A Novel Leak-Proof Thermal Conduction Slot Battery Thermal Management System Coupled with Phase Change Materials and Liquid-Cooling Strategies
Abstract
:1. Introduction
2. Model and Methodology
2.1. Geometric Model
2.2. Mathematical Model
2.2.1. Battery Thermal Model
2.2.2. Governing Equations
2.3. Boundary Conditions and Grid Independence Test
- All of the parameters of the battery were constant and isotropic except thermal conductivity.
- It was assumed that the PCMs used in the model were homogeneous and the properties of the liquid and solid phases were constant and identical. During the phase change, the motion and volume change in PCM were ignored.
- The liquid-cooling plate was made of aluminum and assumed to be homogeneous, and all parameters were constant and isotropic.
- It was assumed that the materials were in close contact, and the contact thermal resistance was ignored.
- There was no slip between the wall and adjacent fluid particles.
3. Results and Discussion
3.1. Thermal Characterization of CLCP
3.2. Effect of Channel Shape
3.3. Effect of Inlet Temperature
3.4. Effect of Inlet Velocity
3.5. Effect of Reverse Flow
4. Conclusions and Research Recommendations
4.1. Conclusions
4.2. Research Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Nomenclature
EVs | Electric vehicles | I | Current |
BTMS | Battery thermal management system | N | Number of charges associated with the reaction |
PCM | Phase change material | F | Faraday’s constant |
CPCM | Composite phase change material | Rp | Battery polarization resistance |
HPCM | High-thermal-conductivity material | Re | Battery internal resistance |
LPCM | Low-thermal-conductivity material | Rt | Battery total resistance |
PA | Paraffin | q | Battery heat generation |
EKF | Extended Kalman filter | V | Volume of battery |
TR | Thermal runaway | EOC | Balance electromotive force of battery |
CFD | Computational fluid dynamics | U | Operating potential of battery |
CLCP | Composite liquid-cooling plate | T | Operating temperature of battery |
DOD | Depth of discharge | Re | Reynolds number |
EG | Expanded graphite | ρc | Density of coolant |
Tmax | Maximum temperature | vc | Velocity of coolant |
ΔTmax | Maximum temperature difference | dc | Hydraulic diameter of channel |
Qgen | Total heat generated by battery | Pc | Wetted perimeter of flow channel |
Qr | Battery reaction heat | ρb | Density of battery |
Qp | Battery polarization heat | ρPCM | Density of PCM |
Qj | Battery joule heat | kPCM | Thermal conductivity of PCM |
Tb | Temperature of the battery | T0 | Ambient temperature |
Ac | Cross-sectional area of flow channel | Ts | Solid phase temperatures of PCM |
rc | Radius of flow channel | ρc | Density of coolant |
kb | Thermal conductivity of battery | Cp,c | Specific heat capacity of coolant |
Hpcm | Enthalpy of PCM | kc | Thermal conductivity of coolant |
TPCM | Temperature of PCM | Tc | Temperature of coolant |
β | Liquid fraction of PCM | Coolant velocity vector | |
Tl | Liquid phase temperatures of PCM | μc | Coolant dynamic viscosity |
ρt | Density of flow channel | Temperature gradient | |
Cp,t | Specific heat capacity of flow channel | Ttube | Surface temperature of internal channel |
kt | Thermal conductivity of flow channel | kplate | Thermal conductivity of liquid-cooling plate |
Tt | Temperature of flow channel | hc | Heat transfer coefficient of liquid coolant |
P | Coolant static pressure | h | Natural convection heat transfer coefficient |
References
