Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells
Abstract
:1. Introduction
2. Translucent Structure Mechanisms
3. Transparent Electrodes
3.1. Silver Nanowires
3.2. Carbon Nanomaterials
3.3. Ultrathin Metals
3.4. Conductive Polymers
3.5. Transparent Conductive Oxides (TCO)
4. Charge Transport Layer Regulation
5. Component Modification
6. The Semi-Transparent Perovskite/Silicon Four-Terminal Tandem Solar Cell
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, N.N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.; Bach, U. Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602761. [Google Scholar] [CrossRef]
- Ito, K.; Nonomura, K.; Kan, R.; Tada, K.; Lin, C.C.; Kinoshita, T.; Bessho, T.; Uchida, S.; Segawa, H. Spectral Splitting Solar Cells Consisting of a Mesoscopic Wide-Bandgap Perovskite Solar Cell and an Inverted Narrow-Bandgap Perovskite Solar Cell. ACS Omega 2024, 9, 3028–3034. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Lin, T.-F.; Li, M.-H.; Lin, P.-Y.; Raifuku, I.; Hsieh, P.-T.; Chen, P. Back-Contact Perovskite Solar Cells. Semicond. Sci. Technol. 2021, 36, 83001. [Google Scholar] [CrossRef]
- Rahmany, S.; Etgar, L. Semitransparent Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Savenije, T.J.; Ponseca, C.S.; Kunneman, L.; Abdellah, M.; Zheng, K.; Tian, Y.; Zhu, Q.; Canton, S.E.; Scheblykin, I.G.; Pullerits, T.; et al. Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. J. Phys. Chem. Lett. 2014, 5, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.A.; Baikie, T.; Boix, P.P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-Gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process. J. Mater. Chem. A 2014, 2, 9221–9225. [Google Scholar] [CrossRef]
- Binetti, S.; Acciarri, M.; Le Donne, A.; Morgano, M.; Jestin, Y. Key Success Factors and Future Perspective of Silicon-Based Solar Cells. Int. J. Photoenergy 2013, 2013, 249502. [Google Scholar] [CrossRef]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon Solar Cells: Toward the Efficiency Limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D.-H.; Zeng, J.; et al. Homogenizing Out-of-Plane Cation Composition in Perovskite Solar Cells. Nature 2023, 624, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-Junction III–V Solar Cells with 47.1% Conversion Efficiency under 143 Suns Concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Jošt, M.; Kegelmann, L.; Korte, L.; Albrecht, S. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Energy Mater. 2020, 10, 1904102. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, L.; Zhang, J.; Chen, D.; Zhu, W.; Xi, H.; Zhang, J.; Zhang, C.; Hao, Y. Recent Progress of Wide Bandgap Perovskites towards Two-Terminal Perovskite/Silicon Tandem Solar Cells. Nanomaterials 2024, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Li, J.; Yang, T.C.; Liang, H.; Faes, A.; Jeangros, Q.; Ballif, C.; Hou, Y. Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab? Adv. Mater. 2022, 34, 2106540. [Google Scholar] [CrossRef] [PubMed]
- Coletti, G.; Luxembourg, S.L.; Geerligs, L.J.; Rosca, V.; Burgers, A.R.; Wu, Y.; Okel, L.; Kloos, M.; Danzl, F.J.K.; Najafi, M.; et al. Bifacial Four-Terminal Perovskite/Silicon Tandem Solar Cells and Modules. ACS Energy Lett. 2020, 5, 1676–1680. [Google Scholar] [CrossRef]
- Kothandaraman, R.K.; Jiang, Y.; Feurer, T.; Tiwari, A.N.; Fu, F. Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics. Small Methods 2020, 4, 2000395. [Google Scholar] [CrossRef]
- Leijtens, T.; Bush, K.A.; Prasanna, R.; McGehee, M.D. Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors. Nat. Energy 2018, 3, 828–838. [Google Scholar] [CrossRef]
