Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines
Abstract
:1. Introduction
Present Contribution
2. Materials and Methods
2.1. Experimental Setup
2.2. Imaging System Setup
2.3. GT-POWER Setup
2.4. Artificial Neural Network Setup
- = number of observations.
- = th temporal instant.
- = normalized predicted value.
- = normalized target value (experimental results).
- = predicted value (not normalized).
- = target value (not normalized).
3. Description of the Datasets
3.1. Dataset 1
3.2. Dataset 2
3.3. Dataset 3
4. Results and Discussion
4.1. Dataset 1 Results
4.2. Dataset 2 Results
4.3. Dataset 3 Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AI | artificial intelligence |
ANN | artificial neural network |
APmax | crank angle degree at which Pmax occurs |
aBDC | after bottoming dead center |
aIT | after ignition timing |
aTDC | after top dead center |
BP | back-propagation |
BPANN | back-propagation artificial neural network |
CAD | crank angle degree |
CFD | computational fluid dynamics |
CPU | central processing unit |
E85 | ethanol |
ECU | engine control unit |
ERR | percentage error |
FFNN | feed-forward neural network |
FL | fuzzy logic |
GHG | greenhouse gasses |
H2 | hydrogen |
ICE | internal combustion engine |
IMEP | indicated mean effective pressure |
IT | ignition timing |
(1/φ) | air excess coefficient |
M100 | methanol |
MAE | mean absolute error |
MBT | maximum brake torque |
MFB | mass fraction burned |
ML | machine learning |
MSE | mean squared error |
NOx | nitrogen oxides |
O2 | oxygen |
Pcyl | in-cylinder pressure |
Pcyl, avg | average value of the in-cylinder pressure |
Pmax | maximum in-cylinder pressure |
PFI | port fuel injection |
R2 | coefficient of determination |
req | equivalent flame radius |
RAM | random access memory |
RBF | radial basis function |
RMSE | root mean square error |
TVO | throttle valve opening |
References
- Joshi, A. Review of vehicle engine efficiency and emissions. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 2479–2507. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Berggren, C.; Magnusson, T. Reducing automotive emissions—The potentials of combustion engine technologies and the power policy. Energy Policy 2012, 41, 636–643. [Google Scholar] [CrossRef]
- Shahzad, K.; Cheema, I.I. Low-carbon technologies in automotive industry and decarbonizing transport. J. Power Sources 2024, 591, 233888. [Google Scholar] [CrossRef]
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- Kalghatgi, G.; Johansson, B. Gasoline compression ignition approach to efficient, clean and affordable future engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 118–138. [Google Scholar] [CrossRef]
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Kurtyka, K. Exhaust emissions and energy consumption analysis of conventional, hybrid, and electric vehicles in real driving cycles. Energies 2020, 13, 6423. [Google Scholar] [CrossRef]
- Anika, O.C.; Nnabuife, S.G.; Bello, A.; Okoroafor, E.R.; Kuang, B.; Villa, R. Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualization by 2050: A critical review. Carbon Capture Sci. Technol. 2022, 5, 100072. [Google Scholar] [CrossRef]
- Baldinelli, A.; Francesconi, M.; Antonelli, M. Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles? Energies 2024, 17, 4728. [Google Scholar] [CrossRef]
- Ricci, F.; Mariani, F.; Papi, S.; Zembi, J.; Battistoni, M.; Grimaldi, C.N. The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine. Energies 2024, 17, 1659. [Google Scholar] [CrossRef]
- Martinelli, R.; Ricci, F.; Zembi, J.; Battistoni, M.; Grimaldi, C.; Papi, S. Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine Fueled with E85; SAE Technical Paper 2022-24-0034; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Falfari, S.; Cazzoli, G.; Mariani, V.; Bianchi, G.M. Hydrogen Application as a Fuel in Internal Combustion Engines. Energies 2023, 16, 2545. [Google Scholar] [CrossRef]
- Onorati, A.; Payri, R.; Vaglieco, B.; Agarwal, A.; Bae, C.; Bruneaux, G.; Canakci, M.; Gavaises, M.; Gunthner, M.; Hasse, C.; et al. The role of hydrogen for future internal combustion engines. Int. J. Engine Res. 2022, 23, 529–540. [Google Scholar] [CrossRef]