- Cai, S.; Zhang, X.; Ji, J. Recent advances in phase change materials-based battery thermal management systems for electric vehicles. J. Energy Storage 2023, 72, 108750. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. A review on recent progress, challenges and perspective of battery thermal management system. Int. J. Heat Mass Transf. 2021, 167, 120834. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Hu, Y.; Zhang, L.; Zhang, W.; Chen, Y.; Zhang, G.; Jiang, L.; Dai, Z.; Wen, Y. Investigations on the essential causes of the degrading properties of ternary lithium-ion batteries with different nickel content during thermal runaway stage. Int. J. Electrochem. Sci. 2024, 19, 100491. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.X.; Pecht, M. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Shahjalal, M.; Shams, T.; Islam, M.E.; Alam, W.; Modak, M.; Hossain, S.B.; Ramadesigan, V.; Ahmed, M.R.; Ahmed, H.; Iqbal, A. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. J. Energy Storage 2021, 39, 102518. [Google Scholar] [CrossRef]
- Dan, D.; Zhao, Y.; Wei, M.; Wang, X. Review of Thermal Management Technology for Electric Vehicles. Energies 2023, 16, 4693. [Google Scholar] [CrossRef]
- Chavan, S.; Venkateswarlu, B.; Prabakaran, R.; Salman, M.; Joo, S.W.; Choi, G.S.; Kim, S.C. Thermal runaway and mitigation strategies for electric vehicle lithium-ion batteries using battery cooling approach: A review of the current status and challenges. J. Energy Storage 2023, 72, 108569. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, C.; Geng, M.; Meng, H. A review on models to prevent and control lithium-ion battery failures: From diagnostic and prognostic modeling to systematic risk analysis. J. Energy Storage 2023, 74, 109230. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Luo, J.; Zou, D.; Wang, Y.; Wang, S.; Huang, L. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem. Eng. J. 2022, 430, 132741. [Google Scholar] [CrossRef]
- Jaguemont, J.; Bardé, F. A critical review of lithium-ion battery safety testing and standards. Appl. Therm. Eng. 2023, 231, 121014. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review. J. Energy Storage 2023, 71, 108025. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Saidur, R.; Pandey, A.; Ma, Z.; Singh, P.; Hazra, S.K.; Sharshir, S.W.; Prabakaran, R. A state-of-the art review on advancing battery thermal management systems for fast-charging. Appl. Therm. Eng. 2023, 226, 120303. [Google Scholar] [CrossRef]
- Detka, K.; Górecki, K. Selected Technologies of Electrochemical Energy Storage—A Review. Energies 2023, 16, 5034. [Google Scholar] [CrossRef]
- Maiorino, A.; Cilenti, C.; Petruzziello, F.; Aprea, C. A review on thermal management of battery packs for electric vehicles. Appl. Therm. Eng. 2023, 238, 122035. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Zhang, H.; Tang, X. A Review on Battery Thermal Management for New Energy Vehicles. Energies 2023, 16, 4845. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Chen, S.; Liu, X.; Chen, B. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renew. Sustain. Energy Rev. 2021, 148, 111301. [Google Scholar] [CrossRef]
- Anisha; Kumar, A. Identification and Mitigation of Shortcomings in Direct and Indirect Liquid Cooling-Based Battery Thermal Management System. Energies 2023, 16, 3857. [Google Scholar] [CrossRef]
- Tete, P.R.; Gupta, M.M.; Joshi, S.S. Developments in battery thermal management systems for electric vehicles: A technical review. J. Energy Storage 2021, 35, 102255. [Google Scholar] [CrossRef]
- Khan, M.M.; Alkhedher, M.; Ramadan, M.; Ghazal, M. Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges. J. Energy Storage 2023, 73, 108775. [Google Scholar] [CrossRef]
- Akkurt, N.; Aghakhani, S.; Mahmoud, M.Z.; Tag El Din, E.M. The influence of battery distance on a hybrid air-cooled cylindrical lithium-ion battery phase change material thermal management system for storing solar energy. J. Energy Storage 2022, 52, 104873. [Google Scholar] [CrossRef]
