An Experimental Direct Model for the Sky Temperature Evaluation in the Mediterranean Area: A Preliminary Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Micrometeorological Network
2.2. Methodology
3. Results and Discussion
3.1. Empirical Correlations for Estimating the Sky Temperature
3.2. Influence of Sky Temperature Correlations on Building Energy Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Agenda 2030. Available online: https://Sdgs.Un.Org/2030agenda (accessed on 29 November 2023).
- United Nations. The 17 Goals. Available online: https://Sdgs.Un.Org/Goals (accessed on 29 November 2023).
- IEA Buildings. Paris, 2022. Available online: https://www.Iea.Org/Reports/Buildings (accessed on 29 November 2023).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; Official Journal of the European Union: Luxembourg, 2010.
- Santamouris, M. On the Energy Impact of Urban Heat Island and Global Warming on Buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- De Cristo, E.; Evangelisti, L.; Battista, G.; Guattari, C.; De Lieto Vollaro, R.; Asdrubali, F. Annual Comparison of the Atmospheric Urban Heat Island in Rome (Italy): An Assessment in Space and Time. Buildings 2023, 13, 2792. [Google Scholar] [CrossRef]
- Carlosena, L.; Ruiz-Pardo, Á.; Rodríguez-Jara, E.Á.; Santamouris, M. Worldwide Potential of Emissive Materials Based Radiative Cooling Technologies to Mitigate Urban Overheating. Build. Environ. 2023, 243, 110694. [Google Scholar] [CrossRef]
- Kuo-Nan, L. An Introduction to Atmospheric Radiation, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002; ISBN 0124514510/9780124514515. [Google Scholar]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-Urban Microclimate Investigation in Urban Heat Island through a Novel Mobile Monitoring System. Sci. Rep. 2021, 11, 9732. [Google Scholar] [CrossRef] [PubMed]
- Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities. Mon. Weather. Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Jin, L.; Schubert, S.; Hefny Salim, M.; Schneider, C. Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany. Int. J. Environ. Res. Public Health 2020, 17, 4645. [Google Scholar] [CrossRef] [PubMed]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM Model System 6. 0. Geosci. Model Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Anders, J.; Schubert, S.; Sauter, T.; Tunn, S.; Schneider, C.; Salim, M. Modelling the Impact of an Urban Development Project on Microclimate and Outdoor Thermal Comfort in a Mid-Latitude City. Energy Build. 2023, 296, 113324. [Google Scholar] [CrossRef]
- Bergman, L.; Lavine, S.; Incropera, P.; Dewitt, P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 13 978-0470-50197-9. [Google Scholar]
- Evangelisti, L.; Guattari, C.; Gori, P.; Bianchi, F. Heat Transfer Study of External Convective and Radiative Coefficients for Building Applications. Energy Build. 2017, 151, 429–438. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the Sky Temperature Models and Their Influence on Buildings Energy Performance: A Critical Review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Adelard, L.; Pignolet-Tardan, F.; Mara, T.; Lauret, P.; Garde, F.; Boyer, H. Sky Temperature Modelisation and Applications in Building Simulation. Renew. Energy 1998, 15, 418–430. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Alados-Arboledas, L. Estimation of Downwelling Longwave Irradiance under All-sky Conditions. Int. J. Climatol. 2012, 32, 781–793. [Google Scholar] [CrossRef]
- Carmona, F.; Rivas, R.; Caselles, V. Estimation of Daytime Downward Longwave Radiation under Clear and Cloudy Skies Conditions over a Sub-Humid Region. Theor. Appl. Climatol. 2014, 115, 281–295. [Google Scholar] [CrossRef]
- Dai, Q.; Fang, X. A New Model for Atmospheric Radiation under Clear Sky Condition at Various Altitudes. Adv. Space Res. 2014, 54, 1044–1048. [Google Scholar] [CrossRef]
- Duarte, H.F.; Dias, N.L.; Maggiotto, S.R. Assessing Daytime Downward Longwave Radiation Estimates for Clear and Cloudy Skies in Southern Brazil. Agric. Meteorol. 2006, 139, 171–181. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Coimbra, C.F.M. On the Determination of Atmospheric Longwave Irradiance under All-Sky Conditions. Sol. Energy 2017, 144, 40–48. [Google Scholar] [CrossRef]
- ISO 13790; Energy Performance of Buildings–Calculation of Energy Use for Space Heating and Cooling. International Organization for Standardization: Geneva, Switzerland, 2008.
