Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage
Abstract
:1. Introduction
1.1. State of the Art
1.2. Objectives
- To estimate the amount of hydrogen cushion gas that will remain in the geological structure as non-recoverable cushion gas (NRCG) at the end of the underground storage operations (gas injection and withdrawal);
- To propose conditions for preparing the underground storage for operation in such a way as to limit as much as possible the amount of NRCG that will remain in the underground storage at the end of the work;
- To present cushion gas recovery scenarios.
2. Materials and Methods
2.1. Geological Model of the Konary Structure and Previous Research
2.2. Research Methodology and Assumptions
- Simulation of cushion gas recovery across 10 years of operation after closing the storage for fifteen cases (five cases each for the 4, 3, and 2 years periods of initial filling shown in Table 2).
- Determination of upconing for each of the 15 cases. The basis for determining the upconing was a significant (average above 80% in about a month) decrease in the hydrogen withdrawal and increased water extraction.
- Calculation of recoverable cushion gas (RCG), non-recoverable cushion gas (NRCG), and the amount of extracted water for the designated upconing moment (in each of the 15 recovery cases).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
UHS | underground hydrogen storage |
RES | renewable energy sources |
Total storage capacity | the total amount of hydrogen injected into the structure at a given time, not exceeding allowable pressures and the spill point |
WG | working gas—the amount of hydrogen that can be withdrawn from storage at a given time and flow rate |
CG | cushion gas—is the share of gas left in the reservoir, which is used to pressurize the reservoir to reach the target hydrogen withdrawal rate; it is the capacity difference between total storage capacity and working gas |
CG/WG | ratio of cushion gas to working gas; a mass of injected and withdrawn hydrogen as WG relative to the mass of CG present in the reservoir |
RCG | recoverable cushion gas |
NRCG | non-recoverable cushion gas |
NRCG/CG | non-recoverable cushion gas to cushion gas ratio; determines what part of the CG is left in storage after closure |
WG/NRCG | ratio of working gas to non-recoverable cushion gas; determines what part of the NRCG is WG |
References
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Hanley, E.S.; Deane, J.; Gallachóir, B.Ó. The role of hydrogen in low carbon energy futures—A review of existing perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Tagliapietra, S.; Zachmann, G.; Edenhofer, O.; Glachant, J.M.; Linares, P.; Loeschel, A. The European union energy transition: Key priorities for the next five years. Energy Policy 2019, 132, 950–954. [Google Scholar] [CrossRef]
- COM/2020/301. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:52020DC0301 (accessed on 30 December 2020).
- Ramesh Kumar, K.; Honorio, H.; Chandra, D.; Lesueur, M.; Hajibeygi, H. Comprehensive review of geomechanics of underground hydrogen storage in depleted reservoirs and salt caverns. J. Energy Storage 2023, 73, 108912. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. J. Energy Storage 2023, 72, 108404. [Google Scholar] [CrossRef]
- Arenillas, I.A.; Ortega, M.F.; Torrent, J.G.; Moya, B.L. Hydrogen as an Energy Vector: Present and Future. In Sustaining Tomorrow via Innovative Engineering; Ting, D.S.-K., Carriveau, R., Eds.; World Scientific: Singapore, 2021; pp. 83–129. [Google Scholar]
- Chapman, A.; Itaoka, K.; Hirose, K.; Davidson, F.T.; Nagasawa, K.; Lloyd, A.C.; Webber, M.E.; Kurban, Z.; Managi, S.; Tamaki, T.; et al. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. Int. J. Hydrogen Energy 2019, 44, 6371–6382. [Google Scholar] [CrossRef]
- OECD. The Future of Hydrogen: Seizing Today’s Opportunities; OECD: Paris, France, 2019. [Google Scholar]