- Kim, C.U.; Jung, E.D.; Noh, Y.W.; Seo, S.K.; Choi, Y.; Park, H.; Song, M.H.; Choi, K.J. Strategy for large-scale Monolithic Perovskite/Silicon Tandem Solar Cell: A Review of Recent Progress. EcoMat 2021, 3, e12084. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Z.; Yan, Y.; Liu, S.; Yang, D. Perovskite—A Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Adv. Sci. 2019, 6, 1801704. [Google Scholar] [CrossRef]
- Walsh, A. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites. J. Phys. Chem. C 2015, 119, 5755–5760. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, Z.; Duan, R.; Huang, P.; Zhang, K.; Chen, Q.; Allam, N.K.; Zhou, Y.; Song, B.; Li, Y. Semi-Transparent Perovskite Solar Cells: Unveiling the Trade-off between Transparency and Efficiency. J. Mater. Chem. A 2018, 6, 19696–19702. [Google Scholar] [CrossRef]
- Ball, J.M.; Stranks, S.D.; Hörantner, M.T.; Hüttner, S.; Zhang, W.; Crossland, E.J.W.; Ramirez, I.; Riede, M.; Johnston, M.B.; Friend, R.H.; et al. Optical Properties and Limiting Photocurrent of Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2015, 8, 602–609. [Google Scholar] [CrossRef]
- Ramírez Quiroz, C.O.; Levchuk, I.; Bronnbauer, C.; Salvador, M.; Forberich, K.; Heumüller, T.; Hou, Y.; Schweizer, P.; Spiecker, E.; Brabec, C.J. Pushing Efficiency Limits for Semitransparent Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 24071–24081. [Google Scholar] [CrossRef]
- Roldán-Carmona, C.; Malinkiewicz, O.; Betancur, R.; Longo, G.; Momblona, C.; Jaramillo, F.; Camacho, L.; Bolink, H.J. High Efficiency Single-Junction Semitransparent Perovskite Solar Cells. Energy Environ. Sci. 2014, 7, 2968–2973. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency. Adv. Mater. 2018, 30, 1800855. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Durstock, M.F. Efficient Semi-Transparent Planar Perovskite Solar Cells Using a ‘Molecular Glue’. Nano Energy 2016, 30, 542–548. [Google Scholar] [CrossRef]
- Guo, Y.; Shoyama, K.; Sato, W.; Nakamura, E. Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells. Adv. Energy Mater. 2016, 6, 1502317. [Google Scholar] [CrossRef]
- Wen, Q.; Duan, C.; Zou, F.; Luo, D.; Li, J.; Liu, Z.; Wang, J.; Yan, K. All-Inorganic CsPb1-XSnxI2Br Perovskites Mediated by Dicyandiamide Additive for Efficient 4-Terminal Tandem Solar Cell. Chem. Eng. J. 2023, 452, 139697. [Google Scholar] [CrossRef]
- Ponchai, J.; Kaewurai, P.; Boonthum, C.; Pinsuwan, K.; Supasai, T.; Sahasithiwat, S.; Kanjanaboos, P. Modifying Morphology and Defects of Low-Dimensional, Semi-Transparent Perovskite Thin Films via Solvent Type. RSC Adv. 2019, 9, 12047–12054. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Hang, P.; Li, B.; Hu, Z.; Kan, C.; Xie, J.; Wang, Y.; Zhang, Y.; Yang, D.; Yu, X. Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency. Small 2022, 18, 2203319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ji, R.; Jia, X.; Wang, S.; Deconinck, M.; Siliavka, E.; Vaynzof, Y. Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber. Adv. Funct. Mater. 2023, 2307471. [Google Scholar] [CrossRef]
- Eperon, G.E.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. Neutral Color Semitransparent Microstructured Perovskite Solar Cells. ACS Nano 2014, 8, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, B.; Gao, X.; Dong, B.; Hu, H.; Yan, K.; Wen, W.; Zou, D. Neutral-Colored Semitransparent Solar Cells Based on Pseudohalide (SCN − )-Doped Perovskite. Sustain. Energy Fuels 2017, 1, 1034–1040. [Google Scholar] [CrossRef]
- Hörantner, M.T.; Nayak, P.K.; Mukhopadhyay, S.; Wojciechowski, K.; Beck, C.; McMeekin, D.; Kamino, B.; Eperon, G.E.; Snaith, H.J. Shunt-Blocking Layers for Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1500837. [Google Scholar] [CrossRef]
