Design and Implementation of a Wireless Power Transfer System Using LCL Coupling Network with Inherent Constant-Current and Constant-Voltage Output for Battery Charging
Abstract
:1. Introduction
2. System Analysis and Control System Design
2.1. Topology of the Designed System Using LCL Resonant Network
2.2. Analysis of LCL Coupling Equivalent Model
2.3. Parameter Design of the Proposed System
2.4. Control System Design
3. The LCL Resonant Network Parameter Design and Simulation Verification
3.1. Parameter Scanning Simulation
3.2. Simulation Verification in PSIM
4. Experimental Platform Verification
4.1. System Characteristic Scanning
4.2. System Dynamic Response Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devassy, S.; Singh, B. Performance analysis of solar PV array and battery integrated unified power quality conditioner for microgrid systems. IEEE Trans. Ind. Electron. 2020, 68, 4027–4035. [Google Scholar] [CrossRef]
- Fathabadi, H. Improving the power efficiency of a PV power generation system using a proposed electrochemical heat engine embedded in the system. IEEE Trans. Power Electron. 2018, 34, 8626–8633. [Google Scholar] [CrossRef]
- Xiao, J.; Jiang, C.; Wang, B. A review on dynamic recycling of electric vehicle battery: Disassembly and echelon utilization. Batteries 2023, 9, 57. [Google Scholar] [CrossRef]
- Komiyama, Y.; Komanaka, A.; Zhu, W.; Konishi, A.; Nguyen, K.; Sekiya, H. Analysis and Design of Load-Independent Series Resonant Power Amplifier with Constant Current Output and Its Application for WPT System. IEEE Trans. Power Electron. 2024, 39, 6515–6525. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Z.; Liu, J.; Su, H. Analysis and Design of Wireless Charging Systems Without Extra Components for Load-Independent Constant Current and Voltage Battery Charging. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 3200–3210. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G. A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 2016, 32, 3301–3316. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wang, K.; Chen, W.; Yang, X. A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling. IEEE Trans. Power Electron. 2015, 30, 3998–4008. [Google Scholar] [CrossRef]
- Vu, H.N.; Choi, W. A novel dual full-bridge LLC resonant converter for CC and CV charges of batteries for electric vehicles. IEEE Trans. Ind. Electron. 2017, 65, 2212–2225. [Google Scholar] [CrossRef]
- Regensburger, B.; Sinha, S.; Kumar, A.; Maji, S.; Afridi, K.K. High-performance multi-MHz capacitive wireless power transfer system for EV charging utilizing interleaved-foil coupled inductors. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 10, 35–51. [Google Scholar] [CrossRef]
- Tan, L.; Guo, J.; Huang, X.; Liu, H.; Wang, W.; Yan, C.; Zhang, M. Coordinated source control for output power stabilization and efficiency optimization in WPT systems. IEEE Trans. Power Electron. 2017, 33, 3613–3621. [Google Scholar] [CrossRef]
- Chittoor, P.K.; Chokkalingam, B.; Mihet-Popa, L. A review on UAV wireless charging: Fundamentals, applications, charging techniques and standards. IEEE Access 2021, 9, 69235–69266. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, C.C. Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 2015, 65, 4768–4778. [Google Scholar] [CrossRef]
- Wu, S.-T.; Han, C.-H. Design and implementation of a full-bridge LLC converter with wireless power transfer for dual mode output load. IEEE Access 2021, 9, 120392–120406. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, L.; Wang, Z.; Tang, C.; Chen, F.; Feng, H. Integrated LCC-LCC Topology for WPT System with CC Output Regarding Air Gap and Load Variations. IEEE Trans. Power Electron. 2024, 39, 11904–11915. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Y.; Liu, X.; Lin, F.; Xu, D. A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance. IEEE Trans. Power Electron. 2017, 33, 8525–8536. [Google Scholar] [CrossRef]