- Shengxin, E.; Liu, Y.; Cui, Y.; Wu, A.; Yin, H. Effects of composite cooling strategy including phase change material and cooling air on the heat dissipation performance improvement of lithium ion power batteries pack in hot climate and its catastrophe evaluation. Energy 2023, 283, 129074. [Google Scholar]
- Liu, Z.; Huang, J.; Cao, M.; Jiang, G.; Yan, Q.; Hu, J. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling. Appl. Therm. Eng. 2021, 185, 116415. [Google Scholar] [CrossRef]
- Hekmat, S.; Bamdezh, M.A.; Molaeimanesh, G.R. Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channels. J. Energy Storage 2022, 50, 104272. [Google Scholar] [CrossRef]
- Xin, Q.Q.; Yang, T.Q.; Zhang, H.Y.; Yang, J.X.; Zeng, J.; Xiao, J.S. Experimental and numerical study of lithium-ion battery thermal management system using composite phase change material and liquid cooling. J. Energy Storage 2023, 71, 108003. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Yang, B.; Cai, S. A review of battery thermal management systems using liquid cooling and PCM. J. Energy Storage 2024, 76, 109836. [Google Scholar] [CrossRef]
- Bernagozzi, M.; Georgoulas, A.; Miche, N.; Marengo, M. Heat pipes in battery thermal management systems for electric vehicles: A critical review. Appl. Therm. Eng. Des. Process. Equip. Econ. 2023, 219, 119495. [Google Scholar] [CrossRef]
- Fathoni, A.M.; Putra, N.; Mahlia, T.I. A systematic review of battery thermal management systems based on heat pipes. J. Energy Storage 2023, 73, 109081. [Google Scholar] [CrossRef]
- Li, Q.; Cho, J.-R.; Zhai, J. Optimization of Thermal Management System with Water and Phase Change Material Cooling for Li-Ion Battery Pack. Energies 2021, 14, 5312. [Google Scholar] [CrossRef]
- Liu, H.; Ahmad, S.; Shi, Y.; Zhao, J. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling. Energy 2021, 231, 120869. [Google Scholar] [CrossRef]
- Zhang, W.C.; Liang, Z.C.; Yin, X.X.; Ling, G.Z. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl. Therm. Eng. 2021, 184, 116380. [Google Scholar] [CrossRef]
- Cao, J.; Ling, Z.; Fang, X.; Zhang, Z. Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge. J. Power Sources 2020, 450, 227673. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, G.; Xia, Y.; Tian, S. Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure. J. Energy Storage 2023, 70, 108001. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, X.; Bénard, P.; Yang, T.; Zeng, J.; Long, X. Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system. Energy Storage 2023, 5, e453. [Google Scholar] [CrossRef]
- Javani, N.; Dincer, I.; Naterer, G.; Yilbas, B. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Appl. Therm. Eng. 2014, 64, 471–482. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Zou, B.; Zhang, T.; Jin, L.; Qiao, G.; Nie, B.; Huang, Y.; Ding, Y. Performance of a liquid cooling-based battery thermal management system with a composite phase change material. Int. J. Energy Res. 2020, 44, 4727–4742. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Zhang, Z.; Li, X.; Ma, R.; Ren, Y.; Wu, W. Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation. Renew. Energy 2022, 200, 1338–1351. [Google Scholar] [CrossRef]
- Ouyang, T.; Liu, B.; Xu, P.; Wang, C.; Ye, J. Electrochemical-thermal coupled modelling and multi-measure prevention strategy for Li-ion battery thermal runaway. Int. J. Heat Mass Transf. 2022, 194, 123082. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, F.; Yang, W.; Gui, Y.; Zhang, Y. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries. Appl. Therm. Eng. 2022, 200, 117702. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Liu, Y.; Lai, B.; Ke, Z.; Wu, W. Investigations of Lithium-Ion Battery Thermal Management System with Hybrid PCM/Liquid Cooling Plate. Processes 2022, 11, 57. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Lamrani, B.; Ouassaid, M.; Abd-Lefdil, M.; Maaroufi, M.; Kousksou, T. Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system. J. Energy Storage 2022, 54, 105293. [Google Scholar] [CrossRef]