- Aharon, S.; Layani, M.; Cohen, B.; Shukrun, E.; Magdassi, S.; Etgar, L. Self-Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2015, 2, 1500118. [Google Scholar] [CrossRef]
- Rahmany, S.; Layani, M.; Magdassi, S.; Etgar, L. Fully Functional Semi-Transparent Perovskite Solar Cell Fabricated in Ambient Air. Sustain. Energy Fuels 2017, 1, 2120–2127. [Google Scholar] [CrossRef]
- Rai, M.; Rahmany, S.; Lim, S.S.; Magdassi, S.; Wong, L.H.; Etgar, L. Hot Dipping Post Treatment for Improved Efficiency in Micro Patterned Semi-Transparent Perovskite Solar Cells. J. Mater. Chem. A 2018, 6, 23787–23796. [Google Scholar] [CrossRef]
- Kim, G.M.; Tatsuma, T. Semitransparent Solar Cells with Ultrasmooth and Low-Scattering Perovskite Thin Films. J. Phys. Chem. C 2016, 120, 28933–28938. [Google Scholar] [CrossRef]
- Bailie, C.D.; Christoforo, M.G.; Mailoa, J.P.; Bowring, A.R.; Unger, E.L.; Nguyen, W.H.; Burschka, J.; Pellet, N.; Lee, J.Z.; Grätzel, M.; et al. Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and CIGS. Energy Environ. Sci. 2015, 8, 956–963. [Google Scholar] [CrossRef]
- Guchhait, A.; Dewi, H.A.; Leow, S.W.; Wang, H.; Han, G.; Suhaimi, F.B.; Mhaisalkar, S.; Wong, L.H.; Mathews, N. Over 20% Efficient CIGS–Perovskite Tandem Solar Cells. ACS Energy Lett. 2017, 2, 807–812. [Google Scholar] [CrossRef]
- Fu, F.; Feurer, T.; Jäger, T.; Avancini, E.; Bissig, B.; Yoon, S.; Buecheler, S.; Tiwari, A.N. Low-Temperature-Processed Efficient Semi-Transparent Planar Perovskite Solar Cells for Bifacial and Tandem Applications. Nat. Commun. 2015, 6, 8932. [Google Scholar] [CrossRef] [PubMed]
- Bid, A.; Bora, A.; Raychaudhuri, A.K. Publisher’s Note: Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥ 15 nm: Applicability of Bloch-Grüneisen Theorem. Phys. Rev. B 2006, 74, 79903. [Google Scholar] [CrossRef]
- Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C.J. High-Performance Semitransparent Perovskite Solar Cells with Solution-Processed Silver Nanowires as Top Electrodes. Nanoscale 2015, 7, 1642–1649. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lee, K.-T.; Huang, W.-K.; Siao, H.-Y.; Chang, Y.-C. High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition. Chem. Mater. 2015, 27, 5122–5130. [Google Scholar] [CrossRef]
- Li, Z.; Kulkarni, S.A.; Boix, P.P.; Shi, E.; Cao, A.; Fu, K.; Batabyal, S.K.; Zhang, J.; Xiong, Q.; Wong, L.H.; et al. Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano 2014, 8, 6797–6804. [Google Scholar] [CrossRef]
- Li, F.R.; Xu, Y.; Chen, W.; Xie, S.H.; Li, J.Y. Nanotube Enhanced Carbon Grids as Top Electrodes for Fully Printable Mesoscopic Semitransparent Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 10374–10379. [Google Scholar] [CrossRef]
- Tai, Q.; Yan, F. Emerging Semitransparent Solar Cells: Materials and Device Design. Adv. Mater. 2017, 29, 1700192. [Google Scholar] [CrossRef] [PubMed]
- Bouville, F.; Maire, E.; Meille, S.; Van de Moortèle, B.; Stevenson, A.J.; Deville, S. Strong, Tough and Stiff Bioinspired Ceramics from Brittle Constituents. Nat. Mater. 2014, 13, 508–514. [Google Scholar] [CrossRef] [PubMed]
- You, P.; Liu, Z.; Tai, Q.; Liu, S.; Yan, F. Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Adv. Mater. 2015, 27, 3632–3638. [Google Scholar] [CrossRef]
- Lee, H.-J.; Cho, S.-P.; Na, S.; Kim, S.-S. Thin Metal Top Electrode and Interface Engineering for Efficient and Air-Stable Semitransparent Perovskite Solar Cells. J. Alloys Compd. 2019, 797, 65–73. [Google Scholar] [CrossRef]