- Swinbank, W.C. Long-wave Radiation from Clear Skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Garg, H.P. Treatise on Solar Energy: Fundamental of Solar Energy. JohnWiley & Sons: Chichester, UK, 1982. [Google Scholar]
- Ångström, A.K.; Smithsonian Institution. A Study of the Radiation of the Atmosphere, Based upon Observations of the Nocturnal Radiation during Expeditions to Algeria and to California. Smithson. Misc. Collect. 1915, 65, 1–159. [Google Scholar]
- Brunt, D. Notes on Radiation in the Atmosphere. I. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [Google Scholar] [CrossRef]
- Sloan, R.; Shaw, J.H.; Williams, D. Thermal Radiation from the Atmosphere. J. Opt. Soc. Am. 1956, 46, 543. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D. Thermal Radiation from the Atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Berdahl, P.; Martin, M. Emissivity of Clear Skies. Sol. Energy 1984, 32, 663–664. [Google Scholar] [CrossRef]
- Berger, X.; Buriot, D.; Garnier, F. About the Equivalent Radiative Temperature for Clear Skies. Sol. Energy 1984, 32, 725–733. [Google Scholar] [CrossRef]
- Chen, J.; Suetsuna, K.; Yamauchi, F. Isolation and Characterization of Immunostimulative Peptides from Soybean. J. Nutr. Biochem. 1995, 6, 310–313. [Google Scholar] [CrossRef]
- Niemelä, S.; Räisänen, P.; Savijärvi, H. Comparison of Surface Radiative Flux Parameterizations: Part I: Longwave Radiation. Atmos. Res. 2001, 58, 1–18. [Google Scholar] [CrossRef]
- Tang, R.; Etzion, Y.; Meir, I.A. Estimates of Clear Night Sky Emissivity in the Negev Highlands, Israel. Energy Convers. Manag. 2004, 45, 1831–1843. [Google Scholar] [CrossRef]
- Dreyfus, M.G.; Hilleary, D.T. Satellite infrared spectrometer – design and development. Aerosp. Eng. 1962, 21, 42. [Google Scholar]
- Whillier, A. Design Factors Influencing Solar Collectors in Low Temperature Engineering Applications of Solar Energy; Ashrae: New York, NY, USA, 1967. [Google Scholar]
- Fuentes, M.K. A Simplified Thermal Model for Flat-Plate Photovoltaic Arrays; Sandia National Labs: Albuquerque, NM, USA, 1987. [Google Scholar]
- Clark, G.; Allen, C. The Estimation of Atmospheric Radiation for Clear and Cloudy Skies. In Proceedings of the 2nd National Passive Solar Conference (AS/ISES), Philadelphia, PA, USA, 16–18 March 1978; pp. 675–678. [Google Scholar]
- EnergyPlus. Available online: https://energyplus.net/ (accessed on 23 April 2024).
- Kasten, F.; Czeplak, G. Solar and Terrestrial Radiation Dependent on the Amount and Type of Cloud. Sol. Energy 1980, 24, 177–189. [Google Scholar] [CrossRef]
- Martin, M.; Berdahl, P. Characteristics of Infrared Sky Radiation in the United States. Sol. Energy 1984, 33, 321–336. [Google Scholar] [CrossRef]
- Bliss, R.W. Atmospheric Radiation near the Surface of the Ground: A Summary for Engineers. Sol. Energy 1961, 5, 103–120. [Google Scholar] [CrossRef]
- ARPALAZIO. Micro-Meteorological Network Data. Available online: https://www.arpalazio.it/rete-micro-meteorologica (accessed on 24 April 2024).
- MathWorks MATLAB. Available online: https://it.mathworks.com/products/matlab.html (accessed on 24 April 2024).
