A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants
Abstract
:1. Introduction
- Materials and Methodology: This section details the methodology applied to conduct an EIA based on a bibliographic review of ocean energy devices, categorized by their position in the water column. It also outlines the integration of traditional EIA with fuzzy logic, identifying the relevant environmental components and criteria used for the assessment. Furthermore, the multi-criteria analysis methodology is described, along with the process for implementing fuzzy logic, which is divided into three phases:
- Approximate Assessment
- Detailed Assessment
- Corrective Measures
- Results: This section presents the results from the three phases of fuzzy logic, providing insights into how the methodology was applied and the outcomes for each phase of the assessment.
- Case Study: The case study is conducted in the Cozumel Channel, where the previously explained methodology is applied using a vertical axis helical turbine as the energy conversion device. The area is described, and the results from the fuzzy logic assessment are presented. This section also includes an analysis of the environmental impacts specific to the location and provides recommendations based on the findings.
- Corrective Measures: Based on the results from the case study and the fuzzy logic analysis, this section presents the recommended corrective measures to mitigate environmental impacts identified during the assessment.
2. Materials and Methods
- Device Classification: Marine energy devices are categorized based on their position within the water column. This classification ensures that the methodology is adaptable to diverse technologies and their specific interactions with the environment.
- Identification of Environmental Components: Relevant environmental components were identified through a thorough literature review, focusing on aspects most commonly analyzed in EIA processes for marine energy projects. These components include marine ecosystems, water quality, and species biodiversity, among others.
- Criteria Definition Using Standardized Frameworks: To ensure consistency, the study employed Conesa’s (1997) [21] standardized matrix for defining evaluation criteria. This matrix uses predefined indicators such as intensity, magnitude, and duration to systematically categorize potential EIs.
- Multi-Criteria Analysis Framework: The methodology incorporates a two-stage multi-criteria analysis:
- Traditional EIA Analysis: The first stage applies conventional methods, evaluating the significance of impacts based on the criteria and indicators defined by the standardized framework.
- Fuzzy Logic Integration: The second stage enhances the traditional analysis by employing fuzzy logic. This involves the use of linguistic variables, membership functions (trapezoidal functions), and fuzzy inference systems to handle uncertainties and subjective judgments, offering a more precise and adaptable assessment.
- Application and Validation: The combined framework was applied to a hypothetical ocean energy project to demonstrate its adaptability and effectiveness across different device types and ecosystems. This application highlights the framework’s ability to provide robust, consistent, and scalable evaluations.
2.1. Devices Classification
2.2. Environmental Components Identification
2.3. Criteria Definition
2.4. Multicriteria Analysis
- I = Impact,
- NA = Nature; the sign of the “nature” variable (positive or negative) depends on whether the impact is positive or negative.
- IN = Intensity; EX = Extension; MO = Moment; PE = Persistence; RV = Reversibility; SI = Sinergy; AC = Cumulative; EF = Effect; PR = Periodicity; RC = Recoverability. The description and values of the criteria can be found in Table 2.
2.5. Fuzzy Logic Technique
- Since they predict the effects and impacts of projects on ecosystems, some level of uncertainty is inevitable.
- Given the complexity of ecosystem components, the EIAs must be conducted by multidisciplinary groups, which introduces a certain degree of subjectivity.
- The complexity of the ecosystems requires the use of both quantitative (numerical) and qualitative (linguistic) variables in the EIA process.
- Most terms used in EIAs are linguistic, meaning the significance of an impact is classified using labels like “irrelevant”, “moderate”, or “critical”.
- Phase 1: Approximate Assessment
- Creation of a hierarchical tree with at least two levels defined by the user: the environment and its components. Each component is assigned an importance value (Unit of Importance (UIP)). This step involves defining the environmental components and their importance.
- The project’s activities are also organized hierarchically, with at least two levels: project and project actions.
- An impact matrix is used to determine how each action affects each environmental component. This step calculates how each action affects each environmental component.
- The significance of each impact is characterized. Impacts are characterized in terms of linguistic variables, defined for both the inputs and outputs of the model. These variables are assigned by the users, who also establish the linguistic labels of the associated fuzzy sets.
- Definition of membership functions. To model the linguistic variables, membership functions are used to describe the degree to which a value belongs to a fuzzy set. In this context, trapezoidal functions are applied, which are ideal for representing terms like “low”, “moderate”, “high”, or “critical”. These functions are defined as follows:
- Calculation of approximate impact. Once the fuzzy sets are defined, the approximate impact importance (IMP) is calculated using the following formula:is a monotonic function from [0, 1] to [0, 1] with and . When smaller values of x are undervalued, while if , the low values of are overvalued; that is, determines the rate at which the importance grows.represents the weight of each variable so that . Higher weights are assigned to the most relevant variables.is a parameter related to each variable, with if the output increases with the input and otherwise.The “nature” variable (Equation (1)) is not an input to the IMP approximate reasoning function but is used to process the output. If the impact results in damage to the environment, “nature” is set to −1; if the impact is beneficial, it is set to +1.
