Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance
Abstract
:1. Introduction
2. Fuel and Experimental Installation
Ultimate Analysis | Proximate Analysis * | ||
---|---|---|---|
Carbon [wt %] | 52.05 | Moisture [wt %] | 8.50 |
Hydrogen [wt %] | 6.75 | Ash [wt %] | 0.62 |
Oxygen [wt %] | 40.97 | Fixed Carbon [wt %] | 16.20 |
Nitrogen [wt %] | 0.17 | Volatile matter [wt %] | 74.68 |
Sulfur [wt %] | 0.05 | LHV as received [MJ/kg] | 18.33 |
Parameter | Simulation Value |
---|---|
Fuel mass flow rate [kg/h] | 3.53 |
Total air mass flow rate [kg/h] | 51.40 |
Air excess ratio [-] | 2.25 |
Primary air mass flow rate [kg/h] | 14.81 |
Total infiltrations mass flow rate [kg/h] | 36.59 |
3. Model Description
3.1. Introduction
3.2. Gas Phase
3.3. Bed Modeling
Volatile specie (j) | Fraction () |
---|---|
C6H6 | 0.2883 |
CH4 | 0.0256 |
H2 | 0.0287 |
CO | 0.1285 |
CO2 | 0.3230 |
H2O | 0.2041 |
NH3 | 0.0018 |
3.4. Combustion Model
3.5. Heat Transfer
4. Results and Discussion
4.1. Experimental Contrast
Parameter | CFD Simulation | Experimental |
---|---|---|
Heat to water (kW) | 13.91 | 13.31 |
Outlet temperature (°C) | 188.0 | 174.5 |
CO2 emissions (%) | 9.50 | 9.92 |
CO emissions (ppm) | 2290 | 1828 |
NOx emissions (ppm) | 154 | 256 |
4.2. Water Temperature Effect
5. Conclusions
Acknowledgments
Nomenclature
Absorption coefficient [ m−1] | |
Specific heat [J kg−1 K−1] | |
Inertial resistance factor [m−1] | |
Fuel carbon content [%] | |
Diffusivity [m2 s−1] | |
Equivalent diameter [m] | |
Dämkholer number [-] | |
Fuel hydrogen content [%] | |
Standard enthalpy of formation [J kg−1] | |
Gas thermal conductivity [W m−1 K−1] | |
Gas thermal conductivity due to turbulence effect [W m−1 K−1] | |
Bed depth [m] | |
Fuel mass flow rate [kg s−1] | |
Rate of destruction or generation of gaseous species in the bed [kg m−3 s−1] | |
Energy source term due to fuel consumption in the bed [W m−3] | |
Time [s] | |
Temperature [K] | |
Bed volume [m3] | |
Gas velocity [m s−1] | |
Mass fraction [-] |
Greek
Permeability [m2] | |
Mass fraction of species generated in the bed [-] | |
Void fraction [-] | |
CO to CO2 ratio [-] | |
Air excess ratio [-] | |
Dynamic viscosity [kg m−1 s−1] | |
Density [kg m−3] | |
Stefan-Boltzmann constant [W m−2 K−1] | |
Stoichiometric coefficient of the pellet consumption [-] | |
Mass fraction in volatile gas [-] | |
Sphericity [-] | |
Specific rate of generation of gaseous species in the bed [kg m−3 s−1] |
Subscripts
Char | |
Fuel | |
Gas | |
i | i-th coordinate |
j-th gaseous specie | |
Moisture | |
Particle | |
Solid | |
Volatile | |
Wood |
References
- Dinh Tung, N.; Steinbrecht, D.; Vincent, T. Experimental Investigations of Extracted Rapeseed Combustion Emissions in a Small Scale Stationary Fluidized Bed Combustor. Energies 2009, 2, 57–70. [Google Scholar]
- Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Saastamoinen, J. Modelling of Wood Combustion in Small Stoves. In Proceedings of Nordic Workshop on Combustion of Biomass, Trondheim, Norway, February 1991.
- Ghenai, C.; Janajreh, I. CFD analysis of the effects of co-firing biomass with coal. Energy Convers. Manag. 2010, 51, 1694–1701. [Google Scholar] [CrossRef]
- Yang, Y.B.; Sharifi, V.N.; Swithenbank, J.; Ma, L.; Darvell, L.I.; Jones, J.M.; Pourkashanian, M.; Williams, A. Combustion of a single particle of biomass. Energy Fuels 2008, 22, 306–316. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, B.; Wang, W.; Lu, L. CFD investigation into diesel PCCI combustion with optimized fuel injection. Energies 2011, 4, 517–531. [Google Scholar] [CrossRef]
- Yin, C.; Rosendahl, L.A.; Kær, S.K. Grate-firing of biomass for heat and power production. Progr. Energy Combust. Sci. 2008, 34, 725–754. [Google Scholar] [CrossRef]
- Shin, D.; Choi, S. The combustion of simulated waste particles in a fixed bed. Combust. Flame 2000, 121, 167–180. [Google Scholar] [CrossRef]
- Yin, C.; Rosendahl, L.; Kær, S.K.; Clausen, S.; Hvid, S.L.; Hiller, T. Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler. Energy Fuels 2008, 22, 1380–1390. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Q.; Bradford, R.; Sharifi, V.; Swithenbank, J. Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler. Fuel Process. Technol. 2010, 91, 1491–1499. [Google Scholar] [CrossRef]
- Porteiro, J.; Collazo, J.; Patiño, D.; Granada, E.; Gonzalez, J.C.M.; Míguez, J.L. Numerical modeling of a biomass pellet domestic boiler. Energy Fuels 2009, 23, 1067–1075. [Google Scholar] [CrossRef]
- Comesaña, R.; Collazo, J.; Míguez, J.L.; Porteiro, J. CFD Simulation of a Fixed Bed 60 kW Biomass Boiler. In Proceedings of the 18th European Biomass Conference and Exhibition, Lyon, France; 2010; pp. 1327–1331. [Google Scholar]
- Ansys Fluent 12.0 Theory Guide, 2009. Available online: https://www.sharcnet.ca/Software/Fluent12/html/th/main_pre.htm (accessed on 18 April 2012).