- Ghorbani, B.; Zendehboudi, S.; Saady, N.M.C.; Dusseault, M.B. Hydrogen storage in North America: Status, prospects, and challenges. J. Environ. Chem. Eng. 2023, 11, 109957. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Olabi, A.G.; Bahri, A.S.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wang, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
- Schultz, R.A.; Heinemann, N.; Horváth, B.; Wickens, J.; Miocic, J.M.; Babarinde, O.O.; Cao, W.; Capuano, P.; Dewers, T.A.; Dusseault, M.; et al. An overview of underground energy-related product storage and sequestration. Geol. Soc. Lond. Spec. Publ. 2023, 528, 15–35. [Google Scholar] [CrossRef]
- Taie, Z.; Villaverde, G.; Speaks Morris, J.; Lavrich, Z.; Chittum, A.; White, K.; Hagen, C. Hydrogen for heat: Using underground hydrogen storage for seasonal energy shifting in northern climates. Int. J. Hydrogen Energy 2021, 46, 3365–3378. [Google Scholar] [CrossRef]
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrogen Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Ekpotu, W.F.; Akintola, J.; Obialor, M.C.; Philemon, U. Historical Review of Hydrogen Energy Storage Technology. World J. Eng. Technol. 2023, 11, 454–475. [Google Scholar] [CrossRef]
- Amirthan, T.; Perera, M.S.A. The role of storage systems in hydrogen economy: A review. J. Nat. Gas Sci. Eng. 2022, 108, 104843. [Google Scholar] [CrossRef]
- Epelle, E.I.; Obande, W.; Udourioh, G.A.; Afolabi, I.C.; Desongu, K.S.; Orivri, U.; Gunes, B.; Okolie, J.A. Perspectives and prospects of underground hydrogen storage and natural hydrogen. Sustain. Energy Fuels 2022, 6, 3324–3343. [Google Scholar] [CrossRef]
- Al-Shafi, M.; Massarweh, O.; Abushaikha, A.S.; Bicer, Y. A review on underground gas storage systems: Natural gas, hydrogen and carbon sequestration. Energy Rep. 2023, 9, 6251–6266. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Yin, Z.; Linga, P.; He, T.; Zheng, X. Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 2023, 467, 143459. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground Hydrogen Storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Miocic, J.; Heinemann, N.; Edlmann, K.; Scafidi, J.; Molaei, F.; Alcalde, J. Underground hydrogen storage: A review. Geol. Soc. Lond. Spec. Publ. 2023, 528, 73–86. [Google Scholar] [CrossRef]
- Aftab, A.; Hassanpouryouzband, A.; Xie, Q.; Machuca, L.L.; Sarmadivaleh, M. Toward a Fundamental Understanding of Geological Hydrogen Storage. Ind. Eng. Chem. Res. 2022, 61, 3233–3253. [Google Scholar] [CrossRef]
- Martinez, S.; Simon, J. Assessment of the Regulatory Framework; Hystories Deliverable D6.1-1. 2021. Available online: https://hystories.eu/wp-content/uploads/2022/05/Hystories_D.6.1-1-Assessment-of-the-regulatory-framework.pdf (accessed on 20 March 2024).
- Tarkowski, R. Perspectives of using the geological subsurface for hydrogen storage in Poland. Int. J. Hydrogen Energy 2017, 42, 347–355. [Google Scholar] [CrossRef]
- Muhammed, S.N.; Haq, B.; Al Sheri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Navaid, H.B.; Emadi, H.; Watson, M. A comprehensive literature review on the challenges associated with underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 10603–10635. [Google Scholar] [CrossRef]
- Miocic, J.M.; Heinemann, N.; Alcalde, J.; Edlmann, K.; Schultz, R.A. Enabling secure subsurface storage in future energy systems: An introduction. Geol. Soc. Lond. Spec. Publ. 2023, 528, 1–14. [Google Scholar] [CrossRef]
- Tarkowski, R.; Lankof, L.; Luboń, K.; Michalski, J. Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland. Appl. Energy 2024, 355, 122268. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, X.; Zeng, L.; Zhong, Z.; Mehana, M.; Xiao, W.; Pu, W.; Regenauer-Lieb, K.; Xie, Q. Role of large-scale underground hydrogen storage and its pathways to achieve net-zero in China. J. Energy Storage 2023, 72, 108448. [Google Scholar] [CrossRef]
- Raza, A.; Arif, M.; Glatz, G.; Mahmoud, M.; Al Kobaisi, M.; Alafnan, S.; Iglauer, S. A holistic overview of underground hydrogen storage: Influencing factors, current understanding, and outlook. Fuel 2022, 330, 125636. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Thiyagarajan, S.R.; Emadi, H.; Hussain, A.; Patange, P.; Watson, M. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. J. Energy Storage 2022, 51, 104490. [Google Scholar] [CrossRef]
- Jafari Raad, S.M.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 50, 379–396. [Google Scholar] [CrossRef]
- Sambo, C.; Dudun, A.; Samuel, S.A.; Esenenjor, P.; Muhammed, N.S.; Haq, B. A review on worldwide underground hydrogen storage operating and potential fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- Ershadnia, R.; Singh, M.; Mahmoodpour, S.; Meyal, A.; Moeini, F.; Hosseini, S.A.; Sturmer, D.M.; Rasoulzadeh, M.; Dai, Z.; Soltanian, M.R. Impact of geological and operational conditions on underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 1450–1471. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Heinemann, N.; Scafidi, J.; Pickup, G.; Thaysen, E.M.; Hassanpouryouzband, A.; Wilkinson, M.; Satterley, A.K.; Booth, M.G.; Edlmann, K.; Haszeldine, R.S. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. Int. J. Hydrogen Energy 2021, 46, 39284–39296. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. The influence of the first filling period length and reservoir level depth on the operation of underground hydrogen storage in a deep aquifer. Int. J. Hydrogen Energy 2023, 48, 1024–1042. [Google Scholar] [CrossRef]
- Amid, A.; Mignard, D.; Wilkinson, M. Seasonal storage of hydrogen in a depleted natural gas reservoir. Int. J. Hydrogen Energy 2016, 41, 5549–5558. [Google Scholar] [CrossRef]
- Heinemann, N.; Wilkinson, M.; Adie, K.; Edlmann, K.; Thaysen, E.M.; Hassanpouryouzband, A.; Haszeldine, R.S. Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises? Hydrogen 2022, 3, 550–563. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Chen, C. Numerical simulation of the impact of different cushion gases on underground hydrogen storage in aquifers based on an experimentally-benchmarked equation-of-state. Int. J. Hydrogen Energy, 2023, in press. [CrossRef]
- Scafidi, J.; Schirrer, L.; Vervoort, I.; Heinemann, N. An open-source tool for the calculation of field deliverability and cushion gas requirements in volumetric gas reservoir storage sites. Geol. Soc. Lond. Spec. Publ. 2022, 528, 267–283. [Google Scholar] [CrossRef]
- Sainz-Garcia, A.; Abarca, E.; Rubi, V.; Grandia, F. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. Int. J. Hydrogen Energy 2017, 42, 16657–16666. [Google Scholar] [CrossRef]
- Foh, S.; Novil, M.; Rockar, E.; Randolph, P. Underground Hydrogen Storage; Final Report; Brookhaven National Laboratory: Upton, NY, USA, 1979. [Google Scholar]
- Bünger, U.; Michalski, J.; Crotogino, F.; Kruck, O. Large-scale underground storage of hydrogen for the grid integration of renewable energy and other applications. In Compendium of Hydrogen Energy; Ball, M., Basile, A., Veziroğlu, T.N., Eds.; Elsevier, Woodhead Publishing: Boston, MA, USA, 2016; pp. 133–163. ISBN 978-1-78242-364-5. [Google Scholar]
- Bai, M.; Song, K.; Sun, Y.; He, M.; Li, Y.; Sun, J. An overview of hydrogen underground storage technology and prospects in China. J. Pet. Sci. Eng. 2014, 124, 132–136. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, M.B.; Al Shehri, D.A.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E.; Iglauer, S. Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel 2023, 337, 127032. [Google Scholar] [CrossRef]
- Saeed, M.; Jadhawar, P. Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type. Int. J. Hydrogen Energy 2023, 52, 1537–1549. [Google Scholar] [CrossRef]
- Huang, T.; Moridis, G.J.; Blasingame, T.A.; Abdulkader, A.M.; Yan, B. Compositional reservoir simulation of underground hydrogen storage in depleted gas reservoirs. Int. J. Hydrogen Energy 2023, 48, 36035–36050. [Google Scholar] [CrossRef]
- Wang, J.; Wu, R.; Wei, M.; Bai, B.; Xie, J.; Li, Y. A comprehensive review of site selection, experiment and numerical simulation for underground hydrogen storage. Gas Sci. Eng. 2023, 118, 205105. [Google Scholar] [CrossRef]