- Defuzzification (centroid method). To convert the fuzzy results into a crisp value, the centroid method was applied. This method calculates the center of gravity of the membership fiction curve:represents the crisp value of the impact.is the membership function for the fuzzy set.This process helps us to derive a more tangible, actionable value from the fuzzy impact assessment.
- Linguistic Approximation and Consistency. Once the impact importance value has been established, a linguistic approximation is conducted. In this step, a label is assigned to the output variable, and the consistency between the fuzzy sets representing the impact importance and the fuzzy sets linked to the linguistic labels of the importance variables is calculated.Then, the overall importance of the activity’s effect on the environment is assessed to determine whether the project is environmentally compatible. To accomplish this, fuzzy indicators are computed using a method known as computation with words (CWW).
- Phase 2: Detailed Assessment
- Total Magnitude by Factor: This metric quantifies the overall impact of each factor on the environment, incorporating both the severity and likelihood of the impact. It reflects the cumulative effect of all actions associated with the project on a specific environmental component.
- Net Environmental Quality by Factor: This metric assesses the net effect of the project on environmental quality, considering both positive and negative impacts. It is calculated by subtracting the negative impacts from any positive effects.
- Total Impact Value by Factor: This metric aggregates the individual impacts of each factor, enabling a holistic evaluation of the overall environmental effect of the project. It combines both the quantitative results from the Total Magnitude and the qualitative input from fuzzy logic, offering a more robust and nuanced perspective on the project’s sustainability.
- Phase 3: Corrective Measures
3. Results
3.1. Phase 1: Preliminary Assessment
- The relative importance of each criterion was determined using the Conesa methodology.
- Each fuzzy set corresponds to a trapezoidal fuzzy number.
- Adjacent fuzzy sets have a consistency of 0.5, while non-adjacent sets have a consistency of zero.
- The sum of the membership degrees of the labels equals one, with each label having at least one value where its membership degree exceeds zero.
- The trapezoidal fuzzy numbers are defined as follows:
3.2. Phase 2. Detailed Assessment
4. Case Study Results
4.1. Environmental Systems
4.2. Economic Importance
4.3. Energy Scenario in the Mexican Caribbean
4.4. Project Description
4.5. Turbine Requirement
4.6. Application of the Fuzzy Methodology to the Environmental Impact Assessment
5. Corrective Measures
5.1. Geomorphological Components
5.2. Biological Components
5.3. Chemical Components
5.4. Sociocultural Components
6. Discussion
- Geomorphological Impacts
- Biological Impacts
- Chemical Impacts
- Sociocultural Impacts
- Broader Implications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Literature Review
References
- Diaconu, S.; Rusu, E. The environmental impact of a wave dragon array operating in the Black Sea. Sci. World J. 2013, 2013, 498013. [Google Scholar] [CrossRef] [PubMed]
- Rourke, F.O.; Boyle, F.; Reynolds, A. Tidal energy update 2009. Appl. Energy 2010, 87, 398–409. [Google Scholar] [CrossRef]
- SENER. Fondo Para la Transición Energética y el Aprovechamiento Sustentable de la Enegía (FOTEASE). Available online: https://www.gob.mx/sener/articulos/el-fondo-para-la-transicion-energetica-y-el-aprovechamiento-sustentable-de-la-energia-es-un-instrumento-de-politica-publica-de-la-secretaria (accessed on 15 May 2024).
- Huckerby, J.; Jeffrey, H.; Sedgwick, J.; Jay, B.; Finlay, L. An international vision for Ocean energy—Version II. Ocean Energy Syst. Implement. Agreem. 2012. Available online: http://www.policyandinnovationedinburgh.org/uploads/3/1/4/1/31417803/oes_booklet_fa_print_08_10_2012.pdf (accessed on 10 March 2024).
