Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation
Abstract
:1. Introduction
2. Simulation Test for Typical Partial Discharge Defects
2.1. Test Setup
2.1.1. Simulating Oil Tank
2.1.2. Artificial Detect Models for PD Tests
2.1.3. Experimental Procedures
2.2. Statistical Parameters of PDs
15 h of discharge | sk− | sk+ | ku− | ku+ | pe− | pe+ | asy | cc |
---|---|---|---|---|---|---|---|---|
Hqmax(φ) | 0.2946 | 0.3538 | 3.0298 | 3.3077 | 39.0000 | 32.0000 | 1.0101 | 0.8297 |
Have(φ) | 0.2013 | 0.3050 | 1.8716 | 2.1127 | 39.0000 | 32.0000 | 0.9807 | 0.6876 |
Hn(φ) | 0.1766 | 0.2354 | 2.7575 | 2.8397 | 27.0000 | 20.0000 | 0.8623 | 0.4058 |
Hn(q) | Sk | Ku | Pe | α | β | |||
2.0915 | 4.0213 | 58.0000 | 0.0261 | 0.6138 | ||||
23 h of discharge | sk− | sk+ | ku− | ku+ | pe− | pe+ | asy | cc |
Hqmax(φ) | 0.4159 | 0.4071 | 2.9269 | 2.5022 | 40.0000 | 38.0000 | 0.9445 | 0.7832 |
Have(φ) | 0.3874 | 0.3902 | 2.8713 | 1.0782 | 40.0000 | 38.0000 | 0.8655 | 0.7643 |
Hn(φ) | 0.1985 | 0.2096 | 2.5797 | 2.6395 | 23.0000 | 18.0000 | 1.0355 | 0.1006 |
Hn(q) | Sk | Ku | Pe | α | β | |||
2.5007 | 5.4836 | 58.0000 | 0.0494 | 0.4287 |
2.3. Dissolved Gas Analysis
Gas | H2 | CO | CO2 | CH4 | C2H6 | C2H4 | C2H2 |
---|---|---|---|---|---|---|---|
Detection accuracy of gas concentration (ppm) | 2 | 1 | 5 | 0.1 | 0.1 | 0.1 | 0.1 |
3. Correlation Analysis
3.1. Canonical Correlation Analysis
3.2. CCA Procedures in This Experiment
4. Results and Discussion
4.1. Gassing Tendency of PDs
4.2. CCA Results
First canonical variable | Canonical correlation | Significance level for Wilk’s lambda | Chi-square statistic | Significance level for Chisq | F statistic | Significance level for F |
---|---|---|---|---|---|---|
1 | 0.9667 | <0.001 | 217.7 | <0.001 | 1.890 | <0.001 |
2 | 0.9465 | 0.0012 | 155.5 | 0.0059 | 1.491 | 0.0313 |
3 | 0.8859 | 0.0113 | 103.9 | 0.1509 | 1.140 | 0.2881 |
4 | 0.8408 | 0.0527 | 69.04 | 0.4420 | 0.9404 | 0.5982 |
5 | 0.7556 | 0.1798 | 40.96 | 0.7542 | 0.7382 | 0.8493 |
6 | 0.7257 | 0.4191 | 21.42 | 0.8744 | 0.5810 | 0.9308 |
7 | 0.3387 | 0.8853 | 3.110 | 0.9989 | 0.1573 | 0.9994 |
4.3. Analysis of Oil Dissolved Gas Formation with PDs
5. Improved Ratio Method for Discharge Diagnosis
C2H2/C2H4 ≤ 3 Partial discharge | C2H2/C2H4 > 3 Late stage of discharge or arc | ||||
---|---|---|---|---|---|
C2H6/C2H2 ≤ 0.1 Cavity discharge | C2H6/C2H2 >0.1 Surface discharge | C2H6/C2H4 < 0.2 Cavity discharge | C2H6/C2H4 ≥ 0.2 Surface discharge | ||
C2H2/C2H4 ≤ 0.5 Early stage | 0.5 < C2H2/C2H4 ≤ 3 Middle stage | C2H2/C2H4 ≤ 1 Early stage | 1 < C2H2/C2H4 ≤ 3 Middle stage |
Source of Sample | Fault type | Stage | Successful diagnosis | Diagnostic accuracy |
---|---|---|---|---|
Laboratory | Surface discharge | Early stage | 13/20 | 65.00% |
Laboratory | Surface discharge | Middle stage | 15/20 | 75.00% |
Laboratory | Surface discharge | Late stage | 8/10 | 80.00% |
Laboratory | Cavity discharge | Early stage | 14/20 | 70.00% |
Laboratory | Cavity discharge | Middle stage | 13/20 | 65.00% |
Laboratory | Cavity discharge | Late stage | 10/10 | 100.00% |
DGA database | Surface discharge | Unknown | 28/50 | 56% |
DGA database | Cavity discharge | Unknown | 26/50 | 52% |
6. Conclusions
Acknowledgments
References
- Rogers, R. IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis. IEEE Trans. Electr. Insul. 1978, 13, 349–354. [Google Scholar] [CrossRef]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- Lin, C.E.; Ling, J.M.; Huang, C.L. An expert system for transformer fault diagnosis using dissolved gas analysis. IEEE Trans. Power Deliv. 1993, 8, 231–238. [Google Scholar] [CrossRef]
- Morais, D.R.; Rolim, J.G. A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil. IEEE Trans. Power Deliv. 2006, 21, 673–680. [Google Scholar] [CrossRef]
- Tomsovic, K.; Tapper, M.; Ingvarsson, T. A fuzzy information approach to integrating different transformer diagnostic methods. IEEE Trans. Power Deliv. 1993, 8, 1638–1646. [Google Scholar] [CrossRef]
- Yang, H.T.; Liao, C.C. Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers. IEEE Trans. Power Deliv. 1999, 14, 1342–1350. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.; Liu, Y.; Griffin, P. An artificial neural network approach to transformer fault diagnosis. IEEE Trans. Power Deliv. 1996, 11, 1836–1841. [Google Scholar] [CrossRef]
