Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs
Abstract
:1. Introduction
2. Assessment of Intelligent Completions for Enhanced Oil Recovery
2.1. Reservoir Model Description
2.2. Inflow Profile Analysis of MRC Wells
2.3. Sensitivity Study
2.3.1. Effects of the Intelligent Completion Type
2.3.2. Effects of Installation Timing of NICDs
2.3.3. Effects of the Number of NICDs
2.3.4. Effects of the Inflow Area of the NICDs
2.3.5. Effects of the Placement of the NICDs
2.3.6. Effects of the Timing of the CO2 WAG Injection
2.3.7. Effects of the Duration of the CO2 WAG Injection
3. Co-Optimization of Operational and Intelligent Completion Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, L.; Gu, Y. Optimization of miscible CO2 water-alternating-gas injection in the bakken formation. Energy Fuels 2014, 28, 6811–6819. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced oil recovery: An update review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Abedini, A.; Torabi, F. On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery. Fuel 2014, 124, 14–27. [Google Scholar] [CrossRef]
- Dellinger, S.E.; Patton, J.T.; Holbrook, S.T. CO2 mobility control. SPE J. 1984, 24, 191–196. [Google Scholar] [CrossRef]
- Gong, Y.; Gu, Y. Miscible CO2 simultaneous water-and-gas (CO2-SWAG) injection in the bakken formation. Energy Fuels 2015, 29, 5655–5665. [Google Scholar] [CrossRef]
- Gong, Y.; Gu, Y. Experimental study of water and CO2 flooding in the tight main pay zone and vuggy residual oil zone of a carbonate reservoir. Energy Fuels 2015, 29, 6213–6223. [Google Scholar] [CrossRef]
- Holt, T.; Lindeberg, E.; Berg, D.W. EOR and CO2 disposal-economic and capacity potential in the north sea. Energy Procedia 2009, 1, 4159–4166. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Eshraghi, S.E.; Bahrami, P.; Hasanbeygi, M.; Kazemzadeh, Y.; Vahedian, A. Comprehensive water-alternating-gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests. J. Pet. Sci. Eng. 2015, 133, 123–129. [Google Scholar] [CrossRef]
- Saleri, N.G.; Salamy, S.P.; Al-Otaibi, S.S. The expanding role of the drill bit in shaping the subsurface. JPT 2003, 55, 53–56. [Google Scholar] [CrossRef]
- Salamy, S.P.; Al-Mubarak, H.K.; Al-Ghamdi, M.S.; Hembling, D. Maximum-reservoir-contact-wells performance update: Shaybah field, saudi arabia. SPE Prod. Oper. 2008, 23, 439–443. [Google Scholar] [CrossRef]
- Li, Z.; Fernandes, P.; Zhu, D. Understanding the roles of inflow-control devices in optimizing horizontal-well performance. SPE Drill. Complet. 2011, 26, 376–385. [Google Scholar] [CrossRef]
- Da Cruz Schaefer, B.; Sampaio, M.A. Efficient workflow for optimizing intelligent well completion using production parameters in real-time. Oil Gas Sci. Technol. 2020, 75, 69. [Google Scholar] [CrossRef]
- Afuekwe, A.; Bello, K. Use of smart controls in intelligent well completion to optimize oil & gas recovery. J. Eng. Res. Rep. 2019, 5, 1–14. [Google Scholar]
- Abdou, M.; Kshada, A.; Shafiq, M.; Ogunyemi, O.; Chong, T.S.; Hadjar, K.; Leung, E. Applied production completion using optimum number of inflow control devices. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 1–4 November 2010. [Google Scholar]
- Ibrahim, A.; Fuzi, N.A.M. Completion design for enhanced oil recovery programs in brown fields. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 14–16 November 2016. [Google Scholar]
- Shahkarami, A.; Friedrichs, M.; Iyer, N.; Izadi, G.; Klenner, R.; Meyer, E.; Murrell, G. Utilizing bayesian optimization and machine learning to find the best inflow control design for horizontal wells. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2020. [Google Scholar]
- Wu, R.; Turpin, A.; MacDonald, D.; Kavanagh, D. A procedure for the configuration of an inflow control device completion using reservoir modelling and simulation in the north amethyst pool. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 9–11 October 2011. [Google Scholar]
