Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications
Abstract
:1. Introduction
2. Experimental Analysis of the SFTS
2.1. Experimental Setup and Test Procedures
2.2. Data Reduction and Error Analysis
2.3. Heat Transfer Characteristics of the SFTS
3. CFD Modeling Method and Validation
3.1. Treatment Method of Equivalent Thermal Conductivity in an SFTS
3.2. CFD Modeling and Solution
3.2.1. Geometry and Meshing
3.2.2. Governing Equations
3.2.3. Boundary Conditions and Solution Strategy
3.3. Modeling Validation
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area, m2 | Subscripts | |
cp | heat capacity, J/(kg·K) | a | ambient air |
C2 | inertial resistance factor | adi | adiabatic section |
Dp | mean particle diameter, m | avg | average |
E | relative error | c | condensation section |
h | heat transfer coefficient, W/(m2·K) | cooling | cooling water |
k | conductivity, W/(m·K) | e | evaporation section |
Kt | equivalent thermal conductivity, W/(m·K) | in | inlet of cooling water |
Leff | effective length, m | out | outlet of cooling water |
p | pressure, Pa | p | practical |
Q | heat transfer power, W | s | soil |
R | thermal resistance, K/W | t | total |
Si | source term in momentum equation | w | groundwater |
T | temperature, °C | Abbreviation | |
ΔT | temperature difference, °C | CFD | Computational Fluid Dynamic |
t | time. | ETC | Equivalent thermal conductivity |
u | velocity, m/s | GSHP | Ground Source Heat Pump |
v | volumetric flow rate, m3/s | SFTS | Super-long Flexible Thermosyphon |
Greek letters | TPCT | Two-phase closed thermosyphon | |
α | permeability | UDF | User-defined Function |
ε | porosity | VOF | Volume-of-Fluid |
ρ | density, kg/m3 | ||
μ | dynamic viscosity, Pa·s |
References
- Letcher, T.M. 1—Global warming, greenhouse gases, renewable energy, and storing energy. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–12. [Google Scholar]
- Anya, B.; Mohammadpourfard, M.; Akkurt, G.G.; Mohammadi-Ivatloo, B. Exploring geothermal energy based systems: Review from basics to smart systems. Renew. Sustain. Energy Rev. 2025, 210, 115185. [Google Scholar] [CrossRef]
- Figueira, J.S.; García Gil, A.; Vieira, A.; Michopoulos, A.K.; Boon, D.P.; Loveridge, F.; Cecinato, F.; Götzl, G.; Epting, J.; Zosseder, K.; et al. Shallow geothermal energy systems for district heating and cooling networks: Review and technological progression through case studies. Renew. Energy 2024, 236, 121436. [Google Scholar] [CrossRef]
- Brettschneider, A.L.; Perković, L. Theoretical analysis of using multiple borehole heat exchangers for production of heating and cooling energy in shallow geothermal reservoirs with underground water flow. Appl. Therm. Eng. 2024, 254, 123914. [Google Scholar] [CrossRef]
- Li, W.; Xu, J.; Chen, Y.; Chen, Z. Heat transfer performance and optimal design of shallow coaxial ground heat exchangers. Appl. Therm. Eng. 2024, 250, 123571. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, P.; Ambirajan, A.; Dutta, P.; Varghese, Z.; Rohith, B.L.; Subrahmanya, P. Experimental investigation of thermosyphons with horizontal evaporator for low heat flux applications. Appl. Therm. Eng. 2024, 257, 124249. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J. Operation characteristics and limitations of small-diameter two-phase closed thermosyphon. Int. Commun. Heat Mass Transf. 2024, 159, 108051. [Google Scholar] [CrossRef]
- Lataoui, Z.; Benselama, A.M. Modelling of heat and mass transfer in a two-phase closed thermosyphon. Energy 2024, 313, 133851. [Google Scholar] [CrossRef]
- Chi, Z.; Yiqiu, T.; Fengchen, C.; Qing, Y.; Huining, X. Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology. Energy Convers. Manag. 2019, 186, 473–486. [Google Scholar] [CrossRef]
- Zorn, R.; Steger, H.; Kolbel, T. De-icing and snow melting system with innovative heat pipe technology. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015; pp. 19–25. [Google Scholar]
- Lei, G.; Yu, X.; Li, T.; Habibzadeh-Bigdarvish, O.; Wang, X.; Mrinal, M.; Luo, C. Feasibility study of a new attached multi-loop CO2 heat pipe for bridge deck de-icing using geothermal energy. J. Clean. Prod. 2020, 275, 123160. [Google Scholar] [CrossRef]
- Rieberer, R. Naturally circulating probes and collectors for ground-coupled heat pumps. Int. J. Refrig. 2005, 28, 1308–1315. [Google Scholar] [CrossRef]
