A DCM-Based Non-Isolated Step-Down DC Transformer
Abstract
:1. Introduction
- (1)
- It is possible to achieve a high voltage ratio with a small number of components and a simple control method.
- (2)
- It operates in DCM, reducing switching losses and improving efficiency.
- (3)
- There is no requirement for an isolation transformer or galvanic isolation, which results in reduced cost and size.
2. NISD DC Transformer Based on DCM
2.1. NISD DC Transformer Topology
2.2. Operational Modes
2.2.1. First Operational Mode
2.2.2. Second Operational Mode
2.2.3. Third Operational Mode
2.2.4. Fourth Operational Mode
2.2.5. Fifth Operational Mode
2.2.6. Sixth Operational Mode
2.3. Control Strategy
2.3.1. ESM Charging Duty
2.3.2. ESM Discharging Duty
3. Design Consideration of NISD DC Transformer
3.1. Voltage Stress on IGBTs and Diodes
3.2. Current Calculations of IGBTs and Diodes
3.3. Design on Inductor
3.4. Design on Capacitor
4. Case Studies
4.1. Operations in Steady State
4.2. Operations with Disturbances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Enerdata. Global Energy Trends 2023; Enerdata: Grenoble, France, 2023. [Google Scholar]
- Suryadevara, R.; Parsa, L. Full-Bridge ZCS-Converter-Based High-Gain Modular DC-DC Converter for PV Integration with Medium-Voltage DC Grids. IEEE Trans. Energy Convers. 2019, 34, 302–312. [Google Scholar] [CrossRef]
- Lu, Z.; Li, C.; Zhu, A.; Luo, H.; Li, C.; Li, W.; He, X. Medium Voltage Soft-Switching DC/DC Converter with Series-Connected SiC MOSFETs. IEEE Trans. Power Electron. 2021, 36, 1451–1462. [Google Scholar] [CrossRef]
- Jin, H.; Chen, W.; Hou, K.; Shao, S.; Shu, L.; Li, R. A Sharing-Branch Modular Multilevel DC Transformer with Wide Voltage Range Regulation for DC Distribution Grids. IEEE Trans. Power Electron. 2022, 37, 5714–5730. [Google Scholar] [CrossRef]
- IEEE Standard 1709-2018; IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships. IEEE: New York, NY, USA, 2018.
- Yao, J.; Chen, W.; Xue, C.; Yuan, Y.; Wang, T. An ISOP Hybrid DC Transformer Combining Multiple SRCs and DAB Converters to Interconnect MVDC and LVDC Distribution Networks. IEEE Trans. Power Electron. 2020, 35, 11442–11452. [Google Scholar] [CrossRef]
- Reddy, P.L.S.K.; Obulesu, Y.P. Design and Development of a New Transformerless Multi-port DC–DC Boost Converter. J. Electr. Eng. Technol. 2023, 18, 1013–1028. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Li, J.; Sun, Q.; Liu, W. Full-Process Operation, Control, and Experiments of Modular High-Frequency-Link DC Transformer Based on Dual Active Bridge for Flexible MVDC Distribution: A Practical Tutorial. IEEE Trans. Power Electron. 2017, 32, 6751–6766. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, C.; Lu, R.; Li, C.; Xiang, X.; Li, W.; He, X. Control Optimization of Modular Multilevel Resonant DC Converters for Wide-Input-Range MVdc to LVdc Applications. IEEE Trans. Power Electron. 2022, 37, 5284–5298. [Google Scholar] [CrossRef]
- Ferreira, J.A. The multilevel modular DC converter. IEEE Trans. Power Electron. 2013, 28, 4460–4465. [Google Scholar] [CrossRef]
- Jovcic, D. Bidirectional, high-power DC transformer. IEEE Trans. Power Deliv. 2009, 24, 2276–2283. [Google Scholar] [CrossRef]
- Li, W.; He, X. Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications. IEEE Trans. Ind. Electron. 2011, 58, 1239–1250. [Google Scholar] [CrossRef]
- Stieneker, M.; De Doncker, R.W. Medium-voltage DC distribution grids in urban areas. In Proceedings of the 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 27–30 June 2016; IEEE: Vancouver, BC, Canada, 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Luth, T.; Merlin, M.M.C.; Green, T.C.; Hassan, F.; Barker, C.D. High-Frequency Operation of a DC/AC/DC System for HVDC Applications. IEEE Trans. Power Electron. 2014, 29, 4107–4115. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Chai, J.; Xia, Y.; Wei, W.; Yu, M. An Ideal DC Transformer for Active DC Distribution Networks Based on Constant-Transformation-Ratio DABC. IEEE Trans. Power Electron. 2020, 35, 2170–2183. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- Alhurayyis, I.; Elkhateb, A.; Morrow, J. Isolated and Nonisolated DC-to-DC Converters for Medium-Voltage DC Networks: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 7486–7500. [Google Scholar] [CrossRef]
