Topology and Control Strategy of Multi-Port DC Power Electronic Transformer Based on Soft Switching
Abstract
:1. Introduction
2. Topology of the Multi-Port DC Transformer
3. 300–500 V Adjustable Port
3.1. Working Principle of 300–500 V Adjustable Port
3.2. Parameter Design of 300–500 V Adjustable Port
4. ±375 V Port
4.1. Working Principle of ±375 V Port
- (1)
- All components in the circuit are ideal and ignore the influence of parasitic parameters.
- (2)
- The switch signal of the upper and lower switch of the half-bridges are synchronized.
- (3)
- The resonant cycle of the resonant branch (Lp1, Cp1) is Tr. The switch cycle of the TC-VBU is Ts and the dead time of the switch is Td. Thus, Tr = Ts − 2Td.
4.2. Parameter Design of ±375 V Port
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhattacharjee, A.K.; Kutkut, N.; Batarseh, I. Review of multiport converters for solar and energy storage integration. IEEE Trans. Power Electr. 2018, 34, 1431–1445. [Google Scholar] [CrossRef]
- Muhtadi, A.; Pandit, D.; Nguyen, N.; Mitra, J. Distributed energy resources based microgrid: Review of architecture, control, and reliability. IEEE Trans. Ind. Appl. 2021, 57, 2223–2235. [Google Scholar] [CrossRef]
- Nag, S.S.; Satpathi, K.; Ukil, A.; Pou, J.; Zagrodnik, M.A. An isolated bipolar DC-DC converter for energy storage integration in marine vessels. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Gu, Y.; Li, W.; He, X. Analysis and control of bipolar LVDC grid with DC symmetrical component method. IEEE Trans. Power Syst. 2015, 31, 685–694. [Google Scholar] [CrossRef]
- Tan, L.; Wu, B.; Yaramasu, V.; Rivera, S.; Guo, X. Effective voltage balance control for bipolar-DC-bus-fed EV charging station with three-level DC–DC fast charger. IEEE Trans. Ind. Electr. 2016, 63, 4031–4041. [Google Scholar] [CrossRef]
- Wang, G.; Wen, H.; Xu, P.; Liu, W.; Zhou, J.; Yang, Y. A Comprehensive Review of Integrated Three-Port DC–DC Converters With Key Performance Indices. IEEE Trans. Power Electr. 2024, 39, 6391–6408. [Google Scholar] [CrossRef]
- Sarnago, H.; Lucia, O.; Perez-Tarragona, M.; Burdio, J.M. Dual-output boost resonant full-bridge topology and its modulation strategies for high-performance induction heating applications. IEEE Trans. Ind. Electr. 2016, 63, 3554–3561. [Google Scholar] [CrossRef]
- Vasiladiotis, M.; Rufer, A. A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations. IEEE Trans. Ind. Electr. 2014, 62, 3213–3222. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, D.; Athab, H.S.; Wu, B.; Gu, Y. PV isolated three-port converter and energy-balancing control method for PV-battery power supply applications. IEEE Trans. Ind. Electr. 2014, 62, 3595–3606. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, C.; Jiang, Q. An H-Bridge Time-Sharing Multiplexing-Based Power Electronic Transformer. IEEE J. Emerg. Sel. Top. Power Electr. 2023, 11, 4831–4840. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Ouyang, S.; Xu, T.; Meng, F.; Song, S. Control and experiment of an H-bridge-based three-phase three-stage modular power electronic transformer. IEEE Trans. Power Electr. 2015, 31, 2002–2011. [Google Scholar] [CrossRef]
- Huber, J.E.; Kolar, J.W. Applicability of solid-state transformers in today’s and future distribution grids. IEEE Trans. Smart Grid. 2017, 10, 317–326. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Kong, X.; Zhou, J.; Shi, G.; Zang, J.; Wang, J. A Novel Multiple-Medium-AC-Port Power Electronic Transformer. IEEE Trans. Ind. Electr. 2023, 71, 6568–6578. [Google Scholar] [CrossRef]
