Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NOx Formation, CO Emission, and Low-NOx Waterwall Corrosion in the OP 650 Boiler
Abstract
:1. Introduction
2. Description of Modelling and Numerical Methods
- The third and fourth row of coal burners are in operation; recirculation to the second row—case rec1
- The third and fourth row of coal burners are in operation; recirculation to the first row—case rec2
- The second and third row of coal burners are in operation; recirculation to the fourth row—case rec3
- The second and third row of coal burners are in operation; recirculation to the first row—case rec4
- The third and fourth row of coal burners are operating with 18% O2 in the primary air by mixing with part of the recirculation flue gas; recirculation to the second row—case rec1A.
3. Calculation Results with Discussion
3.1. Numerical Model Verification
3.2. Numerical Research for Flue Gas Recirculation
Data | Unit | 60% M | 60% H | Rec1 | Rec1a | Rec2 | Rec3 | Rec4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0D/m | CFD | 0D/m | CFD | 0D/m | CFD | CFD | 0D/m | CFD | 0D/m | CFD | 0D/m | CFD | ||
O2 furnace exit | % | 2.52 | 2.5 | 2.53 | 2.58 | 2.75 | 2.67 | 1.93 | 2.75 | 2.86 | 2.75 | 2.71 | 2.75 | 2.89 |
CO 6% O2 furnace exit | mg/m3n | - | 2137 | - | 2086 | - | 452 | 650 | - | 504 | - | 70 | - | 163 |
NOx 6% O2 furnace exit | mg/m3n | - | 282 | - | 349 | - | 196 | 161 | - | 170 | - | 171 | - | 211 |
O2 model outlet | % | 3.23 | 3.26 | 3.25 | 3.5 | 3.83 | 4,2 | 3.3 | 3.83 | 3.4 | 3.83 | 4.1 | 3.83 | 4.05 |
CO 6% O2 model exit (m) | mg/m3n | 97 | 88.5 | 97 | 62 | - | 46 | 111 | - | 5 | - | 4 | - | 3 |
NOx 6% O2 model exit (m) | mg/m3n | 179 | 199 | 179 | 172 | - | 185 | 149 | - | 162 | - | 156 | - | 154 |
Temperature furnace exit | °C | 1190 | 1182 | 1197 | 1194 | 1060 | 1031 | 1023 | 1060 | 1024 | 1005 | 1021 | 1005 | 1037 |
Temperature after LS II, III | °C | 985 | 955 | 990 | 1034 | 890 | 913 | 911 | 890 | 907 | 851 | 871 | 851 | 875 |
Temperature after RS II | °C | 839 | 893 | 842 | 850 | 761 | 811 | 800 | 761 | 805 | 726 | 728 | 726 | 758 |
Temperature after LS IV | °C | 743 | 730 | 747 | 711 | 700 | 721 | 706 | 700 | 714 | 659 | 630 | 659 | 653 |
Temperature after RS III | °C | 644 | 659 | 647 | 605 | 613 | 651 | 648 | 613 | 646 | 588 | 597 | 588 | 606 |
Temperature after RS I | °C | 497 | 547 | 500 | 483 | 474 | 513 | 504 | 474 | 501 | 459 | 515 | 459 | 511 |
Temperature model exit | °C | 450 | 458 | 452 | 420 | 433 | 475 | 445 | 433 | 462 | 422 | 461 | 422 | 454 |
Unburnt carbon in fly ash (m) | % | 6.2 | 3.21 | 6.2 | 3.16 | - | 0.3 | 1.9 | - | 0.5 | - | 0.8 | - | 0.9 |
Unburnt carbon in slag (m) | % | 3.3 | 0.95 | 3.3 | 1.26 | - | 0.5 | 1.1 | - | 0.8 | - | 9.4 | - | 11.2 |
3.3. Numerical Research of Protection Air Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuprianov, V.I.; Kaewklum, R.; Chakritthakul, S. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel. Energy 2011, 36, 2038–2048. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Chandrasekaran, R.; Yang, Y.; Caballes, M.; Alamu, O.; Chen, G. Electricity Evaluation and Emission Characteristics of Poultry Litter Co-Combustion Process. Appl. Sci. 2019, 9, 4116. [Google Scholar] [CrossRef]
- Tillman, D.A. Conventional Power Plant Technology Advances at the End of the 20th Century (1970–2000). In Coal-Fired Electricity and Emissions Control; Tillman, D.A., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 133–167. ISBN 9780128092453. [Google Scholar] [CrossRef]
- Pronobis, M. Environmentally Oriented Modernization of Power Boilers; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-819921-3. [Google Scholar] [CrossRef]
- Roiha, I.; Kaikko, J.; Jaanu, K.; Vakkilainen, E. Analysis of high flue gas recirculation for small energy conversion systems. Appl. Therm. Eng. 2014, 63, 218–226. [Google Scholar] [CrossRef]