- López, J.; Silva, R.; Mendoza, E. Aprovechamiento de la energía de las corrientes con el Hidrogenerador IMPULSA. Tecnol. Ciencias Agua 2011, 2, 97–110. [Google Scholar]
- Hutchison, Z.L.; Lieber, L.; Miller, R.G.; Williamson, B.J. Environmental Impacts of Tidal and Wave Energy Converters. In Comprehensive Renewable Energy, Second Edition: Volume 1–9; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1–8. [Google Scholar] [CrossRef]
- Bevelhimer, M.; Scherelis, C.; Colby, J.; Adonizio, M.A. Hydroacoustic assessment of behavioral responses by fish passing near an operating tidal turbine in the east river, New York. Trans. Am. Fish. Soc. 2017, 146, 1028–1042. [Google Scholar] [CrossRef]
- Boehlert, G.W.; Gill, A.B. Environmental and ecological effects of ocean renewable energy development. Oceanography 2010, 23, 68–81. [Google Scholar] [CrossRef]
- Copping, A.; Battey, H.; Brown-Saracino, J.; Massaua, M.; Smith, C. An international assessment of the environmental effects of marine energy development. Ocean Coast. Manag. 2014, 99, 3–13. [Google Scholar] [CrossRef]
- Dreyer, S.J.; Polis, H.J.; Jenkins, L.D. Changing Tides: Acceptability, support, and perceptions of tidal energy in the United States. Energy Res. Soc. Sci. 2017, 29, 72–83. [Google Scholar] [CrossRef]
- Leeney, R.H.; Greaves, D.; Conley, D.; O’Hagan, A.M. Environmental Impact Assessments for wave energy developments-Learning from existing activities and informing future research priorities. Ocean Coast. Manag. 2014, 99, 14–22. [Google Scholar] [CrossRef]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Williamson, B.J.; Fraser, S.; Blondel, P.; Bell, P.S.; Waggitt, J.J.; Scott, B.E. Multisensor Acoustic Tracking of Fish and Seabird Behavior Around Tidal Turbine Structures in Scotland. IEEE J. Ocean. Eng. 2017, 42, 948–965. [Google Scholar] [CrossRef]
- Mendoza, E.; Lithgow, D.; Flores, P.; Felix, A.; Simas, T.; Silva, R. A framework to evaluate the environmental impact of OCEAN energy devices. Renew. Sustain. Energy Rev. 2019, 112, 440–449. [Google Scholar] [CrossRef]
- Perevochtchikova, M. Environmental Impact Assessment and the Importance of Environmental Indicators. Gest. Polit. Publica 2013, 22, 283–312. [Google Scholar]
- Presidencia de la República. Ley General del Equilibrio Ecológico y la Protección al Ambiente. Mexico, 1988; pp. 1–268. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LGEEPA.pdf (accessed on 16 January 2024).
- Presidencia de la República. Ley Federal de Presupuesto y Responsabilidad Hacendaria. Mexico, 2007; pp. 1–14. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5002338&fecha=01/10/2007#gsc.tab=0 (accessed on 16 January 2024).
- Hagras, H. Toward Human-Understandable, Explainable AI. Computer 2018, 51, 28–36. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W. Review fuzzy multi-criteria decision-making in construction management using a network appproach. Appl. Soft Comput. 2021, 102, 107103. [Google Scholar] [CrossRef]
- Zhang, K.; Zhan, J.; Wu, W.Z. On Multicriteria Decision-Making Method Based on a Fuzzy Rough Set Model with Fuzzy α-Neighborhoods. IEEE Trans. Fuzzy Syst. 2021, 29, 2491–2505. [Google Scholar] [CrossRef]
- Conesa, V. Guía Metodológica Para la Evaluación del Impacto Ambiental, 4th ed.; Mundi-Prensa: Madrid, Spain, 2011; 864p. [Google Scholar]
- Duarte Velasco, O.G. Técnicas Difusas en la Evaluación de Impacto Ambiental. Ph.D. Dissertation, Universidad de Granada, Granada, Spain, 2000; p. 246. [Google Scholar]
- SEMARNAT-CONANP. Programa de Manejo Del Área de Protección de Flora y Fauna La Porción Norte y La Franja Costera Oriental, Terrestres y Marinas de La Isla de Cozumel; SEMARNAT-CONANP: Ciudad de Mexico, Mexico, 2016; Available online: https://simec.conanp.gob.mx/pdf_libro_pm/32_libro_pm.pdf (accessed on 12 April 2024).
- Alcérreca-Huerta, J.C.; Encarnacion, J.I.; Ordoñez-Sánchez, S.; Callejas-Jiménez, M.; Barroso, G.G.D.; Allmark, M.; Mariño-Tapia, I.; Casarín, R.S.; O’Doherty, T.; Johnstone, C.; et al. Energy yield assessment from ocean currents in the insular shelf of Cozumel Island. J. Mar. Sci. Eng. 2019, 7, 147. [Google Scholar] [CrossRef]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Cueto, Y.R.; Silva, R. On the Marine Energy Resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef]
- Instituto Nacional de Geografía y Estadística (INEGI). Panorama Sociodemográfico de Mexico 2020. Quintana Roo. 2020, p. 41. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197964.pdf (accessed on 13 February 2024).
- SEMAR. San Miguel de Cozumel Quintana Roo. Available online: https://digaohm.semar.gob.mx/cuestionarios/cnarioCozumel.pdf (accessed on 6 March 2024).
- Chávez, G.; Candela, J.; Ochoa, J. Subinertial flows and transports in Cozumel Channel. J. Geophys. Res. Ocean. 2003, 108, 1–11. [Google Scholar] [CrossRef]
- SECTUR. Agendas de Competitividad de los Destinos Turísticos de Mexico. Cozumel, Quintana Roo. Available online: https://www.sectur.gob.mx/wp-content/uploads/2015/02/PDF-Cozumel.pdf (accessed on 18 January 2024).
- CONANP. Sistema de Información, Monitoreo y Evaluación Para la Conservación. La porción Norte y la Franja Costera Oriental, Terrestres y Marinas de la Isla de Cozumel. Available online: https://simec.conanp.gob.mx/ficha.php?anp=32®=9 (accessed on 10 October 2024).