- Ansys Fluent 12.0 UDF Manual, 2009. Available online: https://www.sharcnet.ca/Software/Fluent12/pdf/udf/fludf.pdf (accessed on 18 April 2012).
- Moran, J.C.; Granada, E.; Porteiro, J.; Míguez, J.L. Experimental modelling of a pilot lignocellulosic pellets stove plant. Biomass Bioenergy 2004, 27, 577–583. [Google Scholar] [CrossRef]
- Morán, J.C.; Tabarés, J.L.; Granada, E.; Porteiro, J.; López-González, L.M. Effect of different configurations on small pellet combustion systems. Energy Sources Part A Recovery Utilizat. Environ. Effects 2006, 28, 1135–1148. [Google Scholar] [CrossRef]
- Porteiro, J.; Patiño, D.; Collazo, J.; Granada, E.; Moran, J.C.; Miguez, J.L. Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel 2010, 89, 26–35. [Google Scholar] [CrossRef]
- Sumner, J.; Watters, C.S.; Masson, C. CFD in wind energy: The virtual, multiscale wind tunnel. Energies 2010, 3, 989–1013. [Google Scholar] [CrossRef]
- Zahirović, S.; Scharler, R.; Kilpinen, P.; Obernberger, I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Modell. 2011, 15, 61–87. [Google Scholar] [CrossRef]
- A.G. Blokh. Heat Transfer in Steam Boiler Furnaces, 1st ed.; Hemisphere Publishing Corporation: New York, NY, USA, 1988. [Google Scholar]
- Yin, C.; Kær, S.K.; Rosendahl, L.; Hvid, S.L. Co-firing straw with coal in a swirl-stabilized dual-feed burner: Modelling and experimental validation. Bioresour. Technol. 2010, 101, 4169–4178. [Google Scholar] [CrossRef] [PubMed]
- Gubba, S.R.; Ma, L.; Pourkashanian, M.; Williams, A. Influence of particle shape and internal thermal gradients of biomass particles on pulverised coal/biomass co-fired flames. Fuel Process. Technol. 2011, 92, 2185–2195. [Google Scholar] [CrossRef]
- Yang, Y.B.; Sharif, V.N.; Swithenbank, J. Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds. Process Safety Environ. Protect. 2005, 83, 549–558. [Google Scholar] [CrossRef]
- Girgis, E.; Hallett, W.L.H. Wood combustion in an overfeed packed bed, including detailed measurements within the bed. Energy Fuels 2010, 24, 1584–1591. [Google Scholar] [CrossRef]
- Bryden, K.M.; Ragland, K.W. Numerical modeling of a deep, fixed bed combustor. Energy Fuels 1996, 10, 269–275. [Google Scholar] [CrossRef]
- Thunman, H.; Niklasson, F.; Johnsson, F.; Leckner, B. Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds. Energy Fuels 2001, 15, 1488–1497. [Google Scholar] [CrossRef]
- Porteiro, J.; Patiño, D.; Moran, J.; Granada, E. Study of a fixed-bed biomass combustor: Influential parameters on ignition front propagation using parametric analysis. Energy Fuels 2010, 24, 3890–3897. [Google Scholar] [CrossRef]
- Hermansson, S.; Thunman, H. CFD modelling of bed shrinkage and channelling in fixed-bed combustion. Combust. Flame 2011, 158, 988–999. [Google Scholar] [CrossRef]
- Collazo, J.; Porteiro, J.; Patiño, D.; Miguez, J.L.; Granada, E.; Moran, J. Simulation and experimental validation of a methanol burner. Fuel 2009, 88, 326–334. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gómez, M.A.; Comesaña, R.; Feijoo, M.A.Á.; Eguía, P. Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance. Energies 2012, 5, 1044-1061. https://doi.org/10.3390/en5041044
Gómez MA, Comesaña R, Feijoo MAÁ, Eguía P. Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance. Energies. 2012; 5(4):1044-1061. https://doi.org/10.3390/en5041044
Chicago/Turabian StyleGómez, Miguel A., Roberto Comesaña, Miguel A. Álvarez Feijoo, and Pablo Eguía. 2012. "Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance" Energies 5, no. 4: 1044-1061. https://doi.org/10.3390/en5041044
APA StyleGómez, M. A., Comesaña, R., Feijoo, M. A. Á., & Eguía, P. (2012). Simulation of the Effect of Water Temperature on Domestic Biomass Boiler Performance. Energies, 5(4), 1044-1061. https://doi.org/10.3390/en5041044