- Feng, M.; Gao, C.; Ding, J.; Ding, H.; Xu, J.; Zhao, C. Hierarchical modeling scheme for high-speed electromagnetic transient simulations of power electronic transformers. IEEE Trans. Power Electr. 2021, 36, 9994–10004. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electr. 2013, 29, 4091–4106. [Google Scholar] [CrossRef]
- Li, X.; Cheng, L.; He, L.; Wang, C.; Zhu, Z. Decoupling control of an LLC-quad-active-bridge cascaded power electronic transformer based on accurate small-signal modeling. IEEE J. Emerg. Sel. Top. Power Electr. 2021, 10, 4115–4127. [Google Scholar] [CrossRef]
- Li, Z.; Pei, Y.; Wang, L.; Zhao, L.; Pei, L.; Cao, W. A comprehensive closed-loop voltage ripple control scheme for modular multilevel converter-based power electronic transformers. IEEE Trans. Power Electr. 2023, 38, 15225–15241. [Google Scholar] [CrossRef]
- Ma, D.; Chen, W.; Shu, L.; Qu, X.; Hou, K. A MMC-based multiport power electronic transformer with shared medium-frequency transformer. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 727–731. [Google Scholar] [CrossRef]
- Ma, D.; Chen, W.; Shu, L.; Qu, X.; Zhan, X.; Liu, Z. A multiport power electronic transformer based on modular multilevel converter and mixed-frequency modulation. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1284–1288. [Google Scholar] [CrossRef]
- Lu, S.; Deng, J.; Li, S.; Shao, Y.; Li, K. A Multiport Power Electronic Transformer Based on Three-Phase Four-Arm Full-bridge Modular Multilevel Converter. IEEE Trans. Power Electr. 2024, 39, 16174–16186. [Google Scholar] [CrossRef]
- Jiang, S.; Fan, C.; Huang, N.; Zeng, J. Fault characteristic analysis of DC pole-to-pole fault in power electronic transformer. Proc. CSEE 2018, 38, 1301–1309. [Google Scholar]
- Falcones, S.; Ayyanar, R.; Mao, X. A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Trans. Power Electr. 2012, 28, 2192–2203. [Google Scholar] [CrossRef]
- Liu, X.; Gao, F.; Xu, J.; Liu, Y.; Khan, M.M.; Yang, X.; Rogers, D.J.; Liu, D. A compact auxiliary power supply design for a medium frequency solid state transformer. IEEE Trans. Trans. Electr. 2022, 9, 1443–1457. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Li, J.; Wang, Y.; Liu, W. Modular multilevel high-frequency-link DC transformer based on dual active phase-shift principle for medium-voltage DC power distribution application. IEEE Trans. Power Electr. 2016, 32, 1779–1791. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Z.; Yuan, L.; Zhang, C.; Wen, W.; Sun, J. Synergetic control of high-frequency-link based multi-port solid state transformer. In Proceedings of the 2018 IEEE Energy Conversicongress and Expositi(ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Wen, W.; Li, K.; Zhao, Z.; Yuan, L.; Mo, X.; Cai, W. Analysis and control of a four-port megawatt-level high-frequency-bus-based power electronic transformer. IEEE Trans. Power Electr. 2021, 36, 13080–13095. [Google Scholar] [CrossRef]
- Qin, D.; Sun, Q.; Wang, R.; Ma, D.; Liu, M. Adaptive bidirectional droop control for electric vehicles parking with vehicle-to-grid service in microgrid. CSEE J. Power Energy Syst. 2020, 6, 793–805. [Google Scholar]
- Wang, R.; Li, J.; Sun, Q.; Wang, P. Current edge-control strategy for multiple energy routers based on cyber-energy dual modulations. IEEE Trans. Ind. Electr. 2023, 71, 4079–4088. [Google Scholar] [CrossRef]