- Yang, H.T.; Huang, Y.C. Intelligent decision support for diagnosis of incipient transformer faults using self-organizing polynomial networks. IEEE Trans. Power Syst. 1998, 13, 946–952. [Google Scholar] [CrossRef]
- Chen, W.; Pan, C.; Yun, Y.; Liu, Y. Wavelet networks in power transformers diagnosis using dissolved gas analysis. IEEE Trans. Power Deliv. 2009, 24, 187–194. [Google Scholar] [CrossRef]
- IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE: New York, NY, USA, 2009.
- The Authoritative Dictionary of IEEE Standards Terms, 7th ed.; IEEE: New York, NY, USA, 2000.
- Sahoo, N.; Salama, M.; Bartnikas, R. Trends in partial discharge pattern classification: a survey. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 248–264. [Google Scholar] [CrossRef]
- IEEE Guide for Loading Mineral-Oil-Immersed Transformers; IEEE: New York, NY, USA, 1995.
- Krivda, A. Automated recognition of partial discharges. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 796–821. [Google Scholar] [CrossRef]
- Di Lorenzo del Casale, M.; Schifani, R.; Holboll, J. Partial discharge tests using CIGRE method II. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 133–140. [Google Scholar] [CrossRef]
- Lee, J.H.; Okamoto, T.; Yi, C.W. In Classification of PD patterns from multiple defects. In Proceeding of the 6th International Conference Properties and Applications of Dielectric Materials, Xi’an, China, 21–26 June 2000; pp. 463–465.
- Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies; ASTM Standard D149-09; ASTM International: West Conshohocken, PA, USA, 2009.
- Fluids for Electrotechnical Applications—Unused Mineral Insulating Oils for Transformers and Switchgear; IEC Standard 60296; International Electrotechnical Commission: Geneva, Switzerland, 2003.
- Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus; ASTM Standard D 3487-00; ASTM International: West Conshohocken, PA, USA, 2006.
- High-Voltage Test Techniques—Partial Discharge Measurements; IEC Standard 60270; International Electrotechnical Commission: Geneva, Switzerland, 2000.
- Liao, R.; Yang, L.; Li, J. Aging condition assessment of transformer oil-paper insulation model based on partial discharge analysis. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 303–311. [Google Scholar] [CrossRef]
- Oil-Filled Electrical Equipment—Sampling of Gases and Analysis of Free and Dissolved Gases—Guidance; IEC Standard 60567; International Electrotechnical Commission: Geneva, Switzerland, 2005.
- Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography; ASTM Standard D 3612-02; ASTM International: West Conshohocken, PA, USA, 2009.
- Hotelling, H. Relations between two sets of variants. Biometrika 1936, 28, 321–377. [Google Scholar] [CrossRef]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1995; pp. 361–379. [Google Scholar]
- Hardoon, D.R.; Szedmak, S.; Taylor, S.J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.S.; Zeng, S.G.; Heng, P.A. A new method of feature fusion and its application in image recognition. Pattern Recognit. 2005, 38, 2437–2448. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, X.; Zou, C. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. Neural Netw. 2006, 17, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Halstead, W. A thermodynamic assessment of the formation of gaseous hydrocarbons in faulty transformers. J. Inst. Pet. 1973, 59, 239–241. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, W.; Chen, X.; Peng, S.; Li, J. Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation. Energies 2012, 5, 1081-1097. https://doi.org/10.3390/en5041081
Chen W, Chen X, Peng S, Li J. Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation. Energies. 2012; 5(4):1081-1097. https://doi.org/10.3390/en5041081
Chicago/Turabian StyleChen, Weigen, Xi Chen, Shangyi Peng, and Jian Li. 2012. "Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation" Energies 5, no. 4: 1081-1097. https://doi.org/10.3390/en5041081
APA StyleChen, W., Chen, X., Peng, S., & Li, J. (2012). Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation. Energies, 5(4), 1081-1097. https://doi.org/10.3390/en5041081