- Ying, Z.; Chen, W.; Lin, Y.; He, Z.; Chen, T.; Zhu, Y.; Zhang, X.; Yang, X.; Djurišić, A.B.; He, Z. Supersmooth Ta2O5/Ag/Polyetherimide Film as the Rear Transparent Electrode for High Performance Semitransparent Perovskite Solar Cells. Adv. Opt. Mater. 2019, 7, 1801409. [Google Scholar] [CrossRef]
- Chen, D.; Pang, S.; Zhou, L.; Li, X.; Su, A.; Zhu, W.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. An Efficient TeO2/Ag Transparent Top Electrode for 20%-Efficiency Bifacial Perovskite Solar Cells with a Bifaciality Factor Exceeding 80%. J. Mater. Chem. A 2019, 7, 15156–15163. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Peng, Y.; Hou, Q.; Spiccia, L.; Bach, U.; Jasieniak, J.J.; Cheng, Y.-B. Ultra-Thin High Efficiency Semitransparent Perovskite Solar Cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Q.; Hsieh, Y.-T.; Song, T.-B.; De Marco, N.; Zhou, H.; Yang, Y. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. ACS Nano 2015, 9, 7714–7721. [Google Scholar] [CrossRef]
- Bu, L.; Liu, Z.; Zhang, M.; Li, W.; Zhu, A.; Cai, F.; Zhao, Z.; Zhou, Y. Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 17776–17781. [Google Scholar] [CrossRef]
- Heo, J.H.; Han, H.J.; Lee, M.; Song, M.; Kim, D.H.; Im, S.H. Stable Semi-Transparent CH3NH3PbI3 Planar Sandwich Solar Cells. Energy Environ. Sci. 2015, 8, 2922–2927. [Google Scholar] [CrossRef]
- Bush, K.A.; Bailie, C.D.; Chen, Y.; Bowring, A.R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M.D. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Adv. Mater. 2016, 28, 3937–3943. [Google Scholar] [CrossRef]
- Werner, J.; Dubuis, G.; Walter, A.; Löper, P.; Moon, S.-J.; Nicolay, S.; Morales-Masis, M.; De Wolf, S.; Niesen, B.; Ballif, C. Sputtered Rear Electrode with Broadband Transparency for Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 141, 407–413. [Google Scholar] [CrossRef]
- Meng, L.; You, J.; Guo, T.-F.; Yang, Y. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, P.; Xia, Y.; Chang, J.; Ouyang, J. Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Appl. Mater. Interfaces 2015, 7, 15314–15320. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Guo, L.; Park, H. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells. Molecules 2016, 21, 475. [Google Scholar] [CrossRef] [PubMed]
- Boccard, M.; Rodkey, N.; Holman, Z.C. High-Mobility Hydrogenated Indium Oxide without Introducing Water During Sputtering. Energy Procedia 2016, 92, 297–303. [Google Scholar] [CrossRef]
- Werner, J.; Weng, C.-H.; Walter, A.; Fesquet, L.; Seif, J.P.; De Wolf, S.; Niesen, B.; Ballif, C. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area > 1 cm2. J. Phys. Chem. Lett. 2016, 7, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Wahl, T.; Hanisch, J.; Meier, S.; Schultes, M.; Ahlswede, E. Sputtered Indium Zinc Oxide Rear Electrodes for Inverted Semitransparent Perovskite Solar Cells without Using a Protective Buffer Layer. Org. Electron. 2018, 54, 48–53. [Google Scholar] [CrossRef]
- Fu, F.; Feurer, T.; Weiss, T.P.; Pisoni, S.; Avancini, E.; Andres, C.; Buecheler, S.; Tiwari, A.N. High-Efficiency Inverted Semi-Transparent Planar Perovskite Solar Cells in Substrate Configuration. Nat. Energy 2016, 2, 16190. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, H.U.; Seok, H.; Kim, H.; Kang, D. Highly Efficient and Reliable Semitransparent Perovskite Solar Cells via Top Electrode Engineering. Adv. Funct. Mater. 2022, 32, 2111760. [Google Scholar] [CrossRef]
- Naqvi, S.D.H.; Son, K.; Jung, W.; Hwang, H.U.; Lee, S.; Lee, A.; Keum, M.; Kim, S.; Kim, J.W.; Kang, M.G.; et al. Mitigating Intrinsic Interfacial Degradation in Semi-Transparent Perovskite Solar Cells for High Efficiency and Long-Term Stability. Adv. Energy Mater. 2023, 13, 2302147. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Zuo, S.; Chen, M.; Zhang, C.; Wang, C.; Ren, X.; Yang, Z.; Liu, Z.; Xu, X.; et al. 27%-Efficiency Four-Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. Adv. Funct. Mater. 2020, 30, 1908298. [Google Scholar] [CrossRef]
