Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena
Abstract
:1. Introduction
2. Model and Calculation Method
2.1. Governing Equations
2.2. Computational Domain and Simulation Parameter Settings
2.3. Parameters Used in Calculations
3. Results and Discussion
3.1. Laws for Flow Resistance and Structural Heat Transfer
3.2. Influence of the Microstructure on the Flow Characteristics
3.3. Effect of the Microstructure on Heat Transfer Characteristics
3.4. Overall Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area, m2 |
Cp | Specific heat capacity at constant pressure for the fluid, J/(kg·K) |
d | Average pore diameter, m |
e | Fluid turbulence kinetic energy |
f | Resistance coefficient |
Hg | Hagen number |
h | Convective heat transfer coefficient, W/(m 2 ·K) |
j | Heat transfer factor |
k | Thermal conductivity, W/(m·K) |
L | Flow path length, m |
Fluid mass flow rate, kg/s | |
Nu | Nusselt number |
P | Fluid pressure, Pa |
ΔP | Pressure drop, Pa |
Pr | Prandtl number |
q | Average heat flux, W/m2 |
Re | Reynolds number |
Sv | Specific surface area, m2/m3 |
T | Fluid temperature, K |
Ts | Temperature of the foam skeleton, K |
Average temperature, K | |
t | Time, s |
v | Fluid velocity, m/s |
Greek letters | |
ε | Porosity |
η | Kinematic viscosity, m2/s |
μ | Dynamic viscosity, Pa·s |
ρ | Fluid density, kg/m3 |
Subscripts | |
av | Average |
cs | Flow channel cross-section |
eff | Effective |
f | Fluid |
in | Inlet |
out | Outlet |
p | Pressure |
s | Metal foam skeleton |
ts | Total surface area of the metal foam |
References
- Chiappini, D. Numerical simulation of natural convection in open-cells metal foams. Int. J. Heat Mass Transf. 2018, 117, 527–537. [Google Scholar] [CrossRef]
- Manetti, L.L.; de Oliveira, I.L.; Cardoso, E.M. Thermal efficiency of open-cell metal foams: Impact of foam thickness by comparing correlations and numerical modeling. Appl. Therm. Eng. 2022, 207, 118219. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Elnajjar, E.; Al-Ketan, O.; Al-Rub, R.A.; Al-Omari, S.B. Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS). Int. J. Heat Mass Transf. 2021, 170, 121001. [Google Scholar] [CrossRef]
- Bianco, N.; Iasiello, M.; Mauro, G.M.; Pagano, L. Multi-objective optimization of finned metal foam heat sinks: Tradeoff between heat transfer and pressure drop. Appl. Therm. Eng. 2021, 182, 116058. [Google Scholar] [CrossRef]
- Yang, X.; Wei, P.; Wang, X.; He, Y.L. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam. Appl. Energy 2020, 268, 115019. [Google Scholar] [CrossRef]
- Yang, L.; Li, C.; Pei, J.; Wang, X.; Liu, N.; Xie, Y.; Cui, G.; Liu, D. Enhanced clathrate hydrate phase change with open-cell copper foam for efficient methane storage. Chem. Eng. J. 2022, 440, 135912. [Google Scholar] [CrossRef]
- Rehman, T.; Ali, H.M. Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics. Int. J. Heat Mass Transf. 2020, 146, 118852. [Google Scholar] [CrossRef]
- Golkarfard, V.; King, A.J.C.; Abishek, S.; Mead-Hunter, R.; Kasper, G.; Mullins, B.J. Optimisation of wet pressure drop in nonwoven fibrous, knitted, and open-cell foam filters. Sep. Purif. Technol. 2019, 213, 45–55. [Google Scholar] [CrossRef]
- Nie, Z.; Lin, Y.; Tong, Q. Numerical simulations of two-phase flow in open-cell metal foams with application to aero-engine separators. Int. J. Heat Mass Transf. 2018, 127, 917–932. [Google Scholar] [CrossRef]
- de Carvalho, T.P.; Hargreaves, D.M.; Morvan, H.P.; Klingsporn, M. Modelling of Droplet Capture in an Open-Cell Metal Foam at the Pore and Macroscopic Scales. Transp. Porous Media 2023, 148, 1–25. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Jia, L.; Yang, L. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Appl. Therm. Eng. 2015, 78, 428–436. [Google Scholar] [CrossRef]
- Bamorovat Abadi, G.; Moon, C.; Kim, K.C. Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels. Appl. Therm. Eng. 2016, 102, 423–431. [Google Scholar] [CrossRef]
- Bianchi, E.; Heidig, T.; Visconti, C.G.; Groppi, G.; Freund, H.; Tronconi, E. An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors. Chem. Eng. J. 2012, 198–199, 512–528. [Google Scholar] [CrossRef]
- Della Torre, A.; Lucci, F.; Montenegro, G.; Onorati, A.; Dimopoulos Eggenschwiler, P.; Tronconi, E.; Groppi, G. CFD modeling of catalytic reactions in open-cell foam substrates. Comput. Chem. Eng. 2016, 92, 55–63. [Google Scholar] [CrossRef]