- Jahanbakhsh, A.; Louis Potapov-Crighton, A.; Mosallanezhad, A.; Tohidi Kaloorazi, N.; Maroto-Valer, M.M. Underground hydrogen storage: A UK perspective. Renew. Sustain. Energy Rev. 2024, 189, 114001. [Google Scholar] [CrossRef]
- Higgs, S.; Da Wang, Y.; Sun, C.; Ennis-King, J.; Jackson, S.J.; Armstrong, R.T.; Mostaghimi, P. Comparative analysis of hydrogen, methane and nitrogen relative permeability: Implications for Underground Hydrogen Storage. J. Energy Storage 2023, 73, 108827. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Abbasi, G.R.; Lashari, N.; Patil, S.; Abdurrahman, M. A Mini-Review on Underground Hydrogen Storage: Production to Field Studies. Energy Fuels 2023, 37, 8128–8141. [Google Scholar] [CrossRef]
- Lin, N.; Xu, L.; Moscardelli, L.G. Market-based asset valuation of hydrogen geological storage. Int. J. Hydrogen Energy 2024, 49, 114–129. [Google Scholar] [CrossRef]
- Alms, K.; Ahrens, B.; Graf, M.; Nehler, M. Linking geological and infrastructural requirements for large-scale underground hydrogen storage in Germany. Front. Energy Res. 2023, 11, 1172003. [Google Scholar] [CrossRef]
- Kanaani, M.; Sedaee, B.; Asadian-Pakfar, M. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. J. Energy Storage 2022, 45, 103783. [Google Scholar] [CrossRef]
- Chai, M.; Chen, Z.; Nourozieh, H.; Yang, M. Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection. Appl. Energy 2023, 334, 120655. [Google Scholar] [CrossRef]
- Wang, G.; Pickup, G.; Sorbie, K.; Mackay, E. Numerical modelling of H2 storage with cushion gas of CO2 in subsurface porous media: Filter effects of CO2 solubility. Int. J. Hydrogen Energy 2022, 47, 28956–28968. [Google Scholar] [CrossRef]
- Harati, S.; Rezaei, S.; Gasanzade, F.; Bauer, S.; Pak, T.; Orr, C. Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers. Int. J. Hydrogen Energy, 2023, in press. [CrossRef]
- Delshad, M.; Alhotan, M.; Fernandes, B.R.B.; Umurzakov, Y.; Sepehrnoori, K. Pros and Cons of Saline Aquifers Against Depleted Hydrocarbon Reservoirs for Hydrogen Energy Storage. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–5 October 2022; p. SPE-210351-MS. [Google Scholar]
- Delshad, M.; Alhotan, M.M.; Fernandes, B.R.B.; Umurzakov, Y.; Sepehrnoori, K. Modeling Flow and Transport in Saline Aquifers and Depleted Hydrocarbon Reservoirs for Hydrogen Energy Storage. SPE J. 2023, 28, 2547–2565. [Google Scholar] [CrossRef]
- Josephs, R.E.; Porlles, J.; Tomomewo, O.S.; Gyimah, E.; Ebere, F. Geo-mechanical characterization of a well to store hydrogen. In Proceedings of the 57th US Rock Mechanics/Geomechanics Symposium, Atlanta, GG, USA, 25–28 June 2023; p. ARMA-2023-0528. [Google Scholar]
- Lysyy, M.; Fernø, M.; Ersland, G. Seasonal hydrogen storage in a depleted oil and gas field. Int. J. Hydrogen Energy 2021, 46, 25160–25174. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. Int. J. Hydrogen Energy 2020, 45, 2068–2083. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. Numerical simulation of hydrogen storage in the Konary deep saline aquifer trap. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2023, 39, 103–124. [Google Scholar] [CrossRef]
- Luboń, K. CO2 storage capacity of a deep aquifer depending on the injection well location and cap rock capillary pressure. Gospod. Surowcami Miner./Miner. Resour. Manag. 2020, 36, 173–196. [Google Scholar] [CrossRef]
- Luboń, K. Influence of Injection Well Location on CO2 Geological Storage Efficiency. Energies 2021, 14, 8604. [Google Scholar] [CrossRef]
- Pruess, K.; Oldenburg, C.; Moridis, G. TOUGH2 User’s Guide, 2nd ed.; LBNL-43134; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999; pp. 1–197. [Google Scholar]
- Cavanagh, A. Pressurisation and Brine Displacement Issues for Deep Saline Formation CO2 Storage; Report 2010/15; IEAGHG: Cheltenham, UK, 2010. [Google Scholar]
- Pfeiffer, W.T.; Beyer, C.; Bauer, S. Hydrogen storage in a heterogeneous sandstone formation: Dimensioning and induced hydraulic effects. Pet. Geosci. 2017, 23, 315–326. [Google Scholar] [CrossRef]