- Ruiz, G.R.; Bandera, C.F. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Handbook Fundamentals; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2013; Volume 111. [Google Scholar]
- Efficiency Valuation Organization. International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings; Efficiency Valuation Organization: Washington, DC, USA, 2012; Volume I. [Google Scholar]
- American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Guideline 14-2002: Measurement of Energy and Demand Savings; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2002. [Google Scholar]
- ISO 6946:2017; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
Model | Date | Equation |
---|---|---|
Dreyfus | 1960 | |
Whillier | 1967 | |
Fuentes | 1987 | |
ISO 13790 | 2008 |
Building | Layer | Thickness [m] | Thermal Conductivity [W/mK] | Mass Density [kg/m3] | Specific Heat Capacity [J/kgK] |
---|---|---|---|---|---|
B1 | Plaster | 0.02 | 0.700 | 1400 | 1000 |
Solid brick | 0.58 | 0.770 | 1600 | 840 | |
Plaster | 0.02 | 0.700 | 1400 | 1000 | |
B2 | Plaster | 0.02 | 0.700 | 1400 | 1000 |
Concrete | 0.20 | 0.730 | 1600 | 1000 | |
XPS | 0.06 | 0.034 | 50 | 1450 | |
Plaster | 0.02 | 0.700 | 1400 | 1000 |
Quarter | From | To | Correlation |
---|---|---|---|
I | January | March | |
II | April | June | |
III | July | September | |
IV | October | December |
Quarter | R2 [−] | NMBE [%] | CV(RMSE) [%] |
---|---|---|---|
First (I) | 0.38 | 3.69 10−13 | −68.70 |
Second (II) | 0.69 | 1.44 10−14 | 164.40 |
Third (III) | 0.75 | −1.28 10−13 | 21.53 |
Fourth (IV) | 0.37 | −4.59 10−13 | −373.01 |
Correlation | R2 [−] | NMBE [%] | CV(RMSE) [%] |
---|---|---|---|
Quarterly-based approach | 0.70 | −307.26 | |
Fuentes | 0.67 | −552.02 | −670.60 |
ISO 13790 | 0.68 | −389.29 | −502.34 |
Correlation | QheatB1 | QcoolB1 | QheatB2 | QcoolB2 |
---|---|---|---|---|
Berdahl and Martin (Type 69) | 5.88% | −12.18% | 6.38% | −10.04% |
Dreyfus | −28.02% | 50.20% | −28.47% | 38.56% |
Whillier | −16.02% | 29.42% | −16.52% | 23.07% |
Fuentes | −0.20% | 18.88% | −0.15% | 14.63% |
Annual | 8.70% | −4.93% | 9.00% | −3.65% |
Quarterly | 4.46% | −35.28% | 2.16% | −30.31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Cristo, E.; Evangelisti, L.; Guattari, C.; De Lieto Vollaro, R. An Experimental Direct Model for the Sky Temperature Evaluation in the Mediterranean Area: A Preliminary Investigation. Energies 2024, 17, 2228. https://doi.org/10.3390/en17092228
De Cristo E, Evangelisti L, Guattari C, De Lieto Vollaro R. An Experimental Direct Model for the Sky Temperature Evaluation in the Mediterranean Area: A Preliminary Investigation. Energies. 2024; 17(9):2228. https://doi.org/10.3390/en17092228
Chicago/Turabian StyleDe Cristo, Edoardo, Luca Evangelisti, Claudia Guattari, and Roberto De Lieto Vollaro. 2024. "An Experimental Direct Model for the Sky Temperature Evaluation in the Mediterranean Area: A Preliminary Investigation" Energies 17, no. 9: 2228. https://doi.org/10.3390/en17092228
APA StyleDe Cristo, E., Evangelisti, L., Guattari, C., & De Lieto Vollaro, R. (2024). An Experimental Direct Model for the Sky Temperature Evaluation in the Mediterranean Area: A Preliminary Investigation. Energies, 17(9), 2228. https://doi.org/10.3390/en17092228