- Zhong, Z.; Meng, L.; Li, X.; Zhang, G.; Xu, Y.; Deng, J. Enhanced heat transfer performance of optimized micro-channel heat sink via forced convection in cooling metal foam attached on copper plate. J. Energy Storage 2020, 30, 101501. [Google Scholar] [CrossRef]
- Panse, S.S.; Singh, P.; Ekkad, S.V. Air-Based Cooling in High Porosity, Aluminum Foams for Compact Electronics Cooling. In Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 28–31 May 2019; pp. 376–383. [Google Scholar]
- Albusairi, B.; Hsu, J.T. Application of shape factor to determine the permeability of perfusive particles. Chem. Eng. J. 2002, 89, 173–183. [Google Scholar] [CrossRef]
- Teng, H.; Zhao, T.S. An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Eng. Sci. 2000, 55, 2727–2735. [Google Scholar] [CrossRef]
- Inayat, A.; Klumpp, M.; Lämmermann, M.; Freund, H.; Schwieger, W. Development of a new pressure drop correlation for open-cell foams based completely on theoretical grounds: Taking into account strut shape and geometric tortuosity. Chem. Eng. J. 2016, 287, 704–719. [Google Scholar] [CrossRef]
- Xu, H.J.; Qu, Z.G.; Tao, W.Q. Analytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model. Int. J. Heat Mass Transf. 2011, 54, 3846–3855. [Google Scholar] [CrossRef]
- Boomsma, K.; Poulikakos, D.; Ventikos, Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure. Int. J. Heat Fluid Flow 2003, 24, 825–834. [Google Scholar] [CrossRef]
- Cunsolo, S.; Iasiello, M.; Oliviero, M.; Bianco, N.; Chiu, W.K.S.; Naso, V. Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop. J. Heat Transf. 2015, 138, 022601. [Google Scholar] [CrossRef]
- Buonomo, B.; Pasqua, A.d.; Manca, O.; Sekrani, G.; Poncet, S. Numerical Analysis on Pressure Drop and Heat Transfer in Nanofluids at Pore Length Scale in Open Metal Porous Structures with Kelvin Cells. Heat Transf. Eng. 2021, 42, 1614–1624. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L. Volumetric Convective Heat Transfer Coefficient Model for Metal Foams. Heat Transf. Eng. 2019, 40, 464–475. [Google Scholar] [CrossRef]
- Kim, S.Y.; Paek, J.W.; Kang, B.H. Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger. J. Heat Transf. 2000, 122, 572–578. [Google Scholar] [CrossRef]
- Nie, Z.; Lin, Y.; Tong, Q. Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model. Int. J. Heat Mass Transf. 2017, 113, 819–839. [Google Scholar] [CrossRef]
- Baril, E.; Medraj, M.; Loya, V.; Lefebvre, L.P. The Effect of Microstructure on the Permeability of Metallic Foams. J. Mater. Sci. 2007, 42, 4372–4383. [Google Scholar] [CrossRef]
- Paek, J.W.; Kang, B.H.; Kim, S.Y.; Hyun, J.M. Effective Thermal Conductivity and Permeability of Aluminum Foam Materials. Int. J. Thermophys. 2000, 21, 453–464. [Google Scholar] [CrossRef]
- Mancin, S.; Zilio, C.; Cavallini, A.; Rossetto, L. Pressure drop during air flow in aluminum foams. Int. J. Heat Mass Transf. 2010, 53, 3121–3130. [Google Scholar] [CrossRef]
- Dukhan, N. Correlations for the pressure drop for flow through metal foam. Exp. Fluids 2006, 41, 665–672. [Google Scholar] [CrossRef]
- Elayiaraja, P.; Harish, S.; Wilson, L.; Bensely, A.; Lal, D.M. Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink. Exp. Heat Transf. 2010, 23, 185–195. [Google Scholar] [CrossRef]
- Salas, K.I.; Waas, A.M. Convective Heat Transfer in Open Cell Metal Foams. J. Heat Transf. 2006, 129, 1217–1229. [Google Scholar] [CrossRef]
- Kopanidis, A.; Theodorakakos, A.; Gavaises, E.; Bouris, D. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 2010, 53, 2539–2550. [Google Scholar] [CrossRef]
- Laschet, G.; Sauerhering, J.; Reutter, O.; Fend, T.; Scheele, J. Effective permeability and thermal conductivity of open-cell metallic foams via homogenization on a microstructure model. Comput. Mater. Sci. 2009, 45, 597–603. [Google Scholar] [CrossRef]
- Ranut, P.; Nobile, E.; Mancini, L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl. Therm. Eng. 2014, 69, 230–240. [Google Scholar] [CrossRef]
- Yu, Q.; Straatman, A.G.; Thompson, B.E. Carbon-foam finned tubes in air–water heat exchangers. Appl. Therm. Eng. 2006, 26, 131–143. [Google Scholar] [CrossRef]
- Poureslami, P.; Siavashi, M.; Moghimi, H.; Hosseini, M. Pore-scale convection-conduction heat transfer and fluid flow in open-cell metal foams: A three-dimensional multiple-relaxation time lattice Boltzmann (MRT-LBM) solution. Int. Commun. Heat Mass Transf. 2021, 126, 105465. [Google Scholar] [CrossRef]
- Paknahad, R.; Siavashi, M.; Hosseini, M. Pore-scale fluid flow and conjugate heat transfer study in high porosity Voronoi metal foams using multi-relaxation-time regularized lattice Boltzmann (MRT-RLB) method. Int. Commun. Heat Mass Transf. 2023, 141, 106607. [Google Scholar] [CrossRef]
- Alhusseny, A.; Turan, A.; Nasser, A. Developing convective flow in a square channel partially filled with a high porosity metal foam and rotating in a parallel-mode. Int. J. Heat Mass Transf. 2015, 90, 578–590. [Google Scholar] [CrossRef]
- Du, Y.P.; Qu, Z.G.; Zhao, C.Y.; Tao, W.Q. Numerical study of conjugated heat transfer in metal foam filled double-pipe. Int. J. Heat Mass Transf. 2010, 53, 4899–4907. [Google Scholar] [CrossRef]
- Sinn, C.; Pesch, G.R.; Thöming, J.; Kiewidt, L. Coupled conjugate heat transfer and heat production in open-cell ceramic foams investigated using CFD. Int. J. Heat Mass Transf. 2019, 139, 600–612. [Google Scholar] [CrossRef]
- Li, Z.; Xia, X.; Li, X.; Sun, C. Discrete vs. continuum-scale simulation of coupled radiation and convection inside rectangular channel filled with metal foam. Int. J. Therm. Sci. 2018, 132, 219–233. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L. Experimental investigation on pressure drop and heat transfer in metal foam filled tubes under convective boundary condition. Chem. Eng. Sci. 2016, 155, 438–448. [Google Scholar] [CrossRef]
- Nie, Z.; Lin, Y.; Tong, Q. Modeling structures of open cell foams. Comput. Mater. Sci. 2017, 131, 160–169. [Google Scholar] [CrossRef]
- Sun, M.; Hu, C.; Zha, L.; Xie, Z.; Yang, L.; Tang, D.; Song, Y.; Zhao, J. Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam. Chem. Eng. J. 2020, 389, 124427. [Google Scholar] [CrossRef]
- Corsini, R.; Fregni, A.; Spinolo, M.; Stalio, E. On the turbulent flow past a realistic open-cell metal foam. J. Fluid Mech. 2021, 920, A9. [Google Scholar] [CrossRef]
- Della Torre, A.; Montenegro, G.; Tabor, G.R.; Wears, M.L. CFD characterization of flow regimes inside open cell foam substrates. Int. J. Heat Fluid Flow 2014, 50, 72–82. [Google Scholar] [CrossRef]
- Dybbs, A.; Edwards, R.V. A New Look at Porous Media Fluid Mechanics—Darcy to Turbulent. In Fundamentals of Transport Phenomena in Porous Media; Bear, J., Corapcioglu, M.Y., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 199–256. [Google Scholar]
- Diani, A.; Bodla, K.K.; Rossetto, L.; Garimella, S.V. Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments. Int. J. Heat Mass Transf. 2015, 88, 508–515. [Google Scholar] [CrossRef]
- Dietrich, B. Heat transfer coefficients for solid ceramic sponges—Experimental results and correlation. Int. J. Heat Mass Transf. 2013, 61, 627–637. [Google Scholar] [CrossRef]
- Albanakis, C.; Missirlis, D.; Michailidis, N.; Yakinthos, K.; Goulas, A.; Omar, H.; Tsipas, D.; Granier, B. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation. Exp. Therm. Fluid Sci. 2009, 33, 246–252. [Google Scholar] [CrossRef]
- Ghosh, I. Heat transfer correlation for high-porosity open-cell foam. Int. J. Heat Mass Transf. 2009, 52, 1488–1494. [Google Scholar] [CrossRef]
- Kays, W.M.; London, A.L. Compact Heat Exchangers, 3rd ed.; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
Pore Density (PPI) | Length (Front-End Area + Open-Cell Foam Area + Rear-End Area) × Width × Height (mm) |
---|---|
20 | (8.5 + 8.5 + 8.5) × 8.5 × 8.5 |
30 | (6.5 + 6.5 + 6.5) × 6.5 × 6.5 |
40 | (5.5 + 5.5 + 5.5) × 5.5 × 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Wu, Y.; Chen, Y.; Nie, Z. Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena. Energies 2024, 17, 1305. https://doi.org/10.3390/en17061305
Xu Q, Wu Y, Chen Y, Nie Z. Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena. Energies. 2024; 17(6):1305. https://doi.org/10.3390/en17061305
Chicago/Turabian StyleXu, Qian, Yunbing Wu, Ye Chen, and Zhengwei Nie. 2024. "Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena" Energies 17, no. 6: 1305. https://doi.org/10.3390/en17061305
APA StyleXu, Q., Wu, Y., Chen, Y., & Nie, Z. (2024). Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena. Energies, 17(6), 1305. https://doi.org/10.3390/en17061305