Machine Learning and Weather Model Combination for PV Production Forecasting
Abstract
:1. Introduction
1.1. Literature Review
1.2. Beyond the State of the Art
2. Materials and Methods
2.1. Weather Research and Forecasting Model
2.2. BaselineP Model
2.3. BaselineD Model
2.4. Proposed Approach
- Target values;
- Past covariates: variables influencing the target value, observed in the previous W time steps;
- Future covariates: variables impacting the target value, related to the time and to the subsequent time steps, and that are known at the prediction time.
2.4.1. Linear Model
2.4.2. Long Short-Term Memory (LSTM)
2.4.3. Gradient Boosting Methods
2.5. Datasets
2.5.1. PV Production
2.5.2. The Weather Forecast and the Baselined PV Production Forecast
2.6. Metrics
3. Model Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumi, E.N.; Mahama, M. Greenhouse gas (GHG) emissions reduction in the electricity sector: Implications of increasing renewable energy penetration in Ghana’s electricity generation mix. Sci. Afr. 2023, 21, e01843. [Google Scholar] [CrossRef]
- Tol, R.S.J. A meta-analysis of the total economic impact of climate change. Energy Policy 2024, 185, 113922. [Google Scholar] [CrossRef]
- Rezai, A.; Taylor, L.; Foley, D. Economic Growth, Income Distribution, and Climate Change. Ecol. Econ. 2018, 146, 164–172. [Google Scholar] [CrossRef]
- Adinolfi, G.; Ciavarella, R.; Graditi, G.; Ricca, A.; Valenti, M. A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids. Sustainability 2021, 13, 6099. [Google Scholar] [CrossRef]
- Vinothine, S.; Arachchige, L.N.W.; Rajapakse, A.D.; Kaluthanthrige, R. Microgrid Energy Management and Methods for Managing Forecast Uncertainties. Energies 2022, 15, 8525. [Google Scholar] [CrossRef]
- Gestore dei Servizi Energetici. Rapporto Statistico Solare Fotovoltaico 2022. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Rapporti%20statistici/GSE%20-%20Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202022.pdf (accessed on 26 February 2024).
- Buonanno, A.; Caliano, M.; Di Somma, M.; Graditi, G.; Valenti, M. A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles. Energies 2022, 15, 8830. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Gueymard, C.A.; Hong, T.; Kleissl, J.; Huang, J.; Perez, M.J.; Perez, R.; Bright, J.M.; Xia, X.; et al. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renew. Sustain. Energy Rev. 2022, 161, 112348. [Google Scholar] [CrossRef]
- Graditi, G.; Buonanno, A.; Caliano, M.; Di Somma, M.; Valenti, M. Machine Learning Applications for Renewable-Based Energy Systems; EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2023; Volume Part F665, pp. 177–198. [Google Scholar] [CrossRef]
- Bekhit, R.; Bianco, G.; Delfino, F.; Ferro, G.; Noce, C.; Orrù, L.; Parodi, L.; Robba, M.; Rossi, M.; Valtorta, G. A platform for demand response and intentional islanding in distribution grids: The LIVING GRID demonstration project. Results Control Optim. 2023, 12, 100294. [Google Scholar] [CrossRef]
- Climate Models | NOAA Climate.gov. Available online: https://www.climate.gov/maps-data/climate-data-primer/predicting-climate/climate-models (accessed on 26 February 2024).
- Fuoco, D.; Mendicino, G.; Senatore, A.; Balog, I.; Caputo, G.; Spinelli, F.; Lepore, M.; Franconiero, D.; Mautone, P.; Oliviero, M. Modelli Previsionali di Producibilità: Ambiti Applicativi. Rapporto Tecnico di Ricerca Industriale D5.3a. Available online: http://www.comesto.eu/wp-content/uploads/2020/11/D5.3a_Modelli-previsionali-di-producibilit%C3%A0_ambiti-applicativi.pdf (accessed on 26 February 2024).
- Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition—IEA-PVPS. Available online: https://iea-pvps.org/key-topics/best-practices-handbook-for-the-collection-and-use-of-solar-resource-data-for-solar-energy-applications-third-edition/ (accessed on 26 February 2024).