- Gu, C.; Zheng, Z.; Xu, L.; Wang, K.; Li, Y. Modeling and control of a multiport power electronic transformer (PET) for electric traction applications. IEEE Trans. Power Electr. 2015, 31, 915–927. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Q.; Qin, D.; Cheng, K.; Li, Z. Power control of a modular three-port solid-state transformer with three-phase unbalance regulation capabilities. IEEE Access 2020, 8, 72859–72869. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, G.; Bhattacharya, S.; Huang, A.Q. Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Trans. Power Electr. 2012, 28, 1523–1532. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, S.; Ma, D.; Sun, Q.; Zhang, H.; Wang, P. The energy management of multiport energy router in smart home. IEEE Trans. Con. Electr. 2022, 68, 344–353. [Google Scholar] [CrossRef]
- Zhao, C.; Round, D.; Kolar, W. An isolated three-port bidirectional DC-DC converter with decoupled power flow management. IEEE trans. Power Electr. 2008, 23, 2443–2453. [Google Scholar] [CrossRef]
- Wen, W.; Zhao, Z.; Ji, S.; Yuan, L. Low-voltage ride through of multi-port power electronic transformer. iEnergy 2022, 1, 243–256. [Google Scholar] [CrossRef]
- Zhang, J.; Zha, K.; Tang, X.; Yang, Y.; Yan, H.; Wen, F.; Shi, M. Topology and start-up strategy for DC–DC transformers based on voltage balancing unit. J. Power Electr. 2021, 21, 1072–1083. [Google Scholar] [CrossRef]
Topological Complexity | Control Complexity | Efficiency | Scalability | Difficulty of Manufacture | |
---|---|---|---|---|---|
Series connected type [10,11,12,13,14,15,16,17,18,19,20] | Low | Medium | Medium | Low | Low |
Common DC bus type [21] | High | Low | Medium | High | Low |
Common high-frequency link type [22,23,24,25,26] | High | High | Low | Medium | High |
The proposed PET | Low | Low | High | High | Low |
Parameter | Value |
---|---|
Input voltage | 750 V |
Output voltage | 300–500 V adjustable |
Switching frequency | 7.5 kHz |
Auxiliary inductor L1/L2 | 20 μH |
Filter inductor L | 170 μH |
DC-link capacitor | 1 mF |
Parameter | Value |
---|---|
Input voltage | 750 V |
Output voltage | ±375 V |
Resonant capacitor | 100 μF |
Resonant inductor | 2.55 μH |
DC-link capacitor | 1 mF |
Input voltage | 750 V |
Key Components | Models |
---|---|
Switch of IBC | BSM300D12P2E001 (SiC-Mosfet from ROHM, Kyoto, Japan) |
Core material of IBC inductor | Ferrite (Shijiazhuang, China) |
Winding of IBC inductor | Copper wire (designed by supplier, Shijiazhuang, China) |
Switch of TC-VBU | FF600R12ME4 (IGBT from Infineon, Neubiberg, Germany) |
Core material of resonant inductor | Edge (from Magnetics, Pittsburgh, America ) |
Winding of resonant inductor | Litz wire (Yangzhou, China) |
Parameter | Loss Value |
---|---|
Mosfets of IBC | 426 W |
Inductors of IBC | Unknown (designed by supplier) |
IGBTs of TC-VBU | 513 W |
Resonant inductors of IBC | 45 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zha, K.; Tang, X.; Yang, Y.; Li, L.; Li, J. Topology and Control Strategy of Multi-Port DC Power Electronic Transformer Based on Soft Switching. Energies 2025, 18, 400. https://doi.org/10.3390/en18020400
Zhang J, Zha K, Tang X, Yang Y, Li L, Li J. Topology and Control Strategy of Multi-Port DC Power Electronic Transformer Based on Soft Switching. Energies. 2025; 18(2):400. https://doi.org/10.3390/en18020400
Chicago/Turabian StyleZhang, Jialin, Kunpeng Zha, Xiaojun Tang, Yuefeng Yang, Lanfang Li, and Jiafei Li. 2025. "Topology and Control Strategy of Multi-Port DC Power Electronic Transformer Based on Soft Switching" Energies 18, no. 2: 400. https://doi.org/10.3390/en18020400
APA StyleZhang, J., Zha, K., Tang, X., Yang, Y., Li, L., & Li, J. (2025). Topology and Control Strategy of Multi-Port DC Power Electronic Transformer Based on Soft Switching. Energies, 18(2), 400. https://doi.org/10.3390/en18020400