- Duan, X.; Xu, L.; Xu, L.; Jiang, P.; Gan, T.; Liu, H.; Ye, S.; Sun, Z. Performance analysis and comparison of the spark ignition engine fueled with industrial by-product hydrogen and gasoline. J. Clean. Prod. 2023, 424, 138899. [Google Scholar] [CrossRef]
- Sementa, P.; Antolini, J.B.d.V.; Tornatore, C.; Catapano, F.; Vaglieco, B.M.; Sánchez, J.J.L. Exploring the potentials of lean-burn hydrogen SI engine compared to methane operation. Int. J. Hydrogen Energy 2022, 47, 25044–25056. [Google Scholar] [CrossRef]
- Avana, M.; Ricci, F.; Papi, S.; Zembi, J.; Battistoni, M.; Grimaldi, C.N. Performance Analysis of Hydrogen Combustion Under Ultra Lean Conditions in a Spark Ignition Research Engine Using a Barrier Discharge Igniter; SAE Technical Paper 2024-24-0036; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- Du, H.; Chai, W.S.; Wei, H.; Zhou, L. Status and challenges for realizing low emission with hydrogen ultra-lean combustion. Int. J. Hydrogen Energy 2024, 57, 1419–1436. [Google Scholar] [CrossRef]
- Aydin, K.; Kutanoglu, R. Effects of hydrogenation of fossil fuels with hydrogen and hydroxy gas on performance and emissions of internal combustion engines. Int. J. Hydrogen Energy 2018, 43, 14047–14058. [Google Scholar] [CrossRef]
- Shi, C.; Ji, C.; Wang, S.; Yang, J.; Wang, H. Experimental and numerical study of combustion and emissions performance in a hydrogen-enriched Wankel engine at stoichiometric and lean operations. Fuel 2021, 291, 120181. [Google Scholar] [CrossRef]
- Ricci, F.; Zembi, J.; Avana, M.; Grimaldi, C.N.; Battistoni, M.; Papi, S. Analysis of Hydrogen Combustion in a Spark Ignition Research Engine with a Barrier Discharge Igniter. Energies 2024, 17, 1739. [Google Scholar] [CrossRef]
- Suresh, D.; Porpatham, E. Influence of high compression ratio and hydrogen addition on the performance and emissions of a lean burn spark ignition engine fueled by ethanol-gasoline. Int. J. Hydrogen Energy 2023, 48, 14433–14448. [Google Scholar] [CrossRef]
- Diéguez, P.M.; Urroz, J.; Sáinz, D.; Machin, J.; Arana, M.; Gandía, L. Characterization of combustion anomalies in a hydrogen fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements. Energy Convers. Manag. 2018, 172, 67–80. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Gao, J.; Yao, A.; Zhang, Y.; Qu, G.; Yao, C.; Zhang, S.; Li, D. Investigation into the relationship between super-knock and misfires in an SI GDI engine. Energies 2021, 14, 2099. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Yun, H.; Zhang, H.; Xu, J. Diagnosis and control of abnormal combustion of hydrogen internal combustion engine based on the hydrogen injection parameters. Int. J. Hydrogen Energy 2022, 47, 15887–15895. [Google Scholar] [CrossRef]
- Ye, Y.; Gao, W.; Li, Y.; Zhang, P.; Cao, X. Numerical study of the effect of injection timing on the knock combustion in a direct-injection hydrogen engine. Int. J. Hydrogen Energy 2020, 45, 27904–27919. [Google Scholar] [CrossRef]
- Verhelst, S.; Demuynck, J.; Sierens, E.; Huyskens, P. Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. Int. J. Hydrogen Energy 2010, 35, 4399–4408. [Google Scholar] [CrossRef]
- Srinivasan, C.B.; Subramanian, R. Hydrogen as a Spark Ignition Engine Fuel Technical Review. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 2014, 14, 111–117. [Google Scholar]
- Wang, Y. A novel two-zone thermodynamic model for spark-ignition engines based on an idealized thermodynamic process. Energies 2020, 13, 3801. [Google Scholar] [CrossRef]
- Corrigan, D.J.; Breda, S.; Fontanesi, S. A Simple CFD Model for Knocking Cylinder Pressure Data Interpretation: Part 1; SAE Technical Paper 2021-24-0051; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Sizikov, V.S.; Sidorov, D.N. Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography. Appl. Numer. Math. 2016, 106, 69–78. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, L.; Lee, P.; Cai, Y. Prediction of in-cylinder pressure of diesel engine based on extreme gradient boosting and sparrow search algorithm. Appl. Sci. 2022, 12, 1756. [Google Scholar] [CrossRef]
- Maroteaux, F.; Sebai, S.; Mancaruso, E.; Rossetti, S.; Schembri, P.; Radja, K.; Barichella, A. Numerical and Experimental Analysis of Dual Fuel Hydrogen/Diesel Combustion at Varying Engine Speed on a Single Cylinder Engine; SAE Technical Paper 2024-24-0044; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- Bakar, R.A.; Mohammed, M.K.; Rahman, M.M. Numerical study on the performance characteristics of hydrogen fueled port injection internal combustion engine. Am. J. Eng. Appl. Sci 2009, 2, 407–415. [Google Scholar] [CrossRef]
- Kulkarni, D.; Patil, A.; Wagh, J.; Chougule, S.D. Modelling of Internal Combustion Engine using GT Power. Int. J. Eng. Res. Technol. (IJERT) 2019, 8, 92–94. [Google Scholar]
- Done, L.; Lahane, S.; Nandgaonkar, M.R. Modeling of Single Cylinder Compression Ignition Engine by Using GT-Power Software and Performance Analysis. In Proceedings of the 2nd Indian International Conference on Industrial Engineering and Operations Management Warangal, Telangana, India, 16–18 August 2022. [Google Scholar]
- Zhao, F.; Hung, D.L.S. Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook. Appl. Therm. Eng. 2023, 220, 119633. [Google Scholar] [CrossRef]
- Fang, L.; Singh, H.; Ohashi, T.; Sanno, M.; Lin, G.; Yilmaz, E.; Ichiyanagi, M.; Suzuki, T. Effect of Machine Learning Algorithms on Prediction of In-Cylinder Combustion Pressure of Ammonia–Oxygen in a Constant-Volume Combustion Chamber. Energies 2024, 17, 746. [Google Scholar] [CrossRef]
- Ricci, F.; Avana, M.; Mariani, F. Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation. Energies 2024, 17, 3932. [Google Scholar] [CrossRef]
- Hanuschkin, A.; Schober, S.; Bode, J.; Schorr, J.; Böhm, B.; Krüger, C.; Peters, S. Machine learning–based analysis of in-cylinder flow fields to predict combustion engine performance. Int. J. Engine Res. 2021, 22, 257–272. [Google Scholar] [CrossRef]
- Solmaz, Ö.; Gürbüz, H.; Karacor, M. Comparison of artificial neural network and fuzzy logic approaches for the prediction of in-cylinder pressure in a spark ignition engine. J. Dyn. Syst. Meas. Control 2020, 142, 091005. [Google Scholar] [CrossRef]
- Bizon, K.; Continillo, G.; Lombardi, S.; Mancaruso, E.; Vaglieco, B.M. ANN-based virtual sensor for on-line prediction of in-cylinder pressure in a diesel engine. Comput. Aided Chem. Eng. 2014, 33, 763–768. [Google Scholar]
- Murugesan, S.; Srihari, S.; Senthilkumar, D. Investigation of Usage of Artificial Neural Network Algorithms for Prediction of In-Cylinder Pressure in Direct Injection Engines; SAE Technical Paper 2022-01-5089; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Wright, L.G.; Onodera, T.; Stein, M.M.; Wang, T.; Schachter, D.T.; Hu, Z.; McMahon, P.L. Deep physical neural networks trained with backpropagation. Nature 2022, 601, 549–555. [Google Scholar] [CrossRef]
- Irimescu, A.; Tornatore, C.; Marchitto, L.; Merola, S.S. Compression Ratio and Blow-by Rates Estimation Based on Motored Pressure Trace Analysis for an Optical Spark Ignition Engine. Appl. Therm. Eng. 2013, 61, 101–109. [Google Scholar] [CrossRef]
- Merola, S.S.; Irimescu, A.; Tornatore, C.; Valentino, G. Effect of the Fuel-Injection Strategy on Flame-Front Evolution in an Optical Wall-Guided DISI Engine with Gasoline and Butanol Fueling. J. Energy Eng. 2016, 142, E4015004. [Google Scholar] [CrossRef]
- Azeem, N.; Beatrice, C.; Vassallo, A.; Pesce, F.; Davide, G.; Guido, C. Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive and systemic Experimentation on a Hydrogen Internal Combustion Engine; SAE Technical Paper 2023-01-0340; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Cruccolini, V.; Discepoli, G.; Ricci, F.; Petrucci, L.; Grimaldi, C.; Papi, S.; Dal Re, M. Comparative Analysis Between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions; SAE Technical Paper 2020-01-0276; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Ricci, F.; Mariani, F. Advanced Flame front Detection in Combustion Processes Using Autoencoder Approach. Energies 2024, 17, 1759. [Google Scholar] [CrossRef]
- Shawal, S.; Goschutz, M.; Schild, M.; Kaiser, S.; Neurohr, M.; Pfeil, J.; Koch, T. High-speed imaging of early flame growth in spark-ignited engines using different imaging systems via endoscopic and full optical access. SAE Int. J. Engines 2016, 9, 704–718. [Google Scholar] [CrossRef]
- Aleiferis, P.G.; Serras-Pereira, J.; Richardson, D. Characterization of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine. Fuel 2013, 109, 256–278. [Google Scholar] [CrossRef]
- GT-POWER: Engine Performance Application Manual; Gamma Technologies LLC 2024. Available online: https://www.gtisoft.com/gt-power/ (accessed on 11 November 2024).