- Duong, T.; Nguyen, T.; Huang, K.; Pham, H.; Adhikari, S.G.; Khan, M.R.; Duan, L.; Liang, W.; Fong, K.C.; Shen, H.; et al. Bulk Incorporation with 4-Methylphenethylammonium Chloride for Efficient and Stable Methylammonium-Free Perovskite and Perovskite-Silicon Tandem Solar Cells. Adv. Energy Mater. 2023, 13, 2203607. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, N.; Wu, J.; Yang, W.; He, H.; Huang, M.; Zeng, Y.; Yang, X.; Ying, Z.; Qin, G.; et al. Additive Engineering of the CuSCN Hole Transport Layer for High-Performance Perovskite Semitransparent Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 52223–52232. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.J.; Lee, J.H.; You, C.H.; Kim, S.Y.; Lee, S.; Noh, J.H. Oxide/Halide/Oxide Architecture for High Performance Semi-Transparent Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2200661. [Google Scholar] [CrossRef]
- Jaysankar, M.; Filipič, M.; Zielinski, B.; Schmager, R.; Song, W.; Qiu, W.; Paetzold, U.W.; Aernouts, T.; Debucquoy, M.; Gehlhaar, R.; et al. Perovskite–Silicon Tandem Solar Modules with Optimised Light Harvesting. Energy Environ. Sci. 2018, 11, 1489–1498. [Google Scholar] [CrossRef]
- Dewi, H.A.; Wang, H.; Li, J.; Thway, M.; Sridharan, R.; Stangl, R.; Lin, F.; Aberle, A.G.; Mathews, N.; Bruno, A.; et al. Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. ACS Appl. Mater. Interfaces 2019, 11, 34178–34187. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Ying, Z.; Chen, Y.; Wang, X.; Zhang, M.; Su, S.; Guo, X.; Sun, J.; Shou, C.; et al. Reconstruction of the Indium Tin Oxide Surface Enhances the Adsorption of High-Density Self-Assembled Monolayer for Perovskite/Silicon Tandem Solar Cells. Adv. Funct. Mater. 2023, 33, 2304708. [Google Scholar] [CrossRef]
- Gharibzadeh, S.; Hossain, I.M.; Fassl, P.; Nejand, B.A.; Abzieher, T.; Schultes, M.; Ahlswede, E.; Jackson, P.; Powalla, M.; Schäfer, S.; et al. 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS. Adv. Funct. Mater. 2020, 30, 1909919. [Google Scholar] [CrossRef]
- Zhang, D.; Najafi, M.; Zardetto, V.; Dörenkämper, M.; Zhou, X.; Veenstra, S.; Geerligs, L.J.; Aernouts, T.; Andriessen, R. High Efficiency 4-Terminal Perovskite/c-Si Tandem Cells. Sol. Energy Mater. Sol. Cells 2018, 188, 1–5. [Google Scholar] [CrossRef]
- Rohatgi, A.; Zhu, K.; Tong, J.; Kim, D.H.; Reichmanis, E.; Rounsaville, B.; Prakash, V.; Ok, Y.-W. 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE J. Photovolt. 2020, 10, 417–422. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Chen, X.; Cui, X.; Guo, C.; Feng, X.; Ren, D.; Mo, Y.; Yang, M.; Huang, H.; et al. In Situ Epitaxial Growth of Blocking Structure in Mixed-Halide Wide-Band-Gap Perovskites for Efficient Photovoltaics. Joule 2023, 7, 1363–1381. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X.; Shen, J.; Han, S.; Guan, L.; Fu, G.; Kuang, D.-B.; Yang, S. F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84%. ACS Nano 2022, 16, 10798–10810. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Li, L.; Zhu, W.; Chen, D.; Zhou, L.; Xi, H.; Zhang, J.; Zhang, C.; Hao, Y. Graded Heterojunction Improves Wide-Bandgap Perovskite for Highly Efficient 4-Terminal Perovskite/Silicon Tandem Solar Cells. Research 2023, 6, 196. [Google Scholar] [CrossRef]
- Tao, J.; Xue, J.; Guo, H.; Wang, Y.; Shen, J.; Wang, T.; He, T.; Fu, G.; Yang, S. Precisely Adjusting the Organic/Electrode Interface Charge Barrier for Efficient and Stable Ag-Based Regular Perovskite Solar Cells with >23% Efficiency. Chem. Eng. J. 2023, 463, 142445. [Google Scholar] [CrossRef]