- Wallace, R.L.; Cai, Z.; Zhang, H.; Zhang, K.; Guo, C. Utility-scale subsurface hydrogen storage: UK perspectives and technology. Int. J. Hydrogen Energy 2021, 46, 25137–25159. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media-the scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Hashemi, L.; Blunt, M.; Hajibeygi, H. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Sci. Rep. 2021, 11, 8348. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Finsterle, S.; Trautz, R.C. Water Upconing in Underground Hydrogen Storage: Sensitivity Analysis to Inform Design of Withdrawal. Transp. Porous Media 2023, 150, 55–84. [Google Scholar] [CrossRef]
Initial Filling Period Length Options | 4 Years | 3 Years | 2 Years | Unit |
---|---|---|---|---|
Amount of hydrogen injected during the initial filling (total storage capacity) | 147,453 | 112,650 | 73,543 | [Mg] |
WG for six months of hydrogen withdrawal | 18,531 | |||
CG for six months of hydrogen withdrawal | 128,922 | 94,120 | 55,012 | |
Average amount of extracted water during every cycle of hydrogen injection and withdrawal | 6145 | 8525 | 14,421 | |
Total amount of extracted water during the 30 cycles of hydrogen injection and withdrawal | 177,183 | 247,923 | 418,406 |
Initial Filling Period Length Options | 4 Years | 3 Years | 2 Years | |||
---|---|---|---|---|---|---|
Case | Value | Case | Value | Case | Value | |
Fluid flow (kg/s) | 1 | 1.54 | 6 | 1.71 | 11 | 2.1 |
2 | 1.17 * | 7 | 1.17 * | 12 | 1.17 * | |
3 | 2 | 8 | 2 | 13 | 2 | |
4 | 4 | 9 | 4 | 14 | 4 | |
5 | 6 | 10 | 6 | 15 | 6 |
Initial Filling Period Length Options | 4 Years | 3 Years | 2 Years | Unit | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | Value | Average | Case | Value | Average | Case | Value | Average | ||
Period when upconing appears | 1 | 4.42 | 2.53 | 6 | 2.88 | 1.81 | 11 | 1.27 | 0.91 | [Year] |
2 | 2.45 | 7 | 1.65 | 12 | 0.75 | |||||
3 | 3.28 | 8 | 2.46 | 13 | 1.27 | |||||
4 | 1.48 | 9 | 1.21 | 14 | 0.72 | |||||
5 | 1.00 | 10 | 0.86 | 15 | 0.53 | |||||
RCG | 1 | 83,632 | 84,040 | 6 | 52,381 | 53,665 | 11 | 19,453 | 20,363 | [Mg] |
2 | 83,695 | 7 | 54,845 | 12 | 21,916 | |||||
3 | 82,541 | 8 | 52,294 | 13 | 19,214 | |||||
4 | 82,698 | 9 | 53,090 | 14 | 20,063 | |||||
5 | 87,617 | 10 | 55,712 | 15 | 21,170 | |||||
NRCG | 1 | 45,290 | 44,890 | 6 | 41,738 | 40,455 | 11 | 35,559 | 34,649 | |
2 | 45,227 | 7 | 39,275 | 12 | 33,096 | |||||
3 | 46,381 | 8 | 41,826 | 13 | 35,798 | |||||
4 | 46,224 | 9 | 41,030 | 14 | 34,949 | |||||
5 | 41,304 | 10 | 38,407 | 15 | 33,842 | |||||
Amount of extracted water during CG withdrawal | 1 | 131,321 | 122,455 | 6 | 102,822 | 114,917 | 11 | 64,554 | 79,369 | |
2 | 152,194 | 7 | 163,260 | 12 | 122,667 | |||||
3 | 124,214 | 8 | 102,664 | 13 | 60,793 | |||||
4 | 103,492 | 9 | 99,317 | 14 | 70,483 | |||||
5 | 101,052 | 10 | 106,523 | 15 | 78,348 | |||||
NRCG/CG ratio | 1 | 0.35 | 0.35 | 6 | 0.44 | 0.43 | 11 | 0.65 | 0.63 | |
2 | 0.35 | 7 | 0.42 | 12 | 0.60 | |||||
3 | 0.36 | 8 | 0.44 | 13 | 0.65 | |||||
4 | 0.36 | 9 | 0.44 | 14 | 0.64 | |||||
5 | 0.32 | 10 | 0.41 | 15 | 0.62 | |||||
WG/NRCG ratio | 1 | 0.41 | 0.41 | 6 | 0.44 | 0.46 | 11 | 0.52 | 0.54 | |
2 | 0.41 | 7 | 0.47 | 12 | 0.56 | |||||
3 | 0.40 | 8 | 0.44 | 13 | 0.52 | |||||
4 | 0.40 | 9 | 0.45 | 14 | 0.53 | |||||
5 | 0.45 | 10 | 0.48 | 15 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luboń, K.; Tarkowski, R. Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage. Energies 2024, 17, 1493. https://doi.org/10.3390/en17061493
Luboń K, Tarkowski R. Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage. Energies. 2024; 17(6):1493. https://doi.org/10.3390/en17061493
Chicago/Turabian StyleLuboń, Katarzyna, and Radosław Tarkowski. 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage" Energies 17, no. 6: 1493. https://doi.org/10.3390/en17061493
APA StyleLuboń, K., & Tarkowski, R. (2024). Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage. Energies, 17(6), 1493. https://doi.org/10.3390/en17061493