Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model
Abstract
:1. Introduction
1.1. Public Lighting Design Procedure
1.1.1. Determination of h and s
1.1.2. Determination of D
2. Materials and Methods
2.1. Public Lighting Design
2.2. Public Lighting Simulation
2.3. Multi-Criteria Analysis
- Direct analysis of the performance matrix. Determines the criteria dominance, when these allow to clearly determine one scenario more favorable than another, allowing criteria elimination and defining similarities and differences between dominants to simplify the decision making task.
- Multi-attribute utility theory. It establishes a procedure to determine the independence between criteria and determines mathematical function parameters to calculate an index U, which determines the scenario performance. The method complexity lies in the definition of the mathematical function, which requires knowledge and expertise in the evaluated process.
- Linear additive model. It can be used when there is no relationship between the criteria, and if uncertainty is not included in the multi-criteria model, defining a linear model where the scenario performance is determined by multiplying the matrix values by an importance factor for each criterion and then summing all the results.
- The analytical hierarchy process. Defines a standard linear additive model and establishes a procedure for determining the criteria importance factor based on criteria and scenario pairwise comparisons by asking questions about the importance of one criterion over another.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pachamanov, A.; Pachamanova, D. Optimization of the Light Distribution of Luminaries for Tunnel and Street Lighting. Eng. Optim. 2008, 40, 47–65. [Google Scholar] [CrossRef]
- Fesanghary, M.; Asadi, S.; Geem, Z.W. Design of Low-Emission and Energy-Efficient Residential Buildings Using a Multi-Objective Optimization Algorithm. Build. Environ. 2012, 49, 245–250. [Google Scholar] [CrossRef]
- Keith, D.M. Roadway Lighting Design for Optimization of UPD, STV and Uplight. J. Illum. Eng. Soc. 2000, 29, 15–23. [Google Scholar] [CrossRef]
- Gómez-Lorente, D.; Rabaza, O.; Espín Estrella, A.; Peña-García, A. A New Methodology for Calculating Roadway Lighting Design Based on a Multi-Objective Evolutionary Algorithm. Expert Syst. Appl. 2013, 40, 2156–2164. [Google Scholar] [CrossRef]
- Gueorgiev, V. Optimization of Lighting Distribution in Road Lighting Luminaires. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies, SIELA 2018—Proceedings, Bourgas, Bulgaria, 3–6 June 2018. [Google Scholar]
- Peña-García, A. Sustainable Tunnel Lighting: One Decade of Proposals, Advances and Open Points. Tunn. Undergr. Space Technol. 2022, 119, 104227. [Google Scholar] [CrossRef]
- Sikdar, P.L.; Thakurta, P.K.G. An Energy Efficient Street Lighting Framework: ANN-Based Approach. Innov. Syst. Softw. Eng. 2021, 17, 131–139. [Google Scholar] [CrossRef]
- Zalesinska, M.; Gorczewska, M. Comparative Study of Lighting Quality and Energy Efficiency for Various Road Lighting Situations. In Proceedings of the 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4, Karpacz, Poland, 13–16 September 2016; pp. 1–5. [Google Scholar]
- Madias, E.N.D.; Doulos, L.T.; Kontaxis, P.A.; Topalis, F.V. A Decision Support System for Techno-Economic Evaluation of Indoor Lighting Systems with LED Luminaires. Oper. Res. 2021, 21, 1403–1422. [Google Scholar] [CrossRef]
- Nelson, M.A.; Anderson, B.P.; Cai, H. Selection Methods and Procedure for Evaluation of LED Roadway Luminaires. LEUKOS-J. Illum. Eng. Soc. N. Am. 2017, 13, 159–175. [Google Scholar] [CrossRef]
- Chu, C.W.; Chao, W.C.; Yang, C.C.; Wu, P.J.; Chen, C.Y.; Kuo, Y.P.; Lee, L.L. Optimal Design of LED Street Lighting with Road Conditions. In Proceedings of the 2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN), Matsue, Japan, 20–22 May 2016; pp. 9–11. [Google Scholar]