- Subdirección de Ecología del Ayuntamiento de Cozumel. Inventario de Flora y Fauna de la Isla de Cozumel. Available online: https://cozumel.gob.mx/wp-content/uploads/2019/05/ART93-INCISO-L.pdf (accessed on 15 October 2024).
- Valdez Hernández, J.I. Manejo forestal de un manglar al sur de Marismas Nacionales, Nayarit. Madera Bosques 2016, 10, 93–104. [Google Scholar] [CrossRef]
- NOM-059-SEMARNAT-2010, Protección Ambiental-Especies Nativas de Mexico de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones Para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo. Available online: https://www.profepa.gob.mx/innovaportal/file/435/1/nom_059_semarnat_2010.pdf (accessed on 10 October 2024).
- DATATUR. Resultados de la Actividad Turística Diciembre. 2023. Available online: https://www.datatur.sectur.gob.mx/RAT/RAT-2023-12(ES).pdf (accessed on 10 October 2024).
- Lujan-Esparza, A.; Linas-Angeles, J. Portafolio de Inversión Cozumel. 2023. Available online: https://www.gob.mx/cms/uploads/attachment/file/872007/Portafolio_Cozumel_NOV23.pdf (accessed on 10 October 2024).
- Chiatchoua, C.; Avila Romero, R. Hacia un turismo sostenible en Quintana Roo: Desarrollo de propuesta de mejora. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 9687–9711. [Google Scholar] [CrossRef]
- Studer, I.; Contreras, T.; Hoja de Ruta Programa Transversal de Energía del Estado de Quintana Roo. Consultoría para el Banco Interamericano de Desarrollo; Gobierno del Estado de Quintana Roo, Mexico. 2020. Available online: https://siee.semaqroo.gob.mx/wp-content/uploads/2022/08/hoja_ruta.pdf (accessed on 10 October 2024).
- SEMA Quintana Roo. Plan Estatal Para el Fomento de la Eficiencia Energética y del Aprovechamiento de las Fuentes de Energía Renovables. Available online: https://energypedia.info/images/c/c6/Output_1._PLANFEER_QRoo.pdf (accessed on 10 October 2024).
- PRODESEN. Programa de Desarrollo del Sistema Eléctrico Nacional 2023–2037. Sener 2023, 1, 54–62. [Google Scholar]
- CFE Portal CFE. Fuentes Generación Cfe Respaldan El Suminist. Eléctrico En El Norte Mexico Ante Falta Gas Nat. Que Se Importa Texas 2021, 2. Available online: https://app.cfe.mx/Aplicaciones/OTROS/Boletines/boletin?i=2105 (accessed on 12 October 2024).
- Wilberforce, T.; El Hassan, Z.; Durrant, A.; Thompson, J.; Soudan, B.; Olabi, A.G. Overview of ocean power technology. Energy 2019, 175, 165–181. [Google Scholar] [CrossRef]
- Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. Developments in large marine current turbine technologies—A review. Renew. Sustain. Energy Rev. 2017, 71, 852–858. [Google Scholar] [CrossRef]
- Echeverría, C.; Juárez, G.; Mendoza, E.; Silva, R. Performance evaluation of 1 meter-diameter vertical axis helical turbine. In 3rd International Congress on Marine Energy CEMIE-Océano; Chávez, V., Olmedo, J., Eds.; CEMIE-Oceano: Puerto Morelos, Mexico, 2023; pp. 85–86. [Google Scholar]
- Echeverría, C.; Juárez, G.; Mendoza, E.; Silva, R. Review on the development of vertical axis helical turbine. In 3rd International Congress on Marine Energy CEMIE-Océano; Chávez, V., Olmedo, J., Eds.; CEMIE-Oceano: Puerto Morelos, Mexico, 2023; pp. 99–100. [Google Scholar]
- Echeverría, C.; Juárez, G.; Martinez, E. Escalamiento físico de una turbina helicoidal de eje vertical para el canal de Cozumel. In 1er Congreso Internacional CEMIE-Oceano; Chávez, V., Gutiérrez, J., Eds.; EPOMEX: Campeche, Mexico, 2021; p. 81. [Google Scholar] [CrossRef]
- Wardhana, W.; Keniraras, N.; Pratama, R.S.; Rahmawati, S. Hydrodynamics Performance Analysis of Vertical Axis Water Turbine (VAWT) Gorlov Type Using Computational Fluid Dynamics (CFD) Approach. IOP Conf. Ser. Earth Environ. Sci. 2021, 698, 012022. [Google Scholar] [CrossRef]
- Amarta, Z.; Ismail, A. Performance evaluation of vertical axis hydrokinetic turbine (VAHT) helical blade using duct system for low current speed application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012049. [Google Scholar] [CrossRef]
- Popper, A.N.; Haxel, J.; Staines, G.; Guan, S.; Nedelec, S.L.; Roberts, L.; Deng, Z.D. Marine energy converters: Potential acoustic effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 2023, 154, 518–532. [Google Scholar] [CrossRef]
- Copping, A.; Hemery, L.; Viehman, H.; Seitz, A.; Staines, G.; Hasselman, D. Are fish in danger? A review of environmental effects of marine renewable energy on fishes. Biol. Conserv. 2021, 262, 109297. [Google Scholar] [CrossRef]
- Gill, A.B.; Desender, M. Risk to Animals from Electromagnetic Fields Emitted by Electric Cables and Marine Renewable Energy Devices. In OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World; Copping, A.E., Hemery, L.G., Eds.; Report for Ocean Energy Systems (OES); 2020; pp. 86–103. Available online: https://www.osti.gov/servlets/purl/1633088 (accessed on 12 October 2024).