- Ling, Z.; Zeng, X.; Ren, T.; Xu, H. Establishing a low-NOx and high-burnout performance in a large-scale, deep-air-staging laboratory furnace fired by a heavy-oil swirl burner. Appl. Therm. Eng. 2015, 79, 117–123. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, X.; Wang, S.; Hui, S.; Shaddix, C.R. A numerical investigation of the effect of flue gas recirculation on the evolution of ultra-fine ash particles during pulverized coal char combustion. Combust. Flame 2017, 184, 1–10. [Google Scholar] [CrossRef]
- Deng, L.; Dong, L.; Bai, Y.; Wu, Y.; Liu, H.; Belošević, S.; Tomanović, I.; Che, D. Effects of flue gas recirculation on combustion and heat flux distribution in 660 MW double-reheat tower-type boiler. Fuel 2022, 321, 123988. [Google Scholar] [CrossRef]
- Pan, D.; Zhu, T.; Ji, C.; Ke, E. Effects of flue gas recirculation on self-excited combustion instability and NOx emission of a premixed flame. Therm. Sci. Eng. Prog. 2022, 30, 101252. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.; Zhang, C.; Wang, H. Numerical investigations on the aerodynamics and flue gas recirculation of cyclone-fired coal boiler. Fuel 2022, 316, 123355. [Google Scholar] [CrossRef]
- Kim, H.W.; Seo, S.B.; Kang, S.Y.; Go, E.S.; Oh, S.S.; Lee, Y.W.; Yang, W.; Lee, S.H. Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant. Energy 2021, 226, 120487. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Lu, X.; Liu, Z.; Fan, X. Enhanced combustion behavior and NOx reduction performance in a CFB combustor by combining flue gas recirculation with air-staging: Effect of injection position. J. Energy Inst. 2021, 96, 294–309. [Google Scholar] [CrossRef]
- Liu, J.; Luo, X.; Yao, S.; Li, Q.; Wang, W. Influence of flue gas recirculation on the performance of incinerator-waste heat boiler and NOx emission in a 500 t/d waste-to-energy plant. Waste Manag. 2020, 105, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, W.; Wang, W.; Yang, Y. Analysis and optimization of a coal-fired power plant under a proposed flue gas recirculation mode. Energy Convers. Manag. 2015, 102, 161–168. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Z.; Ning, K.; Ruan, C.; Chen, C.; Xiao, Y.; Chen, P.; Gu, M.; Zheng, M. Numerical investigation of combustion characteristics under oxygen-enriched combustion combined with flue gas recirculation in a cement rotary kiln. Appl. Therm. Eng. 2023, 233, 121106. [Google Scholar] [CrossRef]
- Cheng, S.; Kuang, M.; Liu, S.; Qi, S. Lowering further NOx emissions and improving the hopper’s overheating environment in a low-NOx down-fired furnace by a staged arch-firing framework with a primary-burner flue gas recirculation. Case Stud. Therm. Eng. 2023, 51, 103546. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Dong, K.; Liu, H.; Shen, Y.; Cen, K. Influence of the gas particle flow characteristics of a low-NOx swirl burner on the formation of high temperature corrosion. Fuel 2014, 134, 595–602. [Google Scholar] [CrossRef]
- Yang, W.; Rongzhen, Y.; Wang, Z.; Hongtao, Z.; Zhou, Z.; Zhou, J.; Guan, J.; Qiu, L. Effects of Near-Wall Air Application in a Pulverized-Coal 300 MWe Utility Boiler on Combustion and Corrosive Gases. Energy Fuels 2017, 31, 10075–10081. [Google Scholar] [CrossRef]
- Shim, H.-S.; Valentine, J.R.; Davis, K.; Seo, S.-L.; Kim, T.-H. Development of fireside waterwall corrosion correlations using pilot-scale test furnace. Fuel 2008, 87, 3353–3361. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, L.; Ma, S.; Du, H. Design of porous wall air coupling with air staged furnace for preventing high temperature corrosion and reducing NOx emissions. Appl. Therm. Eng. 2017, 124, 865–870. [Google Scholar] [CrossRef]
- Available online: http://www.rafako.com.pl/en//? (accessed on 2 May 2024).
- European Commission. Best Available Techniques Reference Document for the Large Combustion Plants; Final Draft; European Commission: Brussels, Belgium, 2016.
- Ansys Fluent. Computational Fluid Dynamics; Ansys Inc.: Canonsburg, PA, USA, 2024; Available online: www.ansys.com (accessed on 2 May 2024).
