An Optimization Model of Carbon Sinks in CDM Forestry Projects Based on Interval Linear Programming
Abstract
:1. Introduction
2. Methodology
2.1. Interval Linear Programs [16,17]
2.2. Solution of the ILP Model
2.3. The CDM Forestry Model
3. Case Study
3.1. Overview of the Study System
Afforestation sites | Afforestation mode | Afforestation scale (ha) | |
---|---|---|---|
Tree species | Planting pattern | ||
Land type 1 | Pinus tabulaeformis Carr, Larix gmellini (Rupr.), A. sibirica (L) Lam | Mixed forest | 737.1 |
Pinus tabulaeformis Carr, Larix gmellini (Rupr.), Prunus tomentosa Thunb | Mixed forest | 550 | |
Mongolian Scotch Pine, Salix matsudana Kodidz | Mixed forest | 696 | |
Flos Caryophyllata, Rosa xanthina Lindl | Mixed forest | 20.4 | |
Robinia pseudoacacia cv. idaho | Pure forest | 14 | |
Salix matsudana Kodidz | Pure forest | 14 | |
Poplar | Pure forest | 57 | |
Mongolian Scotch Pine | Pure forest | 100 | |
Sophora japonica Linn | Pure forest | 26 | |
Catalpa ovata Don | Pure forest | 20 | |
Land type 2 | Caragana Korsgunskii Kom, Elaegnus angustifolius | Mixed forest | 6,000 |
Caragana Korsgunskii Kom, Ulmus pumila L. | Mixed forest | 6,000 | |
Poplar | Pure forest | 666 | |
Caragana Korsgunskii Kom | Pure forest | 3,275 | |
Land type 3 | Poplar, Ulmus pumila L. | Mixed forest | 4,930.6 |
Poplar, Mongolian Scotch Pine | Mixed forest | 4,930.6 | |
Land type 4 | Elaegnus angustifolius, Tamarix chinensis Lour | Mixed forest | 1,000 |
Haloxylon ammodendron | Pure forest | 2,769 |
Tree species | 1–10 years old | 10–20 years old | Above 20 years old |
---|---|---|---|
Pinus tabulaeformis Carr | [1.674, 2.046] | [1.674, 2.046] | [1.881, 3.333] |
Mongolian Scotch Pine | [3.42, 4.18] | [3.42, 4.18] | [3.609, 5.346] |
Larix gmellini (Rupr.) Pupr | [4.383, 5.357] | [4.383, 5.357] | [4.410, 5.522] |
Poplar | [6.39, 7.81] | [6.507, 7.93] | [6.507, 7.953] |
Ulmus pumila L. (i) | [3.825, 4.675] | [3.825, 4.675] | [3.825, 4.675] |
Ulmus pumila L. (ii) | [6.867, 8.393] | [6.867, 8.393] | [6.867, 8.393] |
Salix matsudana Kodidz | [5.463, 6.677] | [5.463, 6.677] | [5.733, 7.876] |
Sophora japonica Linn | [5.867, 8.393] | [5.867, 8.393] | [5.867, 8.393] |
Catalpa ovata Don | [5.867, 8.393] | [5.867, 8.393] | [5.867, 8.393] |
Robinia pseudoacacia cv. idaho | [5.867, 8.393] | [5.867, 8.393] | [5.867, 8.393] |
Elaegnus angustifolius | [5.571, 6.389] | [5.571, 6.389] | [5.571, 6.389] |
Haloxylon ammodendron | [6.489, 7.931] | [6.489, 7.931] | [6.489, 7.931] |
Caragana Korsgunskii Kom | [15.048, 18.392] | [15.048, 18.392] | [15.048, 18.392] |
Tamarix chinensis Lour | [3.366, 4.114] | [3.366, 4.114] | [3.366, 4.114] |
Flos Caryophyllata | [3.366, 4.114] | [3.366, 4.114] | [3.366, 4.114] |
Rosa xanthina Lindl | [3.366, 4.141] | [3.366, 4.114] | [3.366, 4.114] |
A. sibirica (L.) Lam | [5.571, 6.809] | [5.571, 6.809] | [5.571, 6.809] |
Prunus tomentosa Thunb | [3.336, 4.114] | [3.336, 4.114] | [3.336, 4.114] |
Tree species | Planting density (plant/ha) | Labour coