9 | 0.8 | 1.7 | 0.3 | 0.5 | 0.5 | 153 | 82 | 132 | 13 | 52 | 131 | |
Group IV | K1 | / | N1 | 12.9 | 1.4 | 0.9 | 3.8 | 0.4 | 0.5 | 0.5 | 99 | 32 | 26 | 8 | 23 | 55 |
K2 | 3172 | N1x4 1 | 12.5 | 0.8 | 0.8 | 1.3 | 0.0 | 0.4 | 0.5 | 15 | 2 | 2 | 0 | 1 | 2 | |
K2 | 3221 | N1x4 2 | 8.8 | 1.1 | 0.7 | 1.9 | 0.1 | 0.6 | 0.5 | 10 | 2 | 1 | 0 | 2 | 5 | |
K2 | 3273 | N1 | 7.5 | 1.3 | 0.8 | 3.3 | 0.4 | 0.5 | 0.6 | 119 | 57 | 42 | 6 | 22 | 52 | |
K2 | 3804 | N1x8 | 6.6 | 1.0 | 0.6 | 0.5 | 0.2 | 0.4 | 0.4 | 58 | 4 | 16 | 10 | 9 | 26 | |
K6 | 3322 | N1x4 | 7.1 | 0.9 | 0.7 | 2.8 | 0.4 | 0.5 | 0.6 | 55 | 24 | 21 | 11 | 56 | 145 | |
K9 | 3030 | N2 | 6.1 | 1.5 | 0.8 | 1.5 | 0.2 | 0.5 | 0.5 | 88 | 22 | 38 | 9 | 21 | 54 | |
K9 | 3101 | N1 | 11.1 | 1.0 | 0.7 | 2.9 | 0.1 | 0.5 | 0.6 | 5 | 1 | 0 | 0 | 1 | 2 | |
K9 | 3871 | N1 | 6.1 | 0.9 | 0.7 | 5.0 | 0.2 | 0.5 | 0.5 | 71 | 17 | 26 | 10 | 19 | 50 | |
K30 | 3805 | N1x5 | 11.9 | 0.8 | 0.9 | 2.9 | 0.3 | 0.5 | 0.6 | 16 | 4 | 5 | 1 | 3 | 6 | |
K35 | / | N1x5 2 | 30.5 | 1.0 | 0.6 | 2.9 | 0.3 | 0.3 | 0.6 | 7 | 0 | 0 | 0 | 0 | 1 | |
K51 | 3703 | N1x2 | 27.5 | 0.9 | 0.7 | 3.9 | 0.7 | 0.5 | 0.6 | 13 | 2 | 2 | 0 | 1 | 3 | |
K8001 | 3929 | N1x8 | 10.3 | 0.7 | 0.7 | 1.9 | 0.3 | 0.5 | 0.6 | 11 | 2 | 3 | 0 | 2 | 3 | |
KX3 | 3793 | N1x8 | 11.0 | 1.0 | 0.8 | 1.2 | 0.3 | 0.5 | 0.5 | 69 | 9 | 21 | 3 | 3 | 9 | |
KS103 | 3867 | N1x8 | 15.9 | 1.1 | 0.9 | 3.4 | 0.4 | 0.5 | 0.5 | 104 | 24 | 21 | 8 | 18 | 48 | |
KZ104 | 6348 | E | 8.1 | 0.9 | 0.9 | 3.5 | 0.4 | 0.5 | 0.6 | 103 | 47 | 40 | 11 | 31 | 80 | |
KZ106 | / | E2k | 8.7 | 0.9 | 0.9 | 3.7 | 0.3 | 0.5 | 0.6 | 109 | 48 | 49 | 9 | 28 | 76 | |
KZ107 | 6269 | E | 9.1 | 1.1 | 0.8 | 2.7 | 0.2 | 0.5 | 0.6 | 92 | 30 | 40 | 8 | 19 | 49 |
Oil Group | Well | Depth (m) | Formation | Main Peak | ∑n-C21−/∑n-C22+ | CPI | OEP | Pr/Ph | Pr/n-C17 | Ph/n-C18 | n-Alkanes (μg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
Group I | KS101 | 6664 | K1 | n-C14 | 4.02 | 1.08 | 0.89 | 1.25 | 0.06 | 0.05 | 358,636 |
6821 | K1 | n-C14 | 3.10 | 1.14 | 0.90 | 1.08 | 0.08 | 0.09 | 314,590 | ||
Group II | FS8 | 3882 | J1s | n-C21 | 3.05 | 1.04 | 0.95 | 1.53 | 0.15 | 0.10 | 254,729 |
3899 | J1s | n-C21 | 3.01 | 1.11 | 0.94 | 1.55 | 0.16 | 0.10 | 264,203 | ||
Group III | FS4 | 2394 | K2 | n-C13 | 3.34 | 1.19 | 0.91 | 1.65 | 0.08 | 0.06 | 303,792 |
FS4 | 2396 | K2 | n-C13 | 4.83 | 1.19 | 0.92 | 1.78 | 0.08 | 0.05 | 417,742 | |
FS4 | 2789 | K2 | n-C13 | 2.96 | 1.11 | 0.93 | 1.54 | 0.06 | 0.04 | 612,909 | |
KS103 | 6336 | E2k | n-C12 | 3.48 | 1.09 | 0.92 | 1.16 | 0.08 | 0.07 | 307,870 | |
KZ108H | 6755 | E2k2 | n-C8 | 3.05 | 1.09 | 0.93 | 1.18 | 0.07 | 0.06 | 335,809 | |
K2 | 3323 | N1 | n-C11 | 2.85 | 1.13 | 0.95 | 1.55 | 0.16 | 0.10 | 218,293 | |
K2 | 3776 | N1x7 2 | n-C10 | 23.49 | 1.13 | 0.93 | 1.23 | 0.07 | 0.06 | 495,750 | |
K10 | / | N1 | n-C12 | 20.47 | 1.08 | 0.94 | 1.38 | 0.07 | 0.06 | 475,483 | |
KS7009 | 3877 | N1x7 2 | n-C13 | 2.78 | 1.09 | 0.92 | 1.06 | 0.06 | 0.06 | 325,145 | |
KS7009 | 3944 | N1x7 2 | n-C10 | 3.50 | 1.10 | 0.93 | 1.02 | 0.06 | 0.06 | 436,337 | |
Group IV | K1 | / | N1 | n-C15 | 3.80 | 1.10 | 0.9 | 1.27 | 0.07 | 0.06 | 482,465 |
K2 | 3172 | N1x4 1 | n-C10 | 19.57 | 1.14 | 0.64 | 1.23 | 0.07 | 0.07 | 466,475 | |
K2 | 3221 | N1x4 2 | n-C9 | 10.45 | 1.10 | 0.92 | 1.2 | 0.07 | 0.06 | 425,773 | |
K2 | 3273 | N1 | n-C14 | 2.81 | 1.09 | 0.96 | 1.1 | 0.07 | 0.06 | 295,270 | |
K2 | 3804 | N1x8 | n-C10 | 26.11 | 1.16 | 0.92 | 1.38 | 0.07 | 0.06 | 474,613 | |
K6 | 3322 | N1x4 | n-C15 | 2.67 | 1.11 | 0.92 | 1.12 | 0.06 | 0.06 | 418,273 | |
K9 | 3030 | N2 | n-C12 | 6.46 | 1.12 | 0.93 | 1.18 | 0.06 | 0.06 | 258,799 | |
K9 | 3101 | N1 | n-C13 | 4.21 | 1.15 | 0.93 | 1.67 | 0.09 | 0.06 | 239,626 | |
K9 | 3871 | N1 | n-C12 | 6.57 | 1.10 | 0.94 | 1.19 | 0.06 | 0.06 | 389,962 | |
K30 | 3805 | N1x5 | n-C11 | 7.30 | 1.11 | 0.94 | 1.12 | 0.06 | 0.05 | 483,963 | |
K35 | / | N1x5 2 | n-C11 | 32.40 | 1.04 | 0.95 | 1.22 | 0.10 | 0.07 | 358,932 | |
K51 | 3703 | N1x2 | n-C12 | 7.60 | 1.12 | 0.92 | 1.21 | 0.07 | 0.06 | 438,024 | |
K8001 | 3929 | N1x8 | n-C10 | 8.61 | 1.10 | 0.95 | 1.16 | 0.06 | 0.06 | 506,190 | |
KX3 | 3793 | N1x8 | n-C10 | 20.18 | 1.10 | 0.62 | 1.84 | 0.10 | 0.07 | 482,712 | |
KS103 | 3867 | N1x8 | n-C11 | 6.68 | 1.10 | 0.92 | 1.10 | 0.07 | 0.07 | 499,034 | |
KZ104 | 6348 | E | n-C9 | 5.39 | 1.11 | 0.93 | 1.17 | 0.06 | 0.05 | 354,246 | |
KZ106 | / | E2k | n-C10 | 4.89 | 1.11 | 0.92 | 1.13 | 0.06 | 0.05 | 284,251 | |
KZ107 | 6269 | E | n-C9 | 5.70 | 1.10 | 0.90 | 1.21 | 0.06 | 0.05 | 342,163 |
Oil Group | Well | Depth (m) | Formation | MAI | MDI | %Ro | ADMs/DAMs | C0-ADM (μg/g) | C1-ADM (μg/g) | C2-ADM (μg/g) | C3-ADM (μg/g) | C4-ADM (μg/g) | C0-4-ADMs (μg/g) | C0-DAM (μg/g) | C1-DAM (μg/g) | C2-DAM (μg/g) | C3-DAM (μg/g) | C0-3-DAMs (μg/g) | Diamondoids (μg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group I | KS101 | 6664 | K1 | 0.84 | 0.60 | 1.89 | 1.25 | 214 | 2813 | 8598 | 8567 | 4922 | 25113 | 3164 | 8361 | 6765 | 1842 | 20,132 | 45,244 |