- Xiang, X.; Gu, Y.; Qiao, Y.; Zhang, X.; Li, W.; He, X.; Green, T.C. Resonant Modular Multilevel DC–DC Converters for Both High and Low Step-Ratio Connections in MVDC Distribution Systems. IEEE Trans. Power Electron. 2021, 36, 7625–7640. [Google Scholar] [CrossRef]
- Zhao, B.; Li, X.; Wei, Y.; An, F.; Sun, J.; Liu, G.; Zhao, Y. Modular Hybrid-Full-Bridge DC Transformer with Full-Process Matching Switching Strategy for MVdc Power Distribution Application. IEEE Trans. Ind. Electron. 2020, 67, 3317–3328. [Google Scholar] [CrossRef]
- Du, S.; Wu, B.; Tian, K.; Xu, D.; Zargari, N.R. A Novel Medium-Voltage Modular Multilevel DC–DC Converter. IEEE Trans. Ind. Electron. 2016, 63, 7939–7949. [Google Scholar] [CrossRef]
- Gray, P.A.; Lehn, P.W.; Yakop, N. A Modular Multilevel DC–DC Converter with Flying Capacitor Converter Like Properties. IEEE Trans. Ind. Electron. 2022, 69, 6774–6783. [Google Scholar] [CrossRef]
- Xing, D.; Hu, B.; Li, X.; Cheng, Q.; Wang, J.; Atcitty, S. Comparison of Modular Multilevel Converter Based High Voltage-Step-Down Ratio DC/DC Converters for Energy Storage System Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2023. [Google Scholar] [CrossRef]
- Falin, J.; Aguilar, A. Maximize power density with three-level buck-switching charges. Analog. Des. J. Q 2021, 1–8. [Google Scholar]
- Meynard, T.A.; Foch, H. Multi-level conversion: High voltage choppers and voltage-source inverters. In Proceedings of the PESC ‘92 Record, 23rd Annual IEEE Power Electronics Specialists Conference, Toledo, Spain, 29 June–31 July 1992; 1992; Volume 1, pp. 397–403. [Google Scholar] [CrossRef]
- Stupar, A.; McRae, T.; Vukadinović, N.; Prodić, A.; Taylor, J.A. Multi-Objective Optimization of Multi-Level DC–DC Converters Using Geometric Programming. IEEE Trans. Power Electron. 2019, 34, 11912–11939. [Google Scholar] [CrossRef]
- Ye, Z.; Lei, Y.; Liao, Z.; Pilawa-Podgurski, R.C.N. Investigation of Capacitor Voltage Balancing in Practical Implementations of Flying Capacitor Multilevel Converters. IEEE Trans. Power Electron. 2022, 37, 2921–2935. [Google Scholar] [CrossRef]
- Villar, G.; Alarcon, E. Monolithic Integration of a 3-Level DCM-Operated Low-Floating-Capacitor Buck Converter for DC-DC Step-Down Conversion in Standard CMOS. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [Google Scholar] [CrossRef]
- Denniston, N.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N. Multiple-Module High-Gain High-Voltage DC–DC Transformers for Offshore Wind Energy Systems. IEEE Trans. Ind. Electron. 2011, 58, 1877–1886. [Google Scholar] [CrossRef]
- Athab, H.; Yazdani, A.; Wu, B. A transformerless DC-DC converter with large voltage ratio for MV DC grids. IEEE Trans. Power Deliv. 2014, 29, 1877–1885. [Google Scholar] [CrossRef]
- Abbasi, M.; Emamalipour, R.; Cheema, M.A.M.; Lam, J. A Constant-Frequency High-Voltage Gain Resonant Converter Module with Semiactive Phase-Shifted Voltage Multiplier for MVdc Distribution. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3603–3616. [Google Scholar] [CrossRef]
- Zheng, L.; Kandula, R.P.; Divan, D. Current-Source Solid-State DC Transformer Integrating LVDC Microgrid, Energy Storage, and Renewable Energy into MVDC Grid. IEEE Trans. Power Electron. 2022, 37, 1044–1058. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Z.; Jiang, Y. A SEPIC Flyback DC-DC Converter with GaN Switching Device. J. Electr. Eng. Technol. 2023, 18, 2759–2769. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
Input voltage | 35 kV | |
Output voltage | 1.5 kV | |
Rated power | 1 MW | |
Number of ESMs | 35 | |
Switching frequency | 5 kHz | |
ESM switching frequency | 50 kHz | |
Inductance | 40 µH | |
ESM capacitance | 20 mF | |
Output capacitance | 1.45 mF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Choi, D.; Lee, S.H. A DCM-Based Non-Isolated Step-Down DC Transformer. Energies 2024, 17, 940. https://doi.org/10.3390/en17040940
Kim M, Choi D, Lee SH. A DCM-Based Non-Isolated Step-Down DC Transformer. Energies. 2024; 17(4):940. https://doi.org/10.3390/en17040940
Chicago/Turabian StyleKim, Minseung, Donghee Choi, and Soo Hyoung Lee. 2024. "A DCM-Based Non-Isolated Step-Down DC Transformer" Energies 17, no. 4: 940. https://doi.org/10.3390/en17040940
APA StyleKim, M., Choi, D., & Lee, S. H. (2024). A DCM-Based Non-Isolated Step-Down DC Transformer. Energies, 17(4), 940. https://doi.org/10.3390/en17040940