- Yang, L.; Ren, L.; Shi, Y.; Wang, M.; Geng, Z. Analysis and design of an S/S/P-compensated three-coil structure WPT system with constant current and constant voltage output. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 2487–2500. [Google Scholar] [CrossRef]
- Li, K.; Gong, Z.; Liu, Q.; Zheng, S.; Liu, J.; Wang, S. A MCR-WPT system based on LCL-S/P hybrid compensation network with CC/CV and maximum power optimization suiting for battery charging. IET Power Electron. 2024, 17, 351–363. [Google Scholar] [CrossRef]
- Auvigne, C.; Germano, P.; Ladas, D.; Perriard, Y. A dual-topology ICPT applied to an electric vehicle battery charger. In Proceedings of the International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2287–2292. [Google Scholar]
- Wei, Y.; Luo, Q.; Mantooth, H.A. An LLC and LCL-T resonant tanks based topology for battery charger application. CPSS Trans. Power Electron. Appl. 2021, 6, 263–275. [Google Scholar] [CrossRef]
- Qu, X.; Han, H.; Wong, S.C.; Tse, C.K.; Chen, W. Hybrid IPT topologies with constant current or constant voltage output for battery charging applications. IEEE Trans. Power Electron. 2015, 30, 6329–6337. [Google Scholar] [CrossRef]
- Chen, Y.; Kou, Z.; Zhang, Y.; He, Z.; Mai, R.; Cao, G. Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 1581–1594. [Google Scholar] [CrossRef]
- Song, K.; Li, Z.; Jiang, J.; Zhu, C. Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller. IEEE Trans. Power Electron. 2018, 33, 8065–8080. [Google Scholar] [CrossRef]
- Tran, D.H.; Vu, V.B.; Choi, W. Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Trans. Power Electron. 2017, 33, 175–187. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Liu, S.; Xu, Z.; Cai, C.; Guo, P. Analysis and design of three-coil structure WPT system with constant output current and voltage for battery charging applications. IEEE Access 2019, 7, 87334–87344. [Google Scholar] [CrossRef]
- Vu, V.-B.; Tran, D.-H.; Choi, W. Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications. IEEE Trans. Power Electron. 2017, 33, 7398–7410. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Input voltage | 24 V |
Normalized switching angular frequency | 0.5~2 |
Equivalent load | 10~90 ohms |
Primary resonant inductance | 8.5 u |
Primary resonant capacitor | 0.4 u |
Secondary resonant inductance | 17.5 u |
Secondary resonant capacitor | 0.2 u |
coefficient , | 0.5~2 |
Coupling coefficient k | 0.3 |
Parameter | Values |
---|---|
Primary inductance | 8.5 u |
Secondary inductance | 17.5 u |
Primary resonant inductance | 8.5 u |
Primary resonant capacitor | 0.4 u |
Secondary resonant inductance | 17.5 u |
Secondary resonant capacitor | 0.2 u |
DSP controller | dsPIC33FJ64GS606 |
Voltage sensor | HVS-AS3.3 |
Current sensor | CHCS-PS3.3-15A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, P.; Xu, S.; Wang, Z.; Hashimoto, S.; Sun, L.; Kawaguchi, T. Design and Implementation of a Wireless Power Transfer System Using LCL Coupling Network with Inherent Constant-Current and Constant-Voltage Output for Battery Charging. Energies 2025, 18, 341. https://doi.org/10.3390/en18020341
Nie P, Xu S, Wang Z, Hashimoto S, Sun L, Kawaguchi T. Design and Implementation of a Wireless Power Transfer System Using LCL Coupling Network with Inherent Constant-Current and Constant-Voltage Output for Battery Charging. Energies. 2025; 18(2):341. https://doi.org/10.3390/en18020341
Chicago/Turabian StyleNie, Pengqiang, Song Xu, Zhenlin Wang, Seiji Hashimoto, Linfeng Sun, and Takahiro Kawaguchi. 2025. "Design and Implementation of a Wireless Power Transfer System Using LCL Coupling Network with Inherent Constant-Current and Constant-Voltage Output for Battery Charging" Energies 18, no. 2: 341. https://doi.org/10.3390/en18020341
APA StyleNie, P., Xu, S., Wang, Z., Hashimoto, S., Sun, L., & Kawaguchi, T. (2025). Design and Implementation of a Wireless Power Transfer System Using LCL Coupling Network with Inherent Constant-Current and Constant-Voltage Output for Battery Charging. Energies, 18(2), 341. https://doi.org/10.3390/en18020341