6821 | K1 | 0.77 | 0.59 | 1.87 | 0.54 | 37 | 703 | 3411 | 4732 | 3667 | 12549 | 3495 | 9483 | 8020 | 2216 | 23,214 | 35,763 | ||
Group II | FS8 | 3882 | J1s | 0.64 | 0.00 | n.a | n.a | 6 | 22 | 75 | 29 | 16 | 147 | n.a | n.a | n.a | n.a | n.a | 147 |
3899 | J1s | 0.67 | 0.00 | n.a | n.a | 6 | 23 | 75 | 28 | 16 | 148 | n.a | n.a | n.a | n.a | n.a | 148 | ||
Group III | FS4 | 2394 | K2 | 0.70 | 0.33 | 1.23 | 15.43 | 58 | 328 | 785 | 507 | 202 | 1879 | 18 | 52 | 43 | 9 | 122 | 2001 |
FS4 | 2396 | K2 | 0.68 | 0.36 | 1.32 | 13.02 | 40 | 267 | 711 | 459 | 189 | 1665 | 18 | 54 | 46 | 9 | 128 | 1793 | |
FS4 | 2789 | K2 | 0.68 | 0.35 | 1.30 | 8.46 | 31 | 204 | 552 | 376 | 168 | 1331 | 23 | 64 | 57 | 14 | 157 | 1488 | |
KS103 | 6336 | E2k | 0.60 | 0.32 | 1.22 | 3.04 | 20 | 115 | 414 | 273 | 163 | 984 | 79 | 142 | 86 | 18 | 324 | 1308 | |
KZ108H | 6755 | E2k2 | 0.73 | 0.39 | 1.39 | 9.19 | 37 | 183 | 429 | 257 | 98 | 1003 | 25 | 45 | 30 | 9 | 109 | 1113 | |
K2 | 3323 | N1 | 0.66 | 0.45 | 1.53 | 7.75 | 13 | 112 | 314 | 323 | 313 | 1074 | 6 | 61 | 48 | 28 | 144 | 1218 | |
K2 | 3776 | N1x7 2 | 0.72 | 0.40 | 1.42 | 27.55 | 57 | 298 | 741 | 444 | 177 | 1718 | 12 | 25 | 20 | 5 | 62 | 1780 | |
KS7009 | 3877 | N1x7 2 | 0.69 | 0.50 | 1.65 | 7.26 | 21 | 129 | 366 | 255 | 103 | 874 | 22 | 51 | 40 | 9 | 120 | 994 | |
KS7009 | 3944 | N1x7 2 | 0.70 | 0.36 | 1.30 | 12.36 | 23 | 145 | 367 | 240 | 97 | 871 | 14 | 28 | 24 | 5 | 70 | 941 | |
Group IV | K1 | / | N1 | 0.78 | 0.42 | 1.47 | 14.04 | 58 | 407 | 918 | 618 | 263 | 2264 | 33 | 65 | 52 | 12 | 161 | 2425 |
K2 | 3172 | N1x4 1 | 0.71 | 0.39 | 1.38 | 29.93 | 43 | 230 | 637 | 398 | 149 | 1456 | 8 | 21 | 17 | 4 | 49 | 1505 | |
K2 | 3221 | N1x4 2 | 0.71 | 0.37 | 1.33 | 23.96 | 35 | 163 | 415 | 248 | 95 | 956 | 8 | 15 | 13 | 4 | 40 | 996 | |
K2 | 3273 | N1 | 0.70 | 0.32 | 1.21 | 12.14 | 18 | 108 | 293 | 196 | 83 | 698 | 10 | 22 | 19 | 7 | 58 | 755 | |
K2 | 3804 | N1x8 | 0.73 | 0.35 | 1.30 | 27.81 | 61 | 327 | 802 | 503 | 198 | 1892 | 13 | 29 | 21 | 5 | 68 | 1960 | |
K6 | 3322 | N1x4 | 0.68 | 0.36 | 1.32 | 11.05 | 20 | 143 | 396 | 261 | 110 | 930 | 16 | 34 | 27 | 7 | 84 | 1014 | |
K9 | 3030 | N2 | 0.71 | 0.33 | 1.25 | 17.33 | 49 | 280 | 777 | 516 | 201 | 1821 | 22 | 44 | 33 | 7 | 105 | 1926 | |