- Hemery, L.G.; Garavelli, L.; Copping, A.E.; Farr, H.; Jones, K.; Baker-Horne, N.; Kregting, L.; McGarry, L.P.; Sparling, C.; Verling, E. Animal displacement from marine energy development: Mechanisms and consequences. Sci. Total Environ. 2024, 917, 170390. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, P.; Li, D.; Jiao, Y. An overview of ocean renewable energy in China. Renew. Sustain. Energy Rev. 2011, 15, 91–111. [Google Scholar] [CrossRef]
- Bennagi, A.; AlHousrya, O.; Cotfas, D.T.; Cotfas, P.A. Comprehensive study of the artificial intelligence applied in renewable energy. Energy Strateg. Rev. 2024, 54, 101446. [Google Scholar] [CrossRef]
Components | Description | Subcomponents |
---|---|---|
Hydrological | Changes that can be generated in the distribution of wave energy and water circulation. |
|
Geomorphological | Changes in erosion and accretion patterns, in relation to the distance from a device or arrangement of devices. |
|
Biological | Any interaction that affects the ecosystem and its components. |
|
Chemical | Interactions that generate changes in the natural chemistry of the water. |
|
Sociocultural | Changes in the economic value and appreciation of the site for the population. |
|
Criteria | Description | Value | |
---|---|---|---|
Nature | Refers to the favorable or harmful nature of the impact | Favorable | −1 |
Harmful | +1 | ||
Intensity (I) | Level of destruction | Low | 1 |
Medium | 2 | ||
High | 5 | ||
Very high | 8 | ||
Total | 12 | ||
Extension (EX) | Affected spatial area | Punctual | 1 |
Partial | 2 | ||
Extensive | 4 | ||
Total | 8 | ||
Critical | 12 | ||
Moment (MO) | Time from the start of the action and the beginning of the effect in the environment | Long term | 1 |
Medium term | 2 | ||
Short term | 4 | ||
Critical | 10 | ||
Persistence (PE) | Permanence of the impact over time | Brief | 1 |
Temporary | 2 | ||
Permanente | 4 | ||
Reversibility (RV) | Possibility of returning to the initial condition by natural means | Short term | 1 |
Medium term | 2 | ||
Irreversible | 4 | ||
Recoverability (RC) | Possibility of returning to the initial condition through the application of corrective measures | Short term | 1 |
Medium term | 2 | ||
Mitigatable | 4 | ||
Irrecoverable | 8 | ||
Synergy (SI) | Reinforcement of two or more simple effects | Non-synergistic | 1 |
Synergistic | 2 | ||
Very synergistic | 4 | ||
Cumulative (AC) | Progressive increase in the manifestation of the effect | Simple | 1 |
Cumulative | 4 | ||
Effect (EF) | Evaluate the cause–effect relationship | Indirect | 1 |
Direct | 4 | ||
Periodicity (PR) | Regularity of the manifestation of the effect | Irregular | 1 |
Periodic | 2 | ||
Continuous | 4 |
Importance of the Impact | |
---|---|
No interaction | 0 |
Very low | 1 to 13 |
Low | 14 to 24 |
Moderate | 25 to 49 |
High | 50 |
Importance Units (100) | ||
---|---|---|
Environment | 80 | |
Hydrological | 20 | |
Geomorphological | 20 | |
Biological | 20 | |
Chemicals | 20 | |
Sociocultural | 20 | |
Perception | 10 | |
Economy | 10 |
Variable | Range | Weight | Labels | Fuzzy Number |
---|---|---|---|---|
Intensity | [0, 1] | 3/13 | Low | (0.0, 0.0, 0.11, 0.22) |
Medium | (0.11, 0.22, 0.33, 0.44) | |||
High | (0.33, 0.44, 0.55, 0.66) | |||
Very High | (0.55, 0.66, 0.77, 0.88) | |||
Total | (0.77, 0.88, 1.0, 1.0) | |||
Extension | [0, 100]% | 2/13 | Local | (0, 0, 1.4, 2.9) |
Partial | (1.4, 2.9, 4.3, 5.7) | |||
Vast | (4.3, 5.7, 7.1, 8.6) | |||
Total | (7.1, 8.6, 100, 100) | |||
Moment | [0, 1] | 1/13 | Long Term | (0.0, 0.0, 0.2, 0.4) |
Medium Term | (0.2, 0.4, 0.6, 0.8) | |||
Immediate | (0.6, 0.8, 1.0, 1.0) | |||
Persistence | [0, 1] | 1/13 | Brief | (0.0, 0.0, 0.2, 0.4) |
Temporal | (0.2, 0.4, 0.6, 0.8) | |||
Permanent | (0.6, 0.8, 1.0, 1.0) | |||
Reversibility | [0, 1] | 1/13 | Short Term | (0.0, 0.0, 0.2, 0.4) |
Medium Term | (0.2, 0.4, 0.6, 0.8) | |||
Non-Reversible | (0.6, 0.8, 1.0, 1.0) | |||
Recoverability | [0, 1] | 1/13 | Short Term | (0.0, 0.0, 0.14, 0.29) |
Medium Term | (0.14, 0.29, 0.43, 0.57) | |||
Recoverable | (0.43, 0.57, 0.71, 0.86) | |||
Irrecoverable | (0.71, 0.86, 1.0, 1.0) | |||
Synergy | [0,1] | 1/13 | Simple | (0.0, 0.0, 0.2, 0.4) |