- GT-SUITE: Integrated Multiphysics Systems Simulation; Gamma Technologies LLC 2024. Available online: https://www.gtisoft.com/gt-suite/ (accessed on 11 November 2024).
- Choi, S.; Kolodziej, C.P.; Hoth, A.; Wallner, T. Development and Validation of a Three-Pressure Analysis (tpa) gt-Power Model of the cfr f1/f2 Engine for Estimating Cylinder Conditions; SAE Technical Paper 2018-01-0848; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive overview of backpropagation algorithm for digital image denoising. Electronics 2022, 11, 1590. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, H.; Wang, Q.; Zheng, Z.; Wang, H.; Yue, Z.; Ming, Z.; Wen, M.; Feng, L.; Yao, M. Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. Combust. Flame 2022, 237, 111852. [Google Scholar] [CrossRef]
- Ricci, F.; Avana, M.; Mariani, F. A Deep Learning Method for the Prediction of Pollutant Emissions from Internal Combustion Engines. Appl. Sci. 2024, 14, 9707. [Google Scholar] [CrossRef]
Feature | Value | Unit |
---|---|---|
Displaced volume | 500 | cm3 |
Stroke | 88 | mm |
Bore | 85 | mm |
Connecting rod length | 139 | mm |
Compression ratio | 8.8:1 | - |
Number of valves | 4 | - |
Exhaust valve open | −13 | CAD aBDC |
Exhaust valve close | 25 | CAD aBDC |
Intake valve open | −20 | CAD aBDC |
Intake valve close | −24 | CAD aBDC |
Device | Description | Specifications |
---|---|---|
Kistler Kibox | Indicating combustion analysis system for signal acquisition | 10 analog input channels 2 encoder input channels |
Kistler 6061B | In-cylinder pressure piezoelectric sensor | Sensitivity: 25.9 pC/bar Range: 0–250 bar |
Kistler 5011B | Charge amplifier | Scale: 10 bar/V |
Kistler 4075A5 | Intake pressure piezoresistive sensor, downstream of throttle; reference for in-cylinder pressure pegging | Sensitivity: 25 mV/bar/mA Range: 0–5 bar |
AVL 365C | Optical encoder for crankshaft angular position and engine speed measurement | Resolution up to 0.1 CAD |
AVL 5700 | Dynamic brake, mechanically coupled with the engine crankshaft | Ensures the engine speed control through National Instruments hardware and in-house LabVIEW code |
Athena GET HPUH4 | Engine control unit | Controls the injector energizing time and IT by sending a trigger signal to the igniter control unit |
Horiba Mexa 720 | Fast lambda probe | Output: AFR, and O2%; can be used for different fuels via O/C and H/C ratio setting Accuracy: ±0.5% |
VEO-E Phantom 310-L | High-speed camera | Records the natural luminosity of initial combustion flames |
Feature | Value | Unit |
---|---|---|
Image resolution | 512 × 512 | pixel |
Sampling rate | 11 | kHz |
Exposure time | 90 | μs |
Bit depth | 8 | bit |
Spatial resolution | 130 | μm/pixel |
Temporal resolution (at 1000 rpm) | 0.6 | CAD/frame |
N° of events recorded | 63 | - |
Feature | Value | Unit |
---|---|---|
Intake pressure | 1 | bar |
Intake temperature | 310 | K |
Intake fluid composition | air | - |
Exhaust pressure | 1 | bar |
Exhaust temperature | 1130 | K |