K9 | 3101 | N1 | 0.71 | 0.39 | 1.38 | 8.80 | 91 | 77 | 1650 | 1168 | 527 | 3514 | 89 | 141 | 114 | 27 | 371 | 3884 | |
K9 | 3871 | N1 | 0.70 | 0.34 | 1.27 | 15.69 | 29 | 160 | 449 | 292 | 99 | 1028 | 14 | 26 | 20 | 5 | 66 | 1094 | |
K10 | / | N1 | 0.71 | 0.32 | 1.22 | 24.19 | 33 | 157 | 408 | 251 | 96 | 945 | 7 | 15 | 13 | 3 | 39 | 984 | |
K30 | 3805 | N1x5 | 0.71 | 0.33 | 1.24 | 17.12 | 35 | 204 | 534 | 331 | 117 | 1221 | 14 | 28 | 24 | 5 | 71 | 1293 | |
K35 | / | N1x5 2 | 0.68 | 0.36 | 1.31 | 35.07 | 44 | 264 | 761 | 487 | 198 | 1754 | 11 | 19 | 15 | 5 | 50 | 1804 | |
K51 | 3703 | N1x2 | 0.69 | 0.36 | 1.31 | 17.29 | 33 | 231 | 674 | 456 | 173 | 1566 | 19 | 37 | 28 | 7 | 91 | 1657 | |
K8001 | 3929 | N1x8 | 0.72 | 0.38 | 1.37 | 16.86 | 53 | 307 | 794 | 505 | 186 | 1845 | 21 | 43 | 38 | 8 | 109 | 1954 | |
KX3 | 3793 | N1x8 | 0.76 | 0.39 | 1.38 | 32.29 | 82 | 417 | 949 | 525 | 201 | 2172 | 17 | 24 | 22 | 5 | 67 | 2240 | |
KS103 | 3867 | N1x8 | 0.72 | 0.38 | 1.36 | 20.90 | 61 | 363 | 910 | 548 | 206 | 2087 | 23 | 39 | 32 | 6 | 100 | 2187 | |
KZ104 | 6348 | E | 0.72 | 0.40 | 1.41 | 12.21 | 46 | 258 | 627 | 378 | 152 | 1460 | 34 | 46 | 34 | 6 | 120 | 1580 | |
KZ106 | / | E2k | 0.68 | 0.36 | 1.32 | 12.23 | 54 | 352 | 839 | 535 | 217 | 1997 | 37 | 64 | 51 | 12 | 163 | 2161 | |
KZ107 | 6269 | E | 0.73 | 0.38 | 1.36 | 14.29 | 46 | 266 | 634 | 357 | 138 | 1441 | 28 | 39 | 30 | 5 | 101 | 1542 |
Oil Group | Well | Depth (m) | Formation | Naphthalenes (μg/g) | Phenanthrenes (μg/g) | Dibenzothiophenes (μg/g) | Triaromatic Steroids (μg/g) | Aromatics (μg/g) | DNR | MPI1 | MPI2 | MPR | MDR | DBT/P | TA[C20/(C20 + C28)-20R] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group I | KS101 | 6664 | K1 | 941 | 22,478 | 5500 | 25 | 28,944 | 1.87 | 0.14 | 0.16 | 0.76 | 4.09 | 0.23 | 0.55 |
6821 | K1 | 3696 | 47,204 | 12,032 | 34 | 62,966 | 4.59 | 0.13 | 0.14 | 0.77 | 4.86 | 0.25 | 0.69 | ||
Group II | FS8 | 3882 | J1s | 1253 | 734 | 20 | 133 | 2140 | 1.89 | 0.57 | 0.54 | 0.80 | 5.65 | 0.01 | 0.33 |
3899 | J1s | 293 | 810 | 28 | 144 | 1275 | 1.36 | 0.59 | 0.57 | 0.84 | 5.05 | 0.02 | 0.32 | ||
Group III | FS4 | 2394 | K2 | 875 | 1372 | 68 | 12 | 2327 | 3.32 | 0.39 | 0.39 | 0.73 | 7.02 | 0.04 | 0.62 |
FS4 | 2396 | K2 | 745 | 1327 | 71 | 10 | 2153 | 1.55 | 0.43 | 0.46 | 0.78 | 8.15 | 0.04 | 0.66 | |
FS4 | 2789 | K2 | 977 | 1893 | 100 | 9 | 2979 | 1.98 | 0.38 | 0.41 | 0.73 | 7.70 | 0.05 | 0.65 | |
KS103 | 6336 | E2k | 195 | 1215 | 82 | 0 | 1492 | 0.75 | 0.47 | 0.49 | 0.58 | 3.42 | 0.09 | / | |
KZ108H | 6755 | E2k2 | 8 | 209 | 5 | 0 | 222 | 1.75 | 0.82 | 1.05 | 0.80 | 2.54 | 0.04 | / | |
K2 | 3323 | N1 | 2575 | 824 | 163 | 3 | 3565 | 9.23 | 0.39 | 0.44 | 0.68 | 1.22 | 0.19 | 0.71 | |
K2 | 3776 | N1x7 2 | 2265 | 595 | 11 | 0 | 2871 | 3.60 | 0.38 | 0.41 | 0.76 | 4.19 | 0.03 | / | |
K10 | / | N1 | 2279 | 585 | 11 | 0 | 2875 | 3.80 | 0.41 | 0.44 | 0.76 | 4.04 | 0.03 | / | |
KS7009 | 3877 | N1x7 2 | 1209 | 1252 | 297 | 8 | 2766 | 3.65 | 0.41 | 0.44 | 0.67 | 1.25 | 0.26 | 0.81 | |
KS7009 | 3944 | N1x7 2 | 18 | 1205 | 188 | 4 | 1415 | 1.20 | 0.44 | 0.47 | 0.71 | 1.27 | 0.17 | 0.76 | |
Group IV | K1 | / | N1 | 339 | 621 | 28 | 1 | 989 | 6.80 | 0.55 | 0.62 | 0.72 | 2.03 | 0.03 | 0.64 |
K2 | 3172 | N1x4 1 | 2441 | 471 | 12 | 0 | 2924 | 3.68 | 0.37 | 0.41 | 0.70 | 0.62 | 0.03 | / | |
K2 | 3221 | N1x4 2 | 2059 | 1045 | 239 | 0 | 3343 | 10.17 | 0.40 | 0.43 | 0.65 | 1.17 | 0.25 | / | |
K2 | 3273 | N1 | 50 | 839 | 111 | 2 | 1002 | 1.37 | 0.42 | 0.47 | 0.68 | 1.26 | 0.09 | 0.73 | |
K2 | 3804 | N1x8 | 28 | 206 | 1 | 0 | 235 | 2.48 | 0.51 | 0.59 | 0.83 | / | 0.01 | / | |
K6 | 3322 | N1x4 | 156 | 1192 | 210 | 0 | 1558 | 0.76 | 0.43 | 0.47 | 0.67 | 1.21 | 0.17 | / | |
K9 | 3030 | N2 | 55 | 736 | 107 | 2 | 900 | 2.14 | 0.41 | 0.44 | 0.74 | 1.47 | 0.11 | 0.74 | |
K9 | 3101 | N1 | 2575 | 1606 | 329 | 0 | 4510 | 3.76 | 0.46 | 0.49 | 0.79 | 1.63 | 0.25 | / | |
K9 | 3871 | N1 | 52 | 963 | 126 | 1 | 1142 | 1.30 | 0.47 | 0.50 | 0.79 | 1.62 | 0.11 | 0.79 | |
K30 | 3805 | N1x5 | 1916 | 1016 | 192 | 0 | 3124 | 5.59 | 0.45 | 0.46 | 0.72 | 1.43 | 0.22 | / | |
K35 | / | N1x5 2 | 2575 | 643 | 145 | 0 | 3363 | 4.18 | 0.43 | 0.46 | 0.80 | 1.34 | 0.25 | / | |
K51 | 3703 | N1x2 | 1951 | 522 | 103 | 0 | 2576 | 3.53 | 0.41 | 0.43 | 0.74 | 1.43 | 0.23 | / | |
K8001 | 3929 | N1x8 | 769 | 1180 | 236 | 0 | 2185 | 16.34 | 0.46 | 0.48 | 0.79 | 1.81 | 0.24 | / | |
KX3 | 3793 | N1x8 | 1544 | 701 | 73 | 0 | 2318 | 6.57 | 0.42 | 0.44 | 0.80 | 1.47 | 0.13 | / | |
KS103 | 3867 | N1x8 | 53 | 927 | 128 | 3 | 1111 | / | 0.46 | 0.48 | 0.79 | 1.65 | 0.12 | 0.82 | |
KZ104 | 6348 | E | 127 | 293 | 3 | 0 | 423 | / | 0.92 | 1.10 | 0.87 | 2.13 | 0.02 | / | |
KZ106 | / | E2k | 919 | 1160 | 220 | 0 | 2299 | 3.01 | 0.48 | 0.50 | 0.77 | 1.69 | 0.23 | / | |
KZ107 | 6269 | E | 7 | 556 | 19 | 0 | 582 | / | 0.65 | 0.71 | 0.82 | 2.54 | 0.02 | / |