- Minulina, P.; Al-Sharif, S.; Zeito, G.; Bouchard, M. The design, implementation and use of inflow control devices for improving the production performance of horizontal wells. In Proceedings of the SPE International Production and Operations Conference and Exhibition, Doha, Qatar, 14–16 May 2012. [Google Scholar]
- Lim, M. ICDS for uncertainty and heterogeneity mitigation: Evaluation of best practice design strategies for inflow control devices. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 17–19 October 2017. [Google Scholar]
- Wang, L.; Tian, Y.; Yu, X.; Wang, C.; Yao, B.; Wang, S.; Winterfeld, P.H.; Wang, X.; Yang, Z.; Wang, Y.; et al. Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 2017, 210, 425–445. [Google Scholar] [CrossRef]
- Koyanbayev, M.; Wang, L.; Wang, Y.; Hashmet, M.R.; Hazlett, R.D. Impact of gas composition and reservoir heterogeneity on miscible sour gas flooding—A simulation study. Fuel 2023, 346, 128267. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Chen, W.; Shafiq, M.U.; Qiu, X.; Zou, J.; Wang, H. Surrogate-assisted evolutionary optimization of co2-esgr and storage. Energy Fuels 2023, 37, 14800–14810. [Google Scholar] [CrossRef]
- Janiga, D.; Czarnota, R.; Stopa, J.; Wojnarowski, P.; Kosowski, P. Performance of nature inspired optimization algorithms for polymer enhanced oil recovery process. J. Pet. Sci. Eng. 2017, 154, 354–366. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B. Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. Greenh. Gases 2017, 7, 128–142. [Google Scholar] [CrossRef]
- Sun, Q.; Ampomah, W.; Kutsienyo, E.J.; Appold, M.; Adu-Gyamfi, B.; Dai, Z.; Soltanian, M.R. Assessment of CO2 trapping mechanisms in partially depleted oil-bearing sands. Fuel 2020, 278, 118356. [Google Scholar] [CrossRef]
- Enab, K.; Ertekin, T. Screening and optimization of CO2-WAG injection and fish-bone well structures in low permeability reservoirs using artificial neural network. J. Pet. Sci. Eng. 2021, 200, 108268. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Yang, D. Optimal parametric design for water-alternating-gas (WAG) process in a CO2-miscible flooding reservoir. J. Can. Pet. Technol. 2010, 49, 75–82. [Google Scholar] [CrossRef]
- Mohagheghian, E.; James, L.A.; Haynes, R.D. Optimization of hydrocarbon water alternating gas in the Norne field: Application of evolutionary algorithms. Fuel 2018, 223, 86–98. [Google Scholar] [CrossRef]
- Dossary, A.; Mohammad, A.; Nasrabadi, H. Well placement optimization using imperialist competitive algorithm. J. Pet. Sci. Eng. 2016, 147, 237–248. [Google Scholar] [CrossRef]
- Zadeh, M.R.D.; Fathian, M.; Gholamian, M.R. A new method for clustering based on development of imperialist competitive algorithm. China Commun. 2014, 11, 54–61. [Google Scholar] [CrossRef]
- Talatahari, S.; Kaveh, A.; Sheikholeslami, R. Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct. Multidiscip. Optim. 2012, 46, 355–367. [Google Scholar] [CrossRef]
- Bagheri, A.; Razeghi, H.R.; Amiri, G.G. Detection and estimation of damage in structures using imperialist competitive algorithm. Shock. Vib. 2021, 19, 405–419. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, J.; Li, Y.; Xia, C.; Zheng, J. Imperialist competitive algorithm for assembly sequence planning. Int. J. Adv. Manuf. Technol. 2013, 67, 2207–2216. [Google Scholar] [CrossRef]
- Ahmadi, S.; Forouzideh, N.; Alizadeh, S.; Papageorgiou, E. Learning fuzzy cognitive maps using imperialist competitive algorithm. Neural Comput. Appl. 2015, 26, 1333–1354. [Google Scholar] [CrossRef]
Components | CO2 | C1 to N2 | C2 to H2S | C3 to C5 | C6 to C10 |
---|---|---|---|---|---|
CO2 | × | × | × | × | × |
C1 to N2 | 0.11911 | × | × | × | × |
C2 to H2S | 0.11999 | 0.00037 | × | × | × |
C3 to C5 | 0.12 | 0.00058 | 0.00003 | × | × |
C6 to C10 | 0.0796 | 0.00089 | 0.00044 | 0.00016 | × |
Sw | Krw | Kro |
---|---|---|
0.06 | 0 | 0.8 |
0.1155 | 0.001718 | 0.64311 |
0.208 | 0.015615 | 0.42829 |
0.3005 | 0.046556 | 0.26616 |
0.393 | 0.096819 | 0.15 |
0.4855 | 0.16807 | 0.072875 |
0.578 | 0.26164 | 0.027481 |
0.6705 | 0.37866 | 0.006076 |
0.763 | 0.52013 | 0.000182 |
0.96 | 0.90679 | 0 |
Parameters | Values |
---|---|