- An, Z.; Luo, Y.; Zhang, C.; Li, D. Performance of chocolate bar-shaped modular thermal management system combined metal lattice liquid-cooling plate with paraffin in high-rate discharge. J. Energy Storage 2022, 56, 106017. [Google Scholar] [CrossRef]
- Hu, S.; Wang, S.; Ma, C.; Li, S.; Liu, X.; Zhang, Y. A hybrid cooling method with low energy consumption for lithium-ion battery under extreme conditions. Energy Convers. Manag. 2022, 266, 115831. [Google Scholar] [CrossRef]
- Hou, G.; Liu, X.; He, W.; Wang, C.; Zhang, J.; Zeng, X.; Li, Z.; Shao, D. An equivalent circuit model for battery thermal management system using phase change material and liquid cooling coupling. J. Energy Storage 2022, 55, 105834. [Google Scholar] [CrossRef]
- Xu, X.; Tong, G.; Li, R. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system. Appl. Therm. Eng. 2020, 167, 114787. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 1985, 132, 5. [Google Scholar] [CrossRef]
- Kong, D.; Peng, R.; Ping, P.; Du, J.; Chen, G.; Wen, J. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Convers. Manag. 2020, 204, 112280. [Google Scholar] [CrossRef]
- Amalesh, T.; Narasimhan, N.L. Introducing new designs of minichannel cold plates for the cooling of Lithium-ion batteries. J. Power Sources 2020, 479, 228775. [Google Scholar] [CrossRef]
- Wang, H.T.; Tao, T.; Xu, J.; Mei, X.S.; Liu, X.Y.; Gou, P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Appl. Therm. Eng. 2020, 178, 115591. [Google Scholar] [CrossRef]
- Xie, J.; Mo, C.; Zhang, G.; Yang, X. Thermal performance analysis of liquid cooling system with hierarchically thermal conductive skeleton for large-scaled cylindrical battery module in harsh working conditions. Int. J. Heat Mass Transf. 2023, 215, 124487. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Cathode | Li(Ni0.8Co0.1Mn0.1)O2 |
Anode | Graphite |
Nominal capacity (mAh) | 3050 |
Nominal voltage (V) | 3.6 |
Charge cut-off voltage (V) | 4.20 |
Discharge cut-off voltage (V) | 2.5 |
Energy density (Wh/Kg) | 234 |
Battery dimension (mm) | Height: 64.85 ± 0.25, Diameter: 18.35 ± 0.15 |
Mass (g) | 47 |
Charge temperature range (°C) | 0–45 |
Discharge temperature range (°C) | −20–60 |
Parameter (Unit) | Battery | PCM | Aluminum Plate | Cooling Water |
---|---|---|---|---|
Thermal conductivity (W·m−1·K−1) | 1.8 (X,Y), 25.6 (Z) | 1 | 202.4 | 0.6 |
Specific heat (J·kg−1·K−1) | 1100 | 2460 | 871 | 4182 |
Density (kg·m−3) | 2481.59 | 770 | 2719 | 998.2 |
Melting temperature (TS–TL) (°C) | - | 35–37 | - | - |
Latent heat (kJ·kg−1) | - | 247.6 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, J.; Zhang, G.; Hu, Y.; Shao, D.; Jiang, L.; Wen, Y. A Novel Leak-Proof Thermal Conduction Slot Battery Thermal Management System Coupled with Phase Change Materials and Liquid-Cooling Strategies. Energies 2024, 17, 939. https://doi.org/10.3390/en17040939
Zhang W, Zhang J, Zhang G, Hu Y, Shao D, Jiang L, Wen Y. A Novel Leak-Proof Thermal Conduction Slot Battery Thermal Management System Coupled with Phase Change Materials and Liquid-Cooling Strategies. Energies. 2024; 17(4):939. https://doi.org/10.3390/en17040939
Chicago/Turabian StyleZhang, Wenjun, Jiangyun Zhang, Guoqing Zhang, Yanxin Hu, Dan Shao, Liqin Jiang, and Yuliang Wen. 2024. "A Novel Leak-Proof Thermal Conduction Slot Battery Thermal Management System Coupled with Phase Change Materials and Liquid-Cooling Strategies" Energies 17, no. 4: 939. https://doi.org/10.3390/en17040939
APA StyleZhang, W., Zhang, J., Zhang, G., Hu, Y., Shao, D., Jiang, L., & Wen, Y. (2024). A Novel Leak-Proof Thermal Conduction Slot Battery Thermal Management System Coupled with Phase Change Materials and Liquid-Cooling Strategies. Energies, 17(4), 939. https://doi.org/10.3390/en17040939