Oil Group | Well | Depth (m) | Formation | δ13Coil (%) | n-C12 | n-C13 | n-C14 | n-C15 | n-C16 | n-C17 | n-C18 | n-C19 | n-C20 | n-C21 | n-C22 | n-C23 | n-C24 | n-C25 | n-C26 | n-C27 | n-C28 | n-C29 | n-C30 | n-C31 | n-C32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group I | KS101 | 6664 | K1 | −27.7 | −27.8 | −28 | −28.6 | −28.9 | −29 | −29.2 | −29.5 | −29.5 | −29 | −29.5 | −29.8 | −30.2 | −29.5 | −30.2 | −29.8 | −29.3 | −29.5 | −29 | −29.1 | −29.6 | / |
6821 | K1 | −26.9 | −26.1 | −26.5 | −27.3 | −27.3 | −27.8 | −28 | −28.3 | −27.4 | −28.2 | −27.9 | −28.1 | −28.3 | −27.9 | −28.9 | −28.4 | −28.9 | −27.9 | −28.1 | −28 | −28.2 | −28.6 | ||
Group II | FS8 | 3882 | J1s | −28.9 | −30.1 | −30.5 | −30 | −30.6 | −30.6 | −30.4 | −30 | −32 | −31.5 | −31.9 | −31.6 | −31.5 | −31.4 | −31.6 | −31.5 | −31.8 | −31.1 | −31.1 | −31 | −30.8 | −30.7 |
3899 | J1s | −28.6 | −30.4 | −30.2 | −30.1 | −30.1 | −30.1 | −30.5 | −29.8 | −31.3 | −31.6 | −32.1 | −31.3 | −31.9 | −31.6 | −31.5 | −31.7 | −31.4 | −30.8 | −31.3 | −31.1 | −30.8 | −30.2 | ||
Group III | FS4 | 2394 | K2 | −30.8 | −28.4 | −28.6 | −28.9 | −29.3 | −28.9 | −29 | −28.7 | −30.1 | −29.8 | −30 | −30.1 | −29.8 | −30.1 | −30.5 | −30.2 | −30.7 | −30.8 | −30.8 | −30.8 | −30.4 | −30.4 |
FS4 | 2396 | K2 | −28.1 | −29.2 | −29.3 | −29.1 | −29.7 | −29.7 | −29.5 | −30 | −30 | −29.6 | −29.8 | −30.1 | −30.6 | −30.6 | −30.3 | −30.9 | −31.2 | −30.7 | −30.5 | −30.3 | −31.1 | −30.1 | |
FS4 | 2789 | K2 | −28.9 | −29.2 | −29.9 | −29.4 | −29.9 | −29.6 | −29.2 | −29 | −30 | −30.1 | −29.3 | −30 | −30.5 | −30.3 | −30.6 | −30.6 | −30.9 | −30.1 | −29.3 | −30.7 | −29.2 | / | |
KS103 | 6336 | E2k | −29.8 | −29.7 | −29.7 | −29.8 | −30.3 | −29.8 | −29.9 | −29.3 | −30 | −30.7 | −31.3 | −30.9 | −31.2 | −30.8 | −30.9 | −31.4 | −31.4 | −31.4 | −31.7 | −30.7 | −30.9 | −30.5 | |
KZ108H | 6755 | E2k2 | −29.1 | −29.2 | −29 | −29.5 | −29.7 | −29.6 | −30.2 | −29.6 | −29.9 | −30.2 | −30.7 | −30.5 | −30.9 | −30.2 | −30.7 | −31.2 | −31.4 | −31 | −31 | −30.5 | / | / | |
K2 | 3323 | N1 | −29.8 | −29.1 | −28.7 | −29 | −29.5 | −29.5 | −29.7 | −29.7 | −30.5 | −30.1 | −30.3 | −30.8 | −31.2 | −30.7 | −31.2 | −31.4 | / | / | / | / | / | / | |
K2 | 3776 | N1x7 2 | −29.5 | −29.2 | −29 | −29.5 | −30 | −29.4 | −29.7 | −29.2 | −30.7 | −30.5 | −30.9 | −30.8 | −30.8 | −30.4 | −31.3 | −31.2 | −31.4 | −31.4 | −31 | −31.2 | −30.9 | −30.3 | |