Bottom hole pressure of producers (psi) | 2500 |
Oil production rate of horizontal producers (STB/d) | 3000 |
Oil production rate of MRC wells (STB/d) | 6000 |
Liquid production rate of total producers in the reservoir (STB/d) | 4000 |
Water injection rate (STB/d) | 3000 |
Gas injection rate (STB/d) | 7000 |
Hydrocarbon gas slug size (d) | 182 |
CO2 slug size (d) | 182 |
Water slug size (d) | 182 |
Timing of CO2 WAG injection (year) | 2034 |
Simulation Cases | Intelligent Completion Type | Installation Timing (MSCF/STB) | Numbers | Inflow Area (ft2) | Placement | Timing of CO2 WAG Injection (Year) | Duration of CO2 WAG Injection (Year) |
---|---|---|---|---|---|---|---|
1 | / | / | / | / | / | 2034 | 21 |
2 | NICD | 3 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
3 | AICD | 3 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
4 | LICD | 3 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
5 | SICD | 3 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
6 | AICV | 3 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
7 | NICD | 4 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
8 | NICD | 6 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
9 | NICD | 9 | 6 | 0.000541 | Uniform distribution | 2034 | 21 |
10 | NICD | 4 | 8 | 0.000541 | Uniform distribution | 2034 | 21 |
11 | NICD | 4 | 12 | 0.000541 | Uniform distribution | 2034 | 21 |
12 | NICD | 4 | 8 | 0.000141 | Uniform distribution | 2034 | 21 |
13 | NICD | 4 | 8 | 0.000341 | Uniform distribution | 2034 | 21 |
14 | NICD | 4 | 8 | 0.000403 | Uniform distribution | 2034 | 21 |
15 | NICD | 4 | 8 | 0.001141 | Uniform distribution | 2034 | 21 |
16 | NICD | 4 | 8 | 0.000341 | Non-uniform distribution | 2034 | 21 |
17 | NICD | 4 | 8 | 0.000541 | Uniform distribution | 2039 | 21 |
18 | NICD | 4 | 8 | 0.000541 | Uniform distribution | 2044 | 21 |
19 | NICD | 4 | 8 | 0.000541 | Uniform distribution | 2034 | 16 |
20 | NICD | 4 | 8 | 0.000541 | Uniform distribution | 2034 | 11 |
Parameters | Lower Bound | Upper Bound |
---|---|---|
Oil production rate of MRC wells (STB/d) | 2000 | 6000 |
CO2 slug size (d) | 60 | 300 |
Water slug size (d) | 60 | 300 |
The base strength of the 8 NICDs | 10−9 | 10−6 |
Inflow area of the 8 NICDs (ft2) | 0.0001 | 0.001 |
Flow coefficient of the 8 NICDs | 1 | 1.5 |
Parameters | MRC wells | Injectors | ||||||
---|---|---|---|---|---|---|---|---|
B1 | B2 | C1 | C2 | C3 | C4 | C5 | C6 | |
Oil production rate (STB/d) | 2730 | 2080 | - | - | - | - | - | - |
CO2 slug size (d) | - | - | 246 | 220 | 256 | 210 | 222 | 249 |
Water slug size (d) | - | - | 119 | 145 | 109 | 155 | 143 | 116 |
Parameters | NICD 1 | NICD 2 | NICD 3 | NICD 4 | NICD 5 | NICD 6 | NICD 7 | NICD 8 |
---|---|---|---|---|---|---|---|---|
Base strength of B1 well (10−9) | 12.28 | 107.27 | 650.21 | 979.83 | 374.25 | 998.69 | 115.85 | 950.59 |
Base strength of B2 well (10−9) | 521.34 | 1 | 1000 | 182.93 | 740.76 | 546.32 | 840.76 | 864.69 |
Inflow area of B1 well (10−5ft2) | 39.667 | 125.383 | 48.568 | 43.713 | 30.727 | 32.666 | 54.562 | 46.883 |
Inflow area of B2 well (10−5ft2) | 61.393 | 26.198 | 35.384 | 144.1 | 29.458 | 27.888 | 32.122 | 48.593 |
Flow coefficient of B1 well | 1.0 | 1.2 | 1.2 | 1.1 | 1.0 | 1.3 | 1.2 | 1.2 |
Flow coefficient of B2 well | 1.2 | 1.0 | 1.3 | 1.5 | 1.4 | 1.0 | 1.3 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Wang, J.; Zhao, X.; Rao, L.; Zhao, Y.; Sun, X. Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs. Energies 2025, 18, 375. https://doi.org/10.3390/en18020375
Deng X, Wang J, Zhao X, Rao L, Zhao Y, Sun X. Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs. Energies. 2025; 18(2):375. https://doi.org/10.3390/en18020375
Chicago/Turabian StyleDeng, Xili, Jingxuan Wang, Xiangguo Zhao, Liangyu Rao, Yongbin Zhao, and Xiaofei Sun. 2025. "Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs" Energies 18, no. 2: 375. https://doi.org/10.3390/en18020375
APA StyleDeng, X., Wang, J., Zhao, X., Rao, L., Zhao, Y., & Sun, X. (2025). Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs. Energies, 18(2), 375. https://doi.org/10.3390/en18020375