Synergic | (0.2, 0.4, 0.6, 0.8) | |||
Very Synergic | (0.6, 0.8, 1.0, 1.0) | |||
Accumulation | [0, 1] | 1/13 | Simple | (0.0, 0.0, 0.33, 0.66) |
Accumulative | (0.33, 0.66, 1.0, 1.0) | |||
Cause–Effect | [0, 1] | 1/13 | Indirect | (0.0, 0.0, 0.33, 0.66) |
Direct | (0.33, 0.66, 1.0, 1.0) | |||
Periodicity | [0, 1] | 1/13 | Irregular | (0.0, 0.0, 0.2, 0.4) |
Periodic | (0.2, 0.4, 0.6, 0.8) | |||
Continuous | (0.6, 0.8, 1.0, 1.0) | |||
Importance | [−1, 1] | Critical − | (−1, −1, −0.846, −0.692) | |
Severe − | (−0.846, −0.692, −0.538, −0.385) | |||
Moderate − | (−0.538, −0.385, −0.231, −0.077) | |||
Compatible | (−0.231, −0.077, 0.077, 0.231) | |||
Moderate + | (0.077, 0.231, 0.385, 0.538) | |||
Severe + | (0.385, 0.538, 0.692, 0.846) | |||
Critical + | (0.692, 0.846, 1.000, 1.000) |
Devices | Floating | Submerged | |||||||
---|---|---|---|---|---|---|---|---|---|
Stage | Construction | Operation | Maintenance | Dismantling | Construction | Operation | Maintenance | Dismantling | |
Hydrologic | Current direction | Compatible | Moderate | Compatible | Compatible | Compatible | Severe | Compatible | Compatible |
Wave energy | Severe | Critical | Moderate | Moderate | Compatible | Moderate | Compatible | Compatible | |
Water turbulence | Moderate | Severe | Moderate | Moderate | Moderate | Moderate | Compatible | Compatible | |
Geomorphologic | Local sediment transport | Compatible | Compatible | Compatible | Compatible | Moderate | Moderate | Compatible | Moderate |
Local sediment properties | Compatible | Compatible | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible | |
Far sediment transport | Severe | Severe | Moderate | Moderate | Compatible | Moderate | Compatible | Compatible | |
Far sediment properties | Severe | Severe | Moderate | Moderate | Compatible | Moderate | Compatible | Compatible | |
Biological | Collision risk | Severe | Critical | Moderate | Moderate | Moderate | Severe | Compatible | Compatible |
Changes in behaviour | Severe | Critical | Moderate | Moderate | Moderate | Severe | Compatible | Moderate | |
Noise and vibration | Severe | Critical | Moderate | Moderate | Moderate | Severe | Compatible | Moderate | |
Electromagnetism | Severe | Severe | Moderate | Moderate | Moderate | Severe | Moderate | Moderate | |
Population density | Critical | Critical | Moderate | Moderate | Moderate | Severe | Moderate | Moderate | |
Ecological connectivity | Critical | Critical | Moderate | Moderate | Moderate | Severe | Moderate | Moderate | |
Creation of new habitats | Compatible | Severe | Compatible | Compatible | Compatible | Severe | Severe | Severe | |
Chemical | Water quality | Moderate | Moderate | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible |
Nutrients distribution | Compatible | Moderate | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible | |
Sociocultural | Scenic value | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible |
Impact on fishing | Compatible | Moderate | Severe | Compatible | Moderate | ||||
Tourism | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | |
Mental health | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible |
Devices | Fixed to Ocean Floor | Onshore | |||||||
---|---|---|---|---|---|---|---|---|---|
Stage | Construction | Operation | Maintenance | Dismantling | Construction | Operation | Maintenance | Dismantling | |
Hydrologic | Current direction | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible |
Wave energy | Compatible | Compatible | Compatible | Compatible | Moderate | Critical | Compatible | Moderate | |
Water turbulence | Moderate | Critical | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | |
Geomorphologic | Local sediment transport | Moderate | Critical | Compatible | Moderate | Moderate | Critical | Compatible | Moderate |
Local sediment properties | Moderate | Critical | Compatible | Moderate | Moderate | Critical | Compatible | Moderate | |
Far sediment transport | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | |
Far sediment properties | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible | |
Biological | Collision risk | Compatible | Moderate | Compatible | Compatible | Compatible | Compatible | Compatible | Compatible |
Changes in behaviour | Moderate | Severe | Moderate | Moderate | Moderate | Critical | Moderate | Moderate | |
Noise and vibration | Moderate | Severe | Compatible | Moderate | Moderate | Critical | Compatible | Moderate | |
Electromagnetism | Moderate | Severe | Moderate | Moderate | Compatible | Compatible | Compatible | Compatible | |
Population density | Moderate | Critical | Moderate | Moderate | Moderate | Critical | Moderate | Moderate | |
Ecological connectivity | Moderate | Critical | Moderate | Moderate | Moderate | Moderate | Moderate | ||
Creation of new habitats | Compatible | Critical | Severe | Severe | Compatible | Compatible | Compatible | Compatible | |
Chemical | Water quality | Compatible | Moderate | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible |
Nutrients distribution | Compatible | Critical | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible | |
Sociocultural | Scenic value | Compatible | Compatible | Compatible | Compatible | Severe | Critical | Compatible | Compatible |
Impact on fishing | Compatible | Moderate | Compatible | Compatible | Compatible | Moderate | Compatible | Compatible | |
Tourism | Compatible | Compatible | Compatible | Compatible | Severe | Critical | Compatible | Compatible | |
Mental health | Compatible | Compatible | Compatible | Compatible | Severe | Critical | Compatible | Compatible |
Devices | Floating | Submerged | |||||||
---|---|---|---|---|---|---|---|---|---|
Stage | Construction | Operation | Maintenance | Dismantling | Construction | Operation | Maintenance | Dismantling | |
Hydrologic | Current direction | 4 | 20 | 10 | 5 | 8 | 40 | 4 | 6 |
Wave energy | 34 | 66 | 13 | 23 | 4 | 12 | 0 | 0 | |
Water turbulence | 18 | 34 | 13 | 11 | 13 | 24 | 7 | 10 | |
Geomorphologic | Local sediment transport | 0 | 0 | 0 | 0 | 20 | 24 | 0 | 17 |
Local sediment properties | 0 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | |
Far sediment transport | 30 | 47 | 18 | 21 | 0 | 23 | 0 | 0 | |
Far sediment properties | 30 | 47 | 16 | 21 | 0 | 23 | 0 | 0 | |
Biological | Collision risk | 33 | 52 | 18 | 17 | 17 | 40 | 6 | 6 |
Changes in behaviour | 29 | 52 | 16 | 22 | 24 | 37 | 9 | 23 | |
Noise and vibration | 46 | 54 | 24 | 20 | 19 | 31 | 5 | 13 | |
Electromagnetism | 28 | 40 | 15 | 15 | 22 | 38 | 13 | 21 | |
Population density | 47 | 58 | 25 | 17 | 22 | 40 | 18 | 23 | |
Ecological connectivity | 52 | 65 | 25 | 28 | 24 | 50 | 11 | 18 | |
Creation of new habitats | 0 | 37 | 2 | 0 | 0 | 42 | 0 | 0 | |
Chemical | Water quality | 9 | 19 | 0 | 6 | 10 | 24 | 3 | 10 |
Nutrients distribution | 8 | 13 | 0 | 0 | 10 | 24 | 3 | 10 | |
Sociocultural | Scenic value | 8 | 12 | 0 | 5 | 0 | 0 | 0 | 0 |
Impact on fishing | 47 | 64 | 4 | 21 | 47 | 64 | 4 | 21 | |
Tourism | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
Mental health | 8 | 12 | 0 | 5 | 0 | 0 | 0 | 0 |
Devices | Fixed to Ocean Floor | Onshore | |||||||
---|---|---|---|---|---|---|---|---|---|
Stage | Construction | Operation | Maintenance | Dismantling | Construction | Operation | Maintenance | Dismantling | |
Hydrologic | Current direction | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
Wave energy | 0 | 0 | 0 | 0 | 27 | 53 | 9 | 25 | |
Water turbulence | 25 | 54 | 10 | 22 | 0 | 0 | 0 | 0 | |
Geomorphologic | Local sediment transport | 29 | 58 | 0 | 24 | 29 | 56 | 0 | 24 |
Local sediment properties | 29 | 58 | 0 | 24 | 29 | 58 | 0 | 24 | |
Far sediment transport | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | |
Far sediment properties | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | |
Biological | Collision risk | 10 | 27 | 5 | 6 | 0 | 0 | 0 | 0 |
Changes in behaviour | 27 | 49 | 13 | 23 | 27 | 52 | 13 | 23 | |
Noise and vibration | 17 | 34 | 5 | 11 | 23 | 54 | 5 | 11 | |
Electromagnetism | 22 | 36 | 13 | 21 | 0 | 0 | 0 | 0 | |
Population density | 27 | 51 | 19 | 20 | 27 | 51 | 19 | 20 | |
Ecological connectivity | 30 | 62 | 14 | 23 | 30 | 62 | 14 | 23 | |
Creation of new habitats | 0 | 53 | 32 | 46 | 0 | 0 | 0 | 0 | |
Chemical | Water quality | 10 | 24 | 3 | 10 | 10 | 26 | 3 | 10 |