K10 | / | N1 | −27.7 | −27.8 | −28 | −28.5 | −29.1 | −28.9 | −29.1 | −29.2 | −30.1 | −29.8 | −30.7 | −30.8 | −30.9 | −30.4 | −30.6 | −31.5 | −31.3 | −32.4 | / | / | / | / | |
KS7009 | 3877 | N1x7 2 | −29.6 | −29.1 | −29.2 | −29 | −29.6 | −29.4 | −29.3 | −29.7 | −30.5 | −30.3 | −30.7 | −30.4 | −30.7 | −30.9 | −31.1 | −30.8 | −31 | −31.1 | −31.2 | −30.3 | −30.4 | −30.7 | |
KS7009 | 3944 | N1x72 | −28.9 | −29.1 | −29.1 | −29.4 | −29.8 | −29.2 | −29.4 | −29.2 | −29.8 | −30.3 | −30.8 | −30.4 | −30.7 | −30.4 | −31.2 | −31.2 | −31.5 | −30.9 | −31.1 | −30.4 | −30.2 | −29.9 | |
Group IV | K1 | / | N1 | −29.2 | −28.7 | −28.7 | −29.1 | −29.7 | −29.3 | −29.5 | −29.6 | −30.2 | −30.1 | −30.4 | −30.4 | −31.2 | −30.9 | −30.9 | −31.8 | −32.1 | −31.5 | −31.4 | −31.8 | / | / |
K2 | 3172 | N1x4 1 | −29.6 | −27.6 | −28.3 | −28.2 | −28.9 | −29.3 | −29.7 | −29.1 | −30.3 | −29.8 | −30.7 | −30.6 | −30.5 | −30.4 | −30.6 | −31.3 | −31.3 | −31.5 | −31.4 | −31.1 | / | / | |
K2 | 3221 | N1x4 2 | −29.2 | −29.1 | −29.2 | −29.6 | −29.8 | −29.9 | −29.6 | −29.4 | −30.4 | −29.9 | −30.5 | −30.9 | −30.3 | −30.3 | −31.4 | −31 | −31 | −31.1 | −30.3 | / | / | / | |
K2 | 3273 | N1 | −29.1 | −28.8 | −29.1 | −29.5 | −29.6 | −29.4 | −29.3 | −29.9 | −30.6 | −30.4 | −30.3 | −30.2 | −30.9 | −30.3 | −31.3 | −31 | −30.8 | −30.9 | −31.3 | −30.7 | −30.6 | −30.4 | |
K2 | 3804 | N1x8 | −29.2 | −28.6 | −28.7 | −29.1 | −29.6 | −29.4 | −29.2 | −29 | −29.9 | −30 | −30.6 | −30.5 | −30.1 | −30.6 | −30.8 | −30.8 | −31.5 | −31.4 | −31.3 | −31.3 | −30.3 | −29.7 | |
K6 | 3322 | N1x4 | −29.6 | −29.1 | −28.9 | −29.2 | −29.8 | −29.4 | −29.8 | −29.6 | −30.3 | −30.1 | −30.7 | −31.2 | −31.1 | −30.9 | −31.4 | −31.6 | −32.1 | −31.4 | −31.7 | −31.6 | −30.9 | −30.9 | |
K9 | 3030 | N2 | −27.9 | −28.4 | −28.5 | −28.5 | −29.3 | −29 | −29.7 | −28.9 | −30.6 | −30.1 | −30.6 | −30.4 | −31 | −30.5 | −31.5 | −31.6 | −31.7 | −32 | −32 | −31 | / | / | |
K9 | 3101 | N1 | −29.5 | −28.8 | −28.8 | −29.1 | −29.7 | −29.4 | −29.4 | −29.1 | −30.7 | −30 | −30.8 | −30.5 | −30.7 | −30.9 | −31.2 | −30.9 | −31.7 | −31.2 | −31.9 | −30.9 | −30.6 | −30.1 | |
K9 | 3871 | N1 | −29.8 | −28.6 | −28.8 | −29.8 | −29.7 | −29.3 | −29.9 | −29.5 | −30.8 | −30.6 | −31 | −30.9 | −31.1 | −30.6 | −31.7 | −31.5 | −32.4 | −32.1 | −32.3 | −31.2 | −31.1 | −31.1 | |
K30 | 3805 | N1x5 | −29.6 | −27.6 | −28.3 | −28.3 | −29.3 | −29.2 | −29.2 | −28.9 | −30.1 | −29.5 | −30.4 | −30.4 | −30.7 | −30.3 | −31.2 | −31.4 | −31.7 | −31.8 | −31.6 | −31 | −31.2 | −29.2 | |