- Ledmaoui, Y.; El Maghraoui, A.; El Aroussi, M.; Saadane, R.; Chebak, A.; Chehri, A. Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Rep. 2023, 10, 1004–1012. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, R. PV power forecasting based on data-driven models: A review. Int. J. Sustain. Eng. 2021, 14, 1733–1755. [Google Scholar] [CrossRef]
- Visser, L.; AlSkaif, T.; van Sark, W. Benchmark analysis of day-ahead solar power forecasting techniques using weather predictions. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 2111–2116. [Google Scholar]
- Theocharides, S.; Theristis, M.; Makrides, G.; Kynigos, M.; Spanias, C.; Georghiou, G.E. Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting. Energies 2021, 14, 1081. [Google Scholar] [CrossRef]
- Scott, C.; Ahsan, M.; Albarbar, A. Machine learning for forecasting a photovoltaic (PV) generation system. Energy 2023, 278, 127807. [Google Scholar] [CrossRef]
- Kallio, S.; Siroux, M. Photovoltaic power prediction for solar micro-grid optimal control. Energy Rep. 2023, 9, 594–601. [Google Scholar] [CrossRef]
- Dutta, S.; Li, Y.; Venkataraman, A.; Costa, L.M.; Jiang, T.; Plana, R.; Tordjman, P.; Choo, F.H.; Foo, C.F.; Puttgen, H.B. Load and Renewable Energy Forecasting for a Microgrid using Persistence Technique. Energy Procedia 2017, 143, 617–622. [Google Scholar] [CrossRef]
- Gaboitaolelwe, J.; Zungeru, A.M.; Yahya, A.; Lebekwe, C.K.; Vinod, D.N.; Salau, A.O. Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison. IEEE Access 2023, 11, 40820–40845. [Google Scholar] [CrossRef]
- Tayab, U.B.; Yang, F.; Metwally, A.S.M.; Lu, J. Solar photovoltaic power forecasting for microgrid energy management system using an ensemble forecasting strategy. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 10045–10070. [Google Scholar] [CrossRef]
- Teferra, D.M.; Ngoo, L.M.; Nyakoe, G.N. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Heliyon 2023, 9, e12802. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting. Renew. Sustain. Energy Rev. 2022, 168, 112772. [Google Scholar] [CrossRef]
- Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power forecast. Renew. Energy 2017, 113, 11–21. [Google Scholar] [CrossRef]
- Niccolai, A.; Dolara, A.; Ogliari, E. Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches. Energies 2021, 14, 451. [Google Scholar] [CrossRef]
- Fabozzi, S.; Graditi, G.; Valenti, M. Techno-economic design of a smart multienergy microgrid. In Proceedings of the 2022 AEIT International Annual Conference (AEIT), Rome, Italy, 3–5 October 2022. [Google Scholar]
- Buonanno, A.; Caputo, G.; Balog, I.; Adinolfi, G.; Pascarella, F.; Leanza, G.; Fabozzi, S.; Graditi, G.; Valenti, M. Combined Machine Learning and weather models for photovoltaic production forecasting in microgrid systems. In Proceedings of the 2023 International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 216–222. [Google Scholar]
- WRF Model Users Site. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 26 February 2024).
- WRF Community. Weather Research and Forecasting (WRF) Model, UCAR/NCAR. 2000. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 26 February 2024).
- Global Forecast System (GFS) | National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast (accessed on 26 February 2024).
- Larson, D.P.; Nonnenmacher, L.; Coimbra, C.F. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. Renew. Energy 2016, 91, 11–20. [Google Scholar] [CrossRef]
- CEI 82-25: 2008 Guide for Design and Installation of Photovoltaic. Available online: https://www.intertekinform.com/en-au/standards/cei-82-25-2008-319110_saig_cei_cei_735215/ (accessed on 26 February 2024).
- Dobos, A.P. PVWatts Version 5 Manual. 2014. Available online: www.nrel.gov/publications (accessed on 26 February 2024).
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; Massachusetts Institute of Technology: Cambridge, MA, USA, 2022. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17); Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 3149–3157. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (accessed on 26 February 2024).
- Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin, N.; et al. Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2022, 23, 1–6. Available online: http://jmlr.org/papers/v23/21-1177.html (accessed on 26 February 2024).
Type | Model | RMSE | CV |
---|---|---|---|
D | BaselineD | 436.87 (253.95) | 100.19 (91.62) |
LinearD | 420.72 (221.13) * | 99.30 (95.83) * | |
LSTMD | 435.18 (245.29) | 100.15 (95.84) | |
XGBD | 502.75 (259.69) * | 115.01 (106.85) * | |
LGBMD | 445.17 (245.45) | 99.33 (85.65) | |
P | BaselineP | 470.73 (248.73) | 107.50 (96.66) |
LinearP | 438.47 (231.66) * | 103.26 (96.53) * | |
LSTMP | 454.46 (260.33) * | 102.53 (91.77) * | |
XGBP | 487.92 (255.42) | 112.51 (106.10) | |
LGBMP | 443.08 (250.66) * | 99.91 (90.17) * |
Type | Model | Sunny Days | Cloudy Days |
---|---|---|---|
D | BaselineD | 223.57 (159.13) | 485.62 (246.31) |
LinearD | 267.35 (170.66) * | 455.77 (216.37) * | |
LSTMD | 260.65 (176.97) * | 475.07 (228.16) | |
XGBD | 358.11 (188.82) * | 535.81 (262.36) * | |
LGBMD | 287.85 (184.33) * | 481.12 (243.511) | |
P | BaselineP | 281.16 (159.12) | 514.06 (245.22) |
LinearP | 254.81 (149.02) * | 480.44 (226.68) * | |
LSTMP | 257.04 (195.29) | 499.59 (252.20) | |
XGBP | 335.36 (193.64) * | 522.80 (255.04) | |
LGBMP | 290.70 (213.31) | 477.92 (245.50) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonanno, A.; Caputo, G.; Balog, I.; Fabozzi, S.; Adinolfi, G.; Pascarella, F.; Leanza, G.; Graditi, G.; Valenti, M. Machine Learning and Weather Model Combination for PV Production Forecasting. Energies 2024, 17, 2203. https://doi.org/10.3390/en17092203
Buonanno A, Caputo G, Balog I, Fabozzi S, Adinolfi G, Pascarella F, Leanza G, Graditi G, Valenti M. Machine Learning and Weather Model Combination for PV Production Forecasting. Energies. 2024; 17(9):2203. https://doi.org/10.3390/en17092203
Chicago/Turabian StyleBuonanno, Amedeo, Giampaolo Caputo, Irena Balog, Salvatore Fabozzi, Giovanna Adinolfi, Francesco Pascarella, Gianni Leanza, Giorgio Graditi, and Maria Valenti. 2024. "Machine Learning and Weather Model Combination for PV Production Forecasting" Energies 17, no. 9: 2203. https://doi.org/10.3390/en17092203
APA StyleBuonanno, A., Caputo, G., Balog, I., Fabozzi, S., Adinolfi, G., Pascarella, F., Leanza, G., Graditi, G., & Valenti, M. (2024). Machine Learning and Weather Model Combination for PV Production Forecasting. Energies, 17(9), 2203. https://doi.org/10.3390/en17092203