- Qu, Y.; Clausen, A.; Jørgensen, B.N. A Multi-Objective Optimization Platform for Artificial Lighting System in Commercial Greenhouses. Energy Inform. 2021, 4 (Suppl. S2), 44. [Google Scholar] [CrossRef]
- Beccali, M.; Bonomolo, M.; Lo Brano, V.; Ciulla, G.; Di Dio, V.; Massaro, F.; Favuzza, S. Energy Saving and User Satisfaction for a New Advanced Public Lighting System. Energy Convers. Manag. 2019, 195, 943–957. [Google Scholar] [CrossRef]
- Cassol, F.; Schneider, P.S.; França, F.H.R.; Silva Neto, A.J. Multi-Objective Optimization as a New Approach to Illumination Design of Interior Spaces. Build. Environ. 2011, 46, 331–338. [Google Scholar] [CrossRef]
- Mandal, P.; Dey, D.; Roy, B. Indoor Lighting Optimization: A Comparative Study between Grid Search Optimization and Particle Swarm Optimization. J. Opt. (India) 2019, 48, 429–441. [Google Scholar] [CrossRef]
- Shen, Y.; Ge, G. Multi-Objective Particle Swarm Optimization Based on Fuzzy Optimality. IEEE Access 2019, 7, 101513–101526. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Pellegrino, R. A Decision-Making Tool for Energy Efficiency Optimization of Street Lighting. Comput. Oper. Res. 2018, 96, 223–235. [Google Scholar] [CrossRef]
- Li, S.G.; Tu, G.; Zhou, Q. An Optimal Design Model for Tunnel Lighting Systems. Optik 2021, 226, 165660. [Google Scholar] [CrossRef]
- Villa, C.; Labayrade, R. Multi-Objective Optimisation of Lighting Installations Taking into Account User Preferences—A Pilot Study. Light. Res. Technol. 2013, 45, 176–196. [Google Scholar] [CrossRef]
- Mattoni, B.; Gori, P.; Bisegna, F. A Step towards the Optimization of the Indoor Luminous Environment by Genetic Algorithms. Indoor Built Environ. 2017, 26, 590–607. [Google Scholar] [CrossRef]
- Rabaza, O.; Gómez-Lorente, D.; Pozo, A.M.; Pérez-Ocón, F. Application of a Differential Evolution Algorithm in the Design of Public Lighting Installations Maximizing Energy Efficiency. LEUKOS-J. Illum. Eng. Soc. N. Am. 2020, 16, 217–227. [Google Scholar] [CrossRef]
- Zou, J.; Li, L. Optimization of Luminous Intensity Distribution of Roadway Lighting Luminaire Based on Genetic Algorithm. In Proceedings of the 2010 Second WRI Global Congress on Intelligent Systems, Wuhan, China, 16–17 December 2010; pp. 327–330. [Google Scholar]
- IEC TS 63116:2021; IEC Technical Specification Lighting Systems—General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- Rte Inen 069 (1R); Alumbrado Público. Ministerio De Industrias y Productividad. Reglamento Técnico Ecuatoriano. 2013. Available online: https://www.normalizacion.gob.ec/buzon/reglamentos/M1-RTE-069-1R.pdf (accessed on 1 March 2022).
- ANSI/IES DG-21-15; Roadway and Parking Facility Lighting Standards. Illuminating Engineering Society: New York, NY, USA, 2020.
- Public Lighting Design Manual; Energex Limited and Ergon Energy Corporation Limited: Townsville, Australia, 2021.
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Ponce, D.; Aguila Téllez, A.; Krishnan, N. Optimal Selection of Conductors in Distribution System Designs Using Multi-Criteria Decision. Energies 2023, 16, 7167. [Google Scholar] [CrossRef]
- Rengel, A.; Téllez, A.A.; Ortiz, L.; Ruiz, M. Optimal Insertion of Energy Storage Systems Considering the Economic Dispatch and the Minimization of Energy Not Supplied. Energies 2023, 16, 2593. [Google Scholar] [CrossRef]
- Garrido, C.; Téllez, A.A.; Ortiz, L. Linear Voltage Stability Indicator (LVSI) for Optimal Placement of SVC Devices to Improve the Voltage Stability Margin in Transmission Systems. Electronics 2023, 12, 43. [Google Scholar] [CrossRef]
- Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach, 1st ed.; Springer: New York, NY, USA, 2002; ISBN 978-1-4613-5582-3, ISBN 978-1-4615-1495-4; Available online: http://gen.lib.rus.ec/book/index.php?md5=01f4fce1362dae36c505519b10a57c0d (accessed on 22 March 2024).