Exhaust fluid composition | exhaust gases | - |
Injector delivery rate | 0.0360 ( = 1.6) 0.0326 ( = 2.0) 0.0303 ( = 2.3) | g/s |
Injected fuel temperature | 293 | K |
Injection timing angle | 360 | deg |
Injection location | outlet end of the pipe (1.0) | - |
Cycle Number [-] | RMSE Pcyl [%] | ERR Pmax [%] | ERR APmax [%] |
---|---|---|---|
1 | 0.26 | 1.46 | 2.46 |
2 | 0.58 | 1.32 | 4.39 |
3 | 0.34 | 0.52 | 8.85 |
4 | 0.17 | 0.58 | 1.87 |
5 | 0.26 | 1.81 | 6.84 |
6 | 0.23 | 1.79 | 5.09 |
7 | 0.71 | 2.22 | 8.16 |
8 | 0.72 | 3.04 | 5.39 |
9 | 0.26 | 2.07 | 5.88 |
10 | 0.23 | 0.83 | 4.46 |
11 | 0.52 | 1.33 | 9.35 |
12 | 0.30 | 1.07 | 1.71 |
13 | 0.29 | 1.67 | 2.66 |
14 | 0.32 | 0.37 | 0.01 |
15 | 0.19 | 0.81 | 1.74 |
avg. | 0.36 | 1.39 | 4.59 |
Cycle Number [-] | RMSE Pcyl [%] | ERR Pmax [%] | ERR APmax [%] |
---|---|---|---|
1 | 0.36 | 1.44 | 4.76 |
2 | 0.30 | 0.31 | 0.01 |
3 | 0.63 | 4.38 | 7.52 |
4 | 0.51 | 2.48 | 8.27 |
5 | 0.29 | 0.50 | 5.98 |
6 | 0.49 | 1.70 | 6.50 |
7 | 0.50 | 2.06 | 8.40 |
8 | 0.30 | 0.41 | 1.58 |
9 | 0.62 | 4.19 | 7.69 |
10 | 0.54 | 1.94 | 7.09 |
11 | 0.20 | 0.06 | 0.83 |
12 | 0.27 | 2.02 | 2.54 |
13 | 0.33 | 0.41 | 1.64 |
14 | 0.44 | 2.52 | 7.90 |
15 | 0.30 | 1.12 | 1.68 |
avg. | 0.41 | 1.70 | 4.82 |
Cycle Number [-] | RMSE Pcyl [%] | ERR Pmax [%] | ERR APmax [%] |
---|---|---|---|
1 | 1.05 | 4.78 | 9.17 |
2 | 0.69 | 0.78 | 5.26 |
3 | 0.26 | 1.33 | 2.42 |
4 | 0.31 | 0.38 | 1.71 |
5 | 0.37 | 2.17 | 0.83 |
6 | 0.25 | 0.26 | 4.51 |
7 | 0.25 | 1.22 | 2.56 |
8 | 0.27 | 1.16 | 0.84 |
9 | 0.22 | 0.48 | 4.96 |
10 | 0.81 | 4.97 | 7.02 |
11 | 0.25 | 0.64 | 7.32 |
12 | 0.23 | 0.12 | 0.81 |
13 | 0.71 | 3.30 | 3.31 |
14 | 0.50 | 1.50 | 9.45 |
15 | 0.50 | 3.61 | 1.64 |
avg. | 0.44 | 1.78 | 4.92 |
avg [-] | RMSE Pcyl, avg ANN [%] | RMSE Pcyl, avg GT-POWER [%] | ERR Pmax ANN [%] | ERR Pmax GT-POWER [%] | ERR APmax ANN [%] | ERR APmax GT-POWER [%] |
---|---|---|---|---|---|---|
1.6 | 0.28 | 1.41 | 2.33 | 0.33 | 0.75 | 1.50 |
2.0 | 0.38 | 0.92 | 0.99 | 0.25 | 0.96 | 9.62 |
2.3 | 1.32 | 1.57 | 2.48 | 0.35 | 1.96 | 19.61 |
Cycle Number [-] | RMSE Pcyl [%] | RMSE req [%] |
---|---|---|
1 | 0.25 | 2.21 |
2 | 0.52 | 2.26 |
3 | 0.32 | 2.87 |
4 | 0.30 | 2.79 |
5 | 0.36 | 2.21 |
6 | 0.40 | 2.67 |
7 | 0.45 | 2.40 |
8 | 0.47 | 2.78 |
9 | 0.25 | 2.90 |
10 | 0.38 | 2.43 |
avg. | 0.37 | 2.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, F.; Avana, M.; Mariani, F. Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines. Energies 2025, 18, 299. https://doi.org/10.3390/en18020299
Ricci F, Avana M, Mariani F. Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines. Energies. 2025; 18(2):299. https://doi.org/10.3390/en18020299
Chicago/Turabian StyleRicci, Federico, Massimiliano Avana, and Francesco Mariani. 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines" Energies 18, no. 2: 299. https://doi.org/10.3390/en18020299
APA StyleRicci, F., Avana, M., & Mariani, F. (2025). Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines. Energies, 18(2), 299. https://doi.org/10.3390/en18020299