- Lim, H.; Kim, C.; Cho, Y.; Kim, M. Energy saving potentials from the application of heat pipes on geothermal heat pump system. Appl. Therm. Eng. 2017, 126, 1191–1198. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Huang, W.; Ma, Q.; Li, A.; Wang, B.; Sun, H.; Jiang, F. Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China. Energy 2024, 299, 131521. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zheng, L.; Yao, H.; Zhu, Y.; Wang, Y. Temperature response and thermal performance analysis of a super-long flexible thermosyphon for shallow geothermal utilization: Field test and numerical simulation. Int. J. Heat Mass Transf. 2022, 192, 122915. [Google Scholar] [CrossRef]
- Hartmann, F.; Behrend, R.; Hantsch, A.; Grab, T.; Gross, U. Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes. Geothermics 2015, 55, 99–107. [Google Scholar] [CrossRef]
- Ebeling, J.; Kabelac, S.; Luckmann, S.; Kruse, H. Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application. Heat Mass Transf. 2017, 53, 3257–3265. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Wang, Y.; Zhu, Y. CFD simulation of dynamic heat transfer behaviors in super-long thermosyphons for shallow geothermal application. Appl. Therm. Eng. 2020, 174, 115295. [Google Scholar] [CrossRef]
- Ozsoy, A.; Yildirim, R. The performance of ground source heat pipes at low constant source temperatures. Int. J. Green Energy 2018, 15, 641–650. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Zhu, M.; Zhu, Y.; Fan, H.; Wang, Y. Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes. Appl. Therm. Eng. 2017, 112, 1353–1363. [Google Scholar] [CrossRef]
- Dillig, M.; Plankenbühler, T.; Karl, J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming. J. Power Sources 2018, 373, 139–149. [Google Scholar] [CrossRef]
- Wu, G.; Gou, X. Effects of bending angle of shaped flat heat pipe on heat transfer performance. Chin. J. Power Sources 2020, 44, 1305–1308. [Google Scholar]
- Deng, G.; Kang, N.; He, J.; Wang, S.; Liu, G.; Liu, N. An investigation of the performance of groundwater-based heat pipes in heating lawn systems. Energy Convers. Manag. 2021, 244, 114492. [Google Scholar] [CrossRef]
- Deng, G.; Kang, N.; Yang, J.; Ma, X.; He, J.; Li, J. Temperature response and thermal performance analysis of a hybrid gravity heat pipe(HGHP) for winter soil warming of grapevine roots:a field experiment. Appl. Therm. Eng. 2024, 241, 122351. [Google Scholar] [CrossRef]
- ANSYS Inc. Theory Guide (Release 16.0). Basic Fluid Flow; ANSYS Inc.: Canonsburg, PA, USA, 2015; pp. 1–2. [Google Scholar]
- ANSYS Inc. ANSYS Polyflow User’s Guide, Release 16.0; ANSYS Inc.: Canonsburg, PA, USA, 2015; Available online: https://ansyshelp.ansys.com (accessed on 5 December 2024).
- Duffie, J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
Items | Manufacturer | Type | Parameters |
---|---|---|---|
Peristaltic pump | Shenchen, Shanghai, China | V6 | 0.07–6000 mL/min; flow rate accuracy: 0.5% |
Thermostatic bath | Teer, Zhengzhou, China | DY20/20 | −20 to 99 °C (±0.1 °C); volume: 20 L; maximum power: 3000 W |
Data logger | Anbai, Changzhou, China | AT4532 | 32-channel; resolution: 0.1 °C; scanning rate: 32 channel/s |
Thermocouples | Shenhua, Beijing, China | T-type | −100–300 °C; accuracy: ±0.1 °C |
Item | Unit | Value | |
---|---|---|---|
Porous media (soil) | Initial temperature | K | 290.45 |
Thermal conductivity | W/(m K) | 2.1 | |
Specific heat capacity | J/(kg K) | 1300 | |
Density | kg/m3 | 2100 | |
Porosity | 20% | ||
Mean particle diameter | mm | 0.01 | |
Groundwater | Density | kg/m3 | 1000 |
Conductivity | W/m·K | 0.6 | |
Specific heat capacity | J/(kg K) | 4200 | |
Flow velocity | m/day | 0.75 | |
Inlet temperature | K | 290.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ding, Y.; Liu, H.; Zheng, L.; Wang, X.; Zhu, Y. Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications. Energies 2025, 18, 433. https://doi.org/10.3390/en18020433
Liu J, Ding Y, Liu H, Zheng L, Wang X, Zhu Y. Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications. Energies. 2025; 18(2):433. https://doi.org/10.3390/en18020433
Chicago/Turabian StyleLiu, Jianhua, Yanghuiqin Ding, Hao Liu, Liying Zheng, Xiaoyuan Wang, and Yuezhao Zhu. 2025. "Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications" Energies 18, no. 2: 433. https://doi.org/10.3390/en18020433
APA StyleLiu, J., Ding, Y., Liu, H., Zheng, L., Wang, X., & Zhu, Y. (2025). Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications. Energies, 18(2), 433. https://doi.org/10.3390/en18020433