- Yu, B.; Tang, F.; Yang, Y.; Huang, J.; Wu, S.; Lu, F.; Duan, W.; Lambertz, A.; Ding, K.; Mai, Y. Impermeable Atomic Layer Deposition for Sputtering Buffer Layer in Efficient Semi-Transparent and Tandem Solar Cells via Activating Unreactive Substrate. Adv. Mater. 2023, 35, 2202447. [Google Scholar] [CrossRef] [PubMed]
- Jaysankar, M.; Raul, B.A.L.; Bastos, J.; Burgess, C.; Weijtens, C.; Creatore, M.; Aernouts, T.; Kuang, Y.; Gehlhaar, R.; Hadipour, A.; et al. Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells. ACS Energy Lett. 2019, 4, 259–264. [Google Scholar] [CrossRef]
- Duong, T.; Pham, H.; Kho, T.C.; Phang, P.; Fong, K.C.; Yan, D.; Yin, Y.; Peng, J.; Mahmud, M.A.; Gharibzadeh, S.; et al. High Efficiency Perovskite-Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Adv. Energy Mater. 2020, 10, 1903553. [Google Scholar] [CrossRef]
- Tian, C.; Gao, X.; Li, J.; Pan, J.; Yu, G.; Huang, B.; Wen, Y.; Zhu, H.; Bu, T.; Cheng, Y.-B.; et al. Scalable Growth of Stable Wide-Bandgap Perovskite towards Large-Scale Tandem Photovoltaics. Sol. RRL 2022, 6, 2200134. [Google Scholar] [CrossRef]
- Yang, M.; Kim, D.H.; Yu, Y.; Li, Z.; Reid, O.G.; Song, Z.; Zhao, D.; Wang, C.; Li, L.; Meng, Y.; et al. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells. Mater. Today Energy 2018, 7, 232–238. [Google Scholar] [CrossRef]
- Jung, J.W.; Chueh, C.; Jen, A.K.-Y. High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material. Adv. Energy Mater. 2015, 5, 1500486. [Google Scholar] [CrossRef]
- Li, C.; Sleppy, J.; Dhasmana, N.; Soliman, M.; Tetard, L.; Thomas, J. A PCBM-Assisted Perovskite Growth Process to Fabricate High Efficiency Semitransparent Solar Cells. J. Mater. Chem. A 2016, 4, 11648–11655. [Google Scholar] [CrossRef]
- Xue, Q.; Bai, Y.; Liu, M.; Xia, R.; Hu, Z.; Chen, Z.; Jiang, X.; Huang, F.; Yang, S.; Matsuo, Y.; et al. Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor. Adv. Energy Mater. 2017, 7, 1602333. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, J.; Zhang, Y.; Ng, A.; Shen, Q.; Cheung, S.H.; Shen, H.; Li, K.; Zheng, Z.; So, S.K.; et al. Strategies for High Performance Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 179, 36–44. [Google Scholar] [CrossRef]
- Löper, P.; Moon, S.-J.; Martín de Nicolas, S.; Niesen, B.; Ledinsky, M.; Nicolay, S.; Bailat, J.; Yum, J.-H.; De Wolf, S.; Ballif, C. Organic–Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.-J.; Allebé, C.; et al. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Lett. 2016, 1, 474–480. [Google Scholar] [CrossRef]
- Aydin, E.; De Bastiani, M.; Yang, X.; Sajjad, M.; Aljamaan, F.; Smirnov, Y.; Hedhili, M.N.; Liu, W.; Allen, T.G.; Xu, L.; et al. Zr-Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskite-Based Tandem Solar Cells. Adv. Funct. Mater. 2019, 29, 1901741. [Google Scholar] [CrossRef]
- Ou, Y.; Huang, H.; Shi, H.; Li, Z.; Chen, Z.; Mateen, M.; Lu, Z.; Chi, D.; Huang, S. Collaborative Interfacial Modification and Surficial Passivation for High-Efficiency MA-Free Wide-Bandgap Perovskite Solar Cells. Chem. Eng. J. 2023, 469, 143860. [Google Scholar] [CrossRef]
- Duong, T.; Lal, N.; Grant, D.; Jacobs, D.; Zheng, P.; Rahman, S.; Shen, H.; Stocks, M.; Blakers, A.; Weber, K.; et al. Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE J. Photovolt. 2016, 6, 679–687. [Google Scholar] [CrossRef]
- Najafi, M.; Zardetto, V.; Zhang, D.; Koushik, D.; Dörenkämper, M.S.; Creatore, M.; Andriessen, R.; Poodt, P.; Veenstra, S. Highly Efficient and Stable Semi-Transparent P-i-n Planar Perovskite Solar Cells by Atmospheric Pressure Spatial Atomic Layer Deposited ZnO. Sol. RRL 2018, 2, 1800147. [Google Scholar] [CrossRef]