- Hernik, B. Numerical Research of the Modification of the Combustion System in the OP 650 Boiler. Energies 2020, 13, 725. [Google Scholar] [CrossRef]
- Pletcher, R.H.; Tannehill, J.C.; Anderson, D.A. Computational Fluid Mechanics and Heat Transfer; CRC Press: New York, NY, USA, 2013. [Google Scholar]
- Çengel, Y.A.; Climbala, Y.M. Fluid Mechanics Fundamentals and Applications; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Perry, R.H.; Green, D.W. Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Morsi, S.A.; Alexander, A.J. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Badzioch, S.; Hawksley, P.G.W. Kinetics of Thermal Decomposition of Pulverized Coal Particles. Ind. Eng. Chem. Process Design Dev. 1970, 9, 521–530. [Google Scholar] [CrossRef]
- Baum, M.M.; Street, P.J. Predicting the Combustion Behavior of Coal Particles. Combust. Sci. Tech. 1971, 3, 231–243. [Google Scholar] [CrossRef]
- Field, M.A. Rate of Combustion Of Size-Graded Fractions of Char from a Low Rank Coal between 1200 K-2000 K. Combust. Flame 1969, 13, 237–252. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The Oxidation of Nitrogen in Combustion Explosions. Acta Physicochim. U.S.S.R. 1946, 21, 577–628. [Google Scholar]
- Lavoie, G.A.; Heywood, J.B.; Keck, J.C. Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines. Combust. Sci. Tech. 1970, 1, 313–326. [Google Scholar] [CrossRef]
- Fenimore, C.P.; Jones, G.W. The water catalysed oxidation of carbon monoxide by oxygen at high temperatures. J. Phys. Chem. 1957, 61, 651–654. [Google Scholar] [CrossRef]
- Fenimore, C.P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. Symp. (Int.) Combust. 1971, 13, 373–380. [Google Scholar] [CrossRef]
- Warnatz, J. NOx Formation in High Temperature Processes; University of Stuttgart: Stuttgart, Germany, 2001. [Google Scholar]
- Westbrook, C.; Dryer, F. Chemical Kinetic Modelling of Hydrocarbon Combustion. Prog. Energy Comb. Sci. 1984, 10, 1–57. [Google Scholar] [CrossRef]
- Lockwood, F.C.; Romo-Millanes, C.A. Mathematical Modelling of Fuel—NO Emissions from PF Burners. J. Int. Energy 1992, 65, 144–152. [Google Scholar]
- Winter, F.; Wartha, C.; Loffler, G.; Hofbauer, H. The NO and N2O Formation Mechanism During Devolatilization and Char Combustion Under Fluidized Bed Conditions. Symp. (Int.) Combust. 1996, 26, 3325–3334. [Google Scholar] [CrossRef]
- Brouwer, J.; Heap, M.P.; Pershing, D.W.; Smith, P.J. A Model for Prediction of Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO. Symp. (Int.) Combust. 1996, 26, 2117–2124. [Google Scholar] [CrossRef]
- Rota, R.; Antos, D.; Zanoelo, E.F.; Morbidelli, M. Experimental and Modeling Analysis of the NOxOUT Process. Chem. Eng. Sci. 2002, 57, 27–38. [Google Scholar] [CrossRef]
- Orłowski, P.; Dobrzański, W.; Szwarc, E. Steam Boilers; WNT: Warszawa, Poland, 1979. (In Polish) [Google Scholar]
- Basu, P.; Kefa, C.; Jestin, J. Boilers and burners. Design and Theory; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 101771292601. [Google Scholar]
- Kuznetsov, N.V.; Mitor, V.V.; Dubovsky, I.E.; Karasina, E.S. Standards for Thermal Calculations of Power Boilers (Teplovoi Raschet Kotelnyh Agregatov); Energia: Moskva, Russia, 1973. [Google Scholar]
- Pronobis, M. Wymiana ciepła w zanieczyszczonych powierzchniach konwekcyjnych kotłów. Gliw. Sci. J. Silesian Univ. Technol. Energy, 1992; ISSN 0372-9796. [Google Scholar]
- PN-EN 12952-15; Water-Tube Boilers and Auxiliary Installations. Acceptance Tests. PKN: Warszawa, Poland, 2006.
- Cantrell, C.; Idem, S. On-Line Performance Model of the Convection Passes of a Pulverized Coal Boiler. Heat Transf. Eng. 2010, 31, 1173–1183. [Google Scholar] [CrossRef]
- Tu, Y.; Zhou, A.; Xu, M.; Yang, W.; Siah, K.B.; Subbaiah, P. NOx reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology. Appl. Energy 2018, 220, 962–973. [Google Scholar] [CrossRef]
- Baltasar, J.; Carvalho, M.G.; Coelho, P.; Costa, M. Flue gas recirculation in a gas-fired laboratory furnace: Measurements and modelling. Fuel 1997, 76, 919–929. [Google Scholar] [CrossRef]
- Shalaj, V.V.; Mikhajlov, A.G.; Novikovav, E.E.; Terebilov, S.V.; Novikova, T.V. Gas Recirculation Impact on the Nitrogen Oxides Formation in the Boiler Furnace. Procedia Eng. 2016, 152, 434–438. [Google Scholar] [CrossRef]
- Bosoaga, A.; Panoiu, N.; Mihaescu, L.; Backreedy, R.I.; Ma, L.; Pourkashanian, M.; Williams, A. The combustion of pulverised low grade lignite. Fuel 2006, 85, 1591–1598. [Google Scholar] [CrossRef]
- Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Hernik, B. Research to Reduce the Corrosion and Erosion Hazard of Boilers. Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2009. (In Polish). [Google Scholar]
- Pronobis, M.; Hernik, B.; Wejkowski, R. Kinetics of low NOx corrosion of waterwalls in utility boilers. Rynek Energi 2010, 6, 121–128. [Google Scholar]
Data | Unit | Coal M | Coal H |
---|---|---|---|
Net calorific value | kJ/kg | 20,504 | 22,005 |
Ash | wt% | 14.5 | 12 |
Moisture | wt% | 15 | 12 |
Volatile matter | wt% | 43.1 | 48.5 |
Ultimate analysis | As received | ||
Carbon, C | wt% | 54.93 | 58.84 |
Hydrogen, H | wt% | 3.3 | 3.6 |
Oxygen, O | wt% | 10.33 | 11.83 |
Sulfur, S | wt% | 1.1 | 1.0 |
Nitrogen, N | wt% | 0.84 | 0.68 |
Data | Unit | Value |
---|---|---|
Sieve residue (cumulative percentage retained) on sieve 90 µm | % | 23.15 |
Sieve residue 200 µm | % | 3.1 |
The average diameter of the pulverized coal | µm | 61 |
Uniformity (polydyspersity) number | - | 1.05 |
Data | Unit | 60% M | 60% H | Rec 1, Rec 2 | Rec 3, Rec 4 |
---|---|---|---|---|---|
Coal flow | kg/s | 17.28 | 16.05 | 10.56 | 10.26 |
Primary air flow | kg/s | 62.34 | 62.34 | 48.78 | 48.78 |
Recirculated flue gas flow | kg/s | - | - | 23.34 | 22.69 |
Secondary air flow 1 | kg/s | 34.91 | 34.45 | 20.64 | 19.1 |
Secondary air flow 2 | kg/s | 17.52 | 17.29 | 10.36 | 9.6 |
Core air flow | kg/s | 8.24 | 8.24 | 2.99 | 2.99 |
OFA F air flow | kg/s | 2.51 | 2.51 | 1.62 | 1.62 |
OFA R air flow | kg/s | 7.18 | 7.18 | 4.31 | 4.31 |
PAS air flow | kg/s | 7.39 | 7.32 | 4.19 | 3.95 |
Primary air temperature | °C | 109 | 109 | 109 | 109 |
Secondary air temperature | °C | 262 | 262 | 251 | 245 |
Data | Unit | 60% M | 60% H | Rec1 | Rec1A | Rec2 | Rec3 | Rec4 |
---|---|---|---|---|---|---|---|---|
nm/h | 24.1 | 20.9 | - | 26.3 | - | 21.1 | 27.3 | |
mm/year | 0.211 | 0.183 | - | 0.230 | - | 0.185 | 0.239 | |
tf | h | 207,407 | 239,425 | - | 190,430 | - | 237,389 | 182,943 |
CO | % | 0.92 | 0.74 | 0.92 | 1.04 | 1.11 | 0.75 | 1.1 |
O2 | % | 0 | 0 | 8 | 0.01 | 11 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernik, B.; Brudziana, P.; Klon, R.; Pronobis, M. Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NOx Formation, CO Emission, and Low-NOx Waterwall Corrosion in the OP 650 Boiler. Energies 2024, 17, 2227. https://doi.org/10.3390/en17092227
Hernik B, Brudziana P, Klon R, Pronobis M. Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NOx Formation, CO Emission, and Low-NOx Waterwall Corrosion in the OP 650 Boiler. Energies. 2024; 17(9):2227. https://doi.org/10.3390/en17092227
Chicago/Turabian StyleHernik, Bartłomiej, Piotr Brudziana, Radosław Klon, and Marek Pronobis. 2024. "Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NOx Formation, CO Emission, and Low-NOx Waterwall Corrosion in the OP 650 Boiler" Energies 17, no. 9: 2227. https://doi.org/10.3390/en17092227
APA StyleHernik, B., Brudziana, P., Klon, R., & Pronobis, M. (2024). Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NOx Formation, CO Emission, and Low-NOx Waterwall Corrosion in the OP 650 Boiler. Energies, 17(9), 2227. https://doi.org/10.3390/en17092227