Nutrients distribution | 10 | 24 | 3 | 10 | 10 | 26 | 3 | 10 | |
Sociocultural | Scenic value | 0 | 0 | 0 | 0 | 39 | 52 | 0 | 0 |
Impact on fishing | 0 | 17 | 0 | 0 | 9 | 14 | 4 | 9 | |
Tourism | 0 | 0 | 0 | 0 | 39 | 52 | 0 | 0 | |
Mental health | 0 | 0 | 0 | 0 | 39 | 52 | 0 | 0 |
Group | Family | Genus | Species | Common Name | Cat.NOM-059- SEMARNAT-2001 | Cat.IUCN Red List |
---|---|---|---|---|---|---|
Corals | Acroporidae | Acropora | cervicornis | Deer horn | special protection | |
Acroporidae | Acropora | palmata | Elk horn | special protection | ||
Antipathidae | Antipathes | bichitoena | Black coral | special protection | ||
Antipathidae | Antipathes | grandis | Black coral | special protection | ||
Antipathidae | Antipathes | ulex | Black coral | special protection | ||
Plexauridae | Plexaura | homomalla | Sea chandelier | special protection | ||
Plexauridae | Plexaurella | dichotoma | Sea chandelier | special protection | ||
Plants | Combretaceae | Conacarpus | erectus | Button or tight mangrove | special protection | |
Rhizophoraceae | Rhizophora | mangle | red mangrove | Special protection Endemic | ||
Fish | Balistidae | Balistes | vetula | Triggerfish | VU A2d | |
Batrachoididae | Sanopus | splendidus | Frog fish | VU A2D | ||
Poecilidae | Poecilia | velifera | Big fin mole | Endangered Endemic | ||
Herpetofauna | Cheloniidae | Caretta | caretta | Loggerhead sea turtle | Endangered | EN A1abd |
Cheloniidae | Chelonia | mydas | White turtle | Endangered | EN A1abd | |
Cheloniidae | Eretmochelys | imbricata | Hawksbill sea turtle | special protection | CR A 1BD ver 2.3 (1994) | |
Dermechelyidae | Dermochelys | coriacea | Leatherback sea turtle | Endangered | CR A 1BD | |
Marine mammals | Delphinidae | Globicephala | macrorhynchus | Short-finned Pilot Whale | special protection | LR/cd |
Trichechidae | Trichechus | manatus | Caribbean manatee | Endangered | VU A2d |
Device | Vertical Axis Helical Turbine | ||||
---|---|---|---|---|---|
Stage | Construction | Operation | Maintenance | Dismantling | |
Hydrological | Current direction | Moderate | Critical | Compatible | Moderate |
Wave energy | Moderate | Severe | Compatible | Moderate | |
Water turbulence | Moderate | Severe | Compatible | Moderate | |
Geomorphological | Local sediment transport | Severe | Critical | Compatible | Severe |
Local sediment properties | Severe | Critical | Compatible | Severe | |
Far sediment transport | Moderate | Severe | Compatible | Moderate | |
Far sediment properties | Moderate | Severe | Compatible | Moderate | |
Biological | Collision risk | Severe | Moderate | Compatible | Severe |
Changes in behavior | Severe | Critical | Moderate | Severe | |
Noise and vibration | Severe | Critical | Severe | Severe | |
Electromagnetism | Moderate | Severe | Compatible | Moderate | |
Population density | Severe | Severe | Severe | Severe | |
Ecological connectivity | Severe | Severe | Compatible | Severe | |
Creation of new habitats | Compatible | Moderate | Compatible | Compatible | |
Chemical | Water quality | Moderate | Severe | Severe | Moderate |
Nutrients distribution | Moderate | Severe | Severe | Moderate | |
Sociocultural | Scenic value | Compatible | Compatible | Compatible | Compatible |
Impact on fishing | Severe | Severe | Compatible | Severe | |
Tourism | Compatible | Compatible | Compatible | Compatible | |
Mental health | Compatible | Compatible | Compatible | Compatible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, P.; Mendoza, E. A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants. Energies 2025, 18, 272. https://doi.org/10.3390/en18020272
Flores P, Mendoza E. A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants. Energies. 2025; 18(2):272. https://doi.org/10.3390/en18020272
Chicago/Turabian StyleFlores, Pamela, and Edgar Mendoza. 2025. "A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants" Energies 18, no. 2: 272. https://doi.org/10.3390/en18020272
APA StyleFlores, P., & Mendoza, E. (2025). A Fuzzy Logic Technique for the Environmental Impact Assessment of Marine Renewable Energy Power Plants. Energies, 18(2), 272. https://doi.org/10.3390/en18020272