K35 | / | N1x5 2 | −29.4 | −28.9 | −29.2 | −29.1 | −29.7 | −29.6 | −30 | −29.5 | −30.5 | −30.7 | −30.4 | −30.8 | −31.4 | −30.7 | / | / | / | / | / | / | / | / | |
K51 | 3703 | N1x2 | −29.4 | −28.7 | −28.8 | −29 | −29.9 | −29.6 | −29.4 | −29.3 | −30.3 | −30.2 | −30.9 | −30.7 | −31.4 | −31 | −31.3 | −31.4 | −31.5 | −31.7 | −31.2 | / | / | / | |
K8001 | 3929 | N1x8 | −29.6 | −27.9 | −28.2 | −28.4 | −29.2 | −29.1 | −29.3 | −28.9 | −29.3 | −29.8 | −30.3 | −30.3 | −30.8 | −30.5 | −31.1 | −31.6 | −32 | −32.1 | −32.3 | −31.2 | −31.6 | / | |
KX3 | 3793 | N1x8 | −29.2 | −28.4 | −29 | −29.5 | −29.9 | −29.4 | −29.8 | −30 | −30.6 | −29.7 | −30.1 | −30.5 | −30.9 | −30.7 | −31.4 | −32.1 | −31.3 | −31.9 | / | / | / | / | |
KS103 | 3867 | N1x8 | −27.6 | −28.2 | −28.3 | −28.4 | −29.3 | −29.2 | −29.1 | −29.3 | −30.3 | −29.6 | −29.6 | −30.4 | −30.9 | −30.8 | −30.8 | −31.5 | −31.6 | −31.6 | −32.3 | −31.1 | / | / | |
KZ104 | 6348 | E | −29.4 | −27.8 | −28 | −28.6 | −28.9 | −29 | −29.2 | −29.5 | −29.5 | −29 | −29.5 | −29.8 | −30.2 | −29.5 | −30.2 | −29.8 | −29.3 | −29.5 | −29 | −29.1 | −29.6 | / | |
KZ106 | / | E2k | −29.4 | −26.1 | −26.5 | −27.3 | −27.3 | −27.8 | −28 | −28.3 | −27.4 | −28.2 | −27.9 | −28.1 | −28.3 | −27.9 | −28.9 | −28.4 | −28.9 | −27.9 | −28.1 | −28 | −28.2 | −28.6 | |
KZ107 | 6269 | E | −29.3 | −30.1 | −30.5 | −30 | −30.6 | −30.6 | −30.4 | −30 | −32 | −31.5 | −31.9 | −31.6 | −31.5 | −31.4 | −31.6 | −31.5 | −31.8 | −31.1 | −31.1 | −31 | −30.8 | −30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Xiao, Q.; Ge, Z.; Cai, S.; Zhang, H.; Wang, X.; Xu, Z.; Wang, Z.; Xie, X.; Meng, Q. Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources. Energies 2024, 17, 760. https://doi.org/10.3390/en17030760
Gao X, Xiao Q, Ge Z, Cai S, Zhang H, Wang X, Xu Z, Wang Z, Xie X, Meng Q. Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources. Energies. 2024; 17(3):760. https://doi.org/10.3390/en17030760
Chicago/Turabian StyleGao, Xiaojie, Qilin Xiao, Zhushi Ge, Suyang Cai, Haizhu Zhang, Xiang Wang, Zhenping Xu, Zhanghu Wang, Xiaomin Xie, and Qiang Meng. 2024. "Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources" Energies 17, no. 3: 760. https://doi.org/10.3390/en17030760
APA StyleGao, X., Xiao, Q., Ge, Z., Cai, S., Zhang, H., Wang, X., Xu, Z., Wang, Z., Xie, X., & Meng, Q. (2024). Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources. Energies, 17(3), 760. https://doi.org/10.3390/en17030760