- Dodgson, J.S.; Spackman, M.; Pearman, A.; Phillips, L.D. Multi-Criteria Analysis: A Manual; Economic History Working Papers; Department of Economic History, London School of Economics and Political Science: London, UK, 2009; Available online: https://EconPapers.repec.org/RePEc:ehl:wpaper:12761 (accessed on 22 March 2024).
- Dean, M. A Practical Guide to Multi-Criteria Analysis; The Bartlett School of Planning, University College London: London, UK, 2022; Available online: https://www.academia.edu/69506995/A_Practical_Guide_to_Multi_Criteria_Analysis (accessed on 22 March 2024).
- Pazzini, M.; Corticelli, R.; Lantieri, C.; Mazzoli, C. Multi-Criteria Analysis and Decision-Making Approach for the Urban Regeneration: The Application to the Rimini Canal Port (Italy). Sustainability 2023, 15, 772. [Google Scholar] [CrossRef]
- Hajduk, S. Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique. Energies 2022, 15, 274. [Google Scholar] [CrossRef]
Maximum Intensity (cd) | Cut-Off Luminaire | Semi Cut-Off Luminaire | Non Cut-Off Luminaire |
---|---|---|---|
Up to 1000 | 6 | 6 | 6 |
From 1000 to 2000 | 7.5 | 7.5 | 7.5 |
From 2000 to 4500 | 7.5 | 7.5 | - |
From 4500 to 6000 | 7.5 | 7.5 | - |
Over 6000 | 9 | 9 | - |
Group | Type of Road | (cd/m2) |
---|---|---|
A1 | Highways. Speed limit over 70 km/h. | 1.5 |
A2 | Major roads (arterials). Speed limit from 55 to 70 km/h. | 1.0 |
A3 | Direct routes through urban areas. Speed limit 55 km/h. | 0.75 |
A4 | Link roads connecting direct routes with suburban roads. | 0.5 |
Type of Luminaire | Dark Surface | Medium Surface | Light Surface |
---|---|---|---|
Cut-off (C) | 24 | 18 | 12 |
Semi-cut-off (SC) | 18 | 13 | 9 |
Non-cut-off (NC) | 15 | 10 | 7 |
Type of Pavement | Black Asphalt | Gray Asphalt | Cement Cobblestones | Polished Concrete | Unpolished Concrete |
---|---|---|---|---|---|
0.1 | 0.2 | 0.35 | 0.5 | 0.4 |
Variables/Criterion | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Lamp Type | Sodium vapor | Sodium vapor | Sodium vapor |
Power (W) | 100 | 100 | 100 |
Pavement | Black asphalt | Black asphalt | Black asphalt |
Height (m) | 6 | 6 | 6 |
Protrusion (m) | 3.4 | 3.4 | 3.4 |
Arrangement | Unilateral | Alternating Bilateral | Opposite Bilateral |
Spacing (m) | 17 | 34 | 17 |
Lamps | 119 | 238 | 238 |
Efficiency | 80 | 80 | 80 |
Installation | 5572.77 | 11,145.54 | 11,145.54 |
Operation | 59,941,585 | 119,883,171 | 119,883,171 |
Criterion | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Efficiency | 80 | 80 | 80 |
Installation | 5572.77 | 11,145.54 | 11,145.54 |
Operation | 59,941,585 | 119,883,171 | 119,883,171 |
Lm | 1.86 | 1.93 | 3.87 |
Uo | 0.18 | 0.19 | 0.33 |
Ui | 0.76 | 0.42 | 0.78 |
SR | 0.3 | 0.31 | 0.3 |
Ev | 0.51 | 0.6 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia Pavón, N.G.; Aguila Téllez, A.; García Torres, M.; Rojas Urbano, J.; Krishnan, N. Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model. Energies 2024, 17, 2194. https://doi.org/10.3390/en17092194
Valencia Pavón NG, Aguila Téllez A, García Torres M, Rojas Urbano J, Krishnan N. Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model. Energies. 2024; 17(9):2194. https://doi.org/10.3390/en17092194
Chicago/Turabian StyleValencia Pavón, Nataly Gabriela, Alexander Aguila Téllez, Marcelo García Torres, Javier Rojas Urbano, and Narayanan Krishnan. 2024. "Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model" Energies 17, no. 9: 2194. https://doi.org/10.3390/en17092194
APA StyleValencia Pavón, N. G., Aguila Téllez, A., García Torres, M., Rojas Urbano, J., & Krishnan, N. (2024). Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model. Energies, 17(9), 2194. https://doi.org/10.3390/en17092194