- Kanda, H.; Shibayama, N.; Uzum, A.; Umeyama, T.; Imahori, H.; Ibi, K.; Ito, S. Effect of Silicon Surface for Perovskite/Silicon Tandem Solar Cells: Flat or Textured? ACS Appl. Mater. Interfaces 2018, 10, 35016–35024. [Google Scholar] [CrossRef] [PubMed]
Absorber | Transparent Electrode | Eg (eV) | Voc (V) | Jsc (mAcm−2) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
FA0.92MA0.08PbI3 | IZO | 1.53 | 1.14 | 24.07 | 80.40 | 22.04 | 2023 | [69] |
CsPb0.6Sn0.4I2Br | ultrathin Ag | 1.54 | 0.87 | 22.67 | 71.73 | 14.17 | 2023 | [30] |
CH3NH3PbI3 | LiF/Au | 1.55 | 1.04 | 13.43 | 52.50 | 7.31 | 2014 | [26] |
CH3NH3PbI3 | AgNWs | 1.55 | 0.96 | 15.87 | 69.68 | 10.55 | 2015 | [46] |
CH3NH3PbI3 | DMD | 1.55 | 0.99 | 20.40 | 58.00 | 13.60 | 2015 | [55] |
CH3NH3PbI3 | PEDOT:PSS | 1.55 | 0.97 | 16.00 | 65.40 | 10.10 | 2015 | [57] |
CH3NH3PbI3 | ITO | 1.55 | 1.10 | 19.30 | 74.00 | 15.80 | 2015 | [58] |
CH3NH3PbI3 | IZO | 1.55 | 0.87 | 17.50 | 68.00 | 10.36 | 2015 | [60] |
CH3NH3PbI3 | ultrathin Ag | 1.55 | 0.95 | 12.10 | 71.00 | 8.20 | 2016 | [28] |
CH3NH3PbI3 | ITO | 1.55 | 0.95 | 16.50 | 77.00 | 12.30 | 2016 | [59] |
CH3NH3PbI3 | IOH/ITO | 1.55 | 1.02 | 16.20 | 79.30 | 13.10 | 2016 | [65] |
CH3NH3PbI3 | ultrathin Ag | 1.55 | 0.91 | 21.40 | 71.00 | 13.80 | 2017 | [35] |
CH3NH3PbI3 | ultrathin Au | 1.55 | 1.16 | 19.80 | 79.90 | 18.30 | 2020 | [70] |
FAPbI3 | IZO | 1.55 | 1.13 | 24.00 | 84.20 | 22.90 | 2023 | [71] |
CH3NH3PbI3 | CNTs | 1.56 | 0.84 | 16.40 | 49.00 | 6.69 | 2014 | [47] |
CH3NH3PbI3 | ultrathin Ag | 1.56 | 1.06 | 14.56 | 71.78 | 11.05 | 2019 | [52] |
CH3NH3PbI3 | ultrathin Cu | 1.56 | 1.01 | 16.19 | 73.05 | 11.95 | 2019 | [52] |
CH3NH3PbI3−xClx | AgNWs | 1.57 | 0.96 | 13.18 | 66.80 | 8.49 | 2015 | [45] |
CH3NH3PbI3−xClx | Graphene | 1.57 | 0.95 | 17.75 | 71.72 | 12.03 | 2015 | [51] |
CH3NH3PbI3−xClx | DMD | 1.57 | 1.05 | 14.60 | 75.10 | 11.50 | 2015 | [56] |
MAFAPbI3−xClx | IZO | 1.57 | 1.06 | 23.05 | 78.52 | 19.24 | 2022 | [72] |
FA0.95MA0.05Pb(I0.95Br0.05)3 | ITO | 1.57 | 1.08 | 23.33 | 77.28 | 19.48 | 2022 | [73] |
(5-AVA)0.05(MA)0.95PbI3 | MWCNT | 1.58 | 0.87 | 18.10 | 52.10 | 8.21 | 2017 | [48] |
Cs0.1FA0.9PbI2.865Br0.135 | ITO | 1.58 | 0.71 | 20.00 | 73.40 | 15.30 | 2018 | [74] |
Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | ITO | 1.58 | 1.06 | 21.52 | 77.50 | 17.70 | 2019 | [75] |
FA0.87Cs0.13Pb(I0.87Br0.13)3 | IO:GT | 1.63 | 1.12 | 19.28 | 82.90 | 17.90 | 2022 | [68] |
Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 | IZO | 1.63 | 1.13 | 20.40 | 83.0 | 19.20 | 2023 | [76] |
FA0.83Cs0.17Pb[I1−yBry]3 | ITO | 1.65 | 1.16 | 19.70 | 78.70 | 18.00 | 2020 | [77] |
Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 | ITO | 1.65 | 1.08 | 19.40 | 78.10 | 16.30 | 2018 | [78] |
Cs0.05FA0.8MA0.15PbI2.55Br0.45 | IZO | 1.65 | 1.11 | 20.50 | 78.60 | 17.90 | 2020 | [79] |
MA0.10Cs0.10FA0.80Pb(I0.78Br0.22)3 | ITO | 1.65 | 1.22 | 20.29 | 77.56 | 19.15 | 2023 | [80] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(PF6)x | IZO | 1.67 | 1.19 | 19.57 | 80.56 | 18.70 | 2022 | [81] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(BF4)x | IZO | 1.67 | 1.18 | 19.54 | 80.08 | 18.66 | 2022 | [81] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 | IZO | 1.68 | 1.16 | 21.40 | 81.10 | 20.13 | 2023 | [82] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 | ITO | 1.68 | 1.26 | 18.43 | 76.36 | 17.76 | 2023 | [83] |
Cs0.2FA0.8Pb(Br0.4I0.6)3 | ultrathin Au | 1.68~1.74 | 0.92 | 15.71 | 70.00 | 10.03 | 2018 | [39] |
Cs0.05FA0.70MA0.25PbI2.25Br0.75 | IZO | 1.71 | 1.12 | 22.21 | 81.25 | 20.25 | 2022 | [84] |
Cs0.15(CH5NH2)0.85Pb(I0.71Br0.29)3 | ITO | 1.72 | 1.22 | 15.40 | 73.40 | 13.80 | 2019 | [85] |
FA0.83Cs0.17PbI2Br | ITO | 1.72 | 1.10 | 18.07 | 74.10 | 14.70 | 2019 | [75] |
Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br | IZO | 1.72 | 1.20 | 17.50 | 76.30 | 16.10 | 2020 | [86] |
FA0.83Cs0.17Pb(I0.7Br0.3)3 | ITO | 1.72 | 1.19 | 18.35 | 70.00 | 15.42 | 2022 | [87] |
FA0.83Cs0.17Pb(I0.6Br0.4)3 | ultrathin Au | 1.75 | 1.19 | 17.80 | 69.70 | 14.70 | 2018 | [88] |
CsxFA1−xPb(IyBrzCl1−y−z)3 | IZO | 1.77 | 1.24 | 18.82 | 79.58 | 18.57 | 2022 | [32] |
CsPbBr3 | PEDOT:PSS | 2.3 | 1.38 | 6.15 | 70.51 | 5.98 | 2018 | [27] |
Cs0.1FAxPbI2+xBr0.1 | ultrathin Ag | / | 1.17 | 10.65 | 78.09 | 9.77 | 2023 | [33] |
Absorber | Eg (eV) | PVK Structures | Silicon Structure | Transparent Electrode | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
CH3NH3PbI3 | 1.55 | NIP | SHJ | ITO | 13.4 | 2015 | [94] |
CH3NH3PbI3 | 1.56 | NIP | SHJ | IZO | 25.2 | 2016 | [93] |
CH3NH3PbI3 | 1.55 | NIP | PERL | ITO | 20.1 | 2016 | [97] |
FA0.83Cs0.17Pb(I0.6Br0.4)3 | 1.75 | NIP | SHJ | ultrathin Au | 20.3 | 2018 | [88] |
Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 | / | PIN | IBC | ITO | 25.7 | 2018 | [78] |
Cs0.1FA0.9PbI2.865Br0.135 | / | NIP | IBC | ITO | 25.5 | 2018 | [74] |
Cs0.15(CH5NH2)0.85Pb(I0.71Br0.29)3 | 1.72 | NIP | IBC | ITO | 27.1 | 2019 | [85] |
CH3NH3PbI3 | 1.55 | PIN | SHJ | IZRO | 26.2 | 2019 | [95] |
Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | 1.58 | NIP | PERC | ITO | 25.5 | 2019 | [75] |
FA0.83Cs0.17PbI2Br | 1.72 | NIP | PERC | ITO | 22.4 | 2019 | [75] |
CH3NH3PbI3 | 1.55 | NIP | SHJ | ultrathin Au | 27 | 2020 | [70] |
FA0.83Cs0.17Pb (I1−yBry)3 | 1.65 | NIP | IBC | ITO | 25.7 | 2020 | [77] |
Cs0.05FA0.8MA0.15PbI2.55Br0.45 | 1.63 | PIN | TOPCon | IZO | 26.7 | 2020 | [79] |
Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br | 1.72 | NIP | PERL | IZO | 26.2 | 2020 | [86] |
CsxFA1−xPb (IyBrzCl1−y−z)3 | 1.77 | NIP | SHJ | IZO | 30.24 | 2022 | [32] |
FA0.87Cs0.13Pb(I0.87Br0.13)3 | 1.63 | PIN | SHJ | IO:GT | 23.35 | 2022 | [68] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(PF6) x | 1.67 | PIN | PERC | IZO | 27.35 | 2022 | [81] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(BF4) x | 1.67 | PIN | PERC | IZO | 27.11 | 2022 | [81] |
FA0.83Cs0.17Pb(I0.7Br0.3)3 | 1.72 | NIP | SHJ | ITO | 23.85 | 2022 | [87] |
Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 | 1.63 | PIN | TOPCon | IZO | 28.4 | 2023 | [76] |
FA0.92MA0.08PbI3 | 1.53 | NIP | SHJ | IZO | 31.50 | 2023 | [69] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 | 1.68 | NIP | TOPCon | IZO | 30.91 | 2023 | [82] |
FAPbI3 | 1.55 | NIP | PERL | IZO | 30.3 | 2023 | [71] |
Cs0.2FA0.8Pb(I0.8Br0.2)3 | / | PIN | PERC | ITO | 26.59 | 2023 | [96] |
MA0.10Cs0.10FA0.80Pb(I0.78Br0.22)3 | 1.65 | NIP | TOPCon | ITO | 28.83 | 2023 | [80] |
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 | 1.68 | PIN | PERC | ITO | 26.76 | 2023 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, L.; Zhang, C. Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells. Energies 2024, 17, 1833. https://doi.org/10.3390/en17081833
Zhang Y, Zhou L, Zhang C. Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells. Energies. 2024; 17(8):1833. https://doi.org/10.3390/en17081833
Chicago/Turabian StyleZhang, Yunlong, Long Zhou, and Chunfu Zhang. 2024. "Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells" Energies 17, no. 8: 1833. https://doi.org/10.3390/en17081833
APA StyleZhang, Y., Zhou, L., & Zhang, C. (2024). Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells. Energies, 17(8), 1833. https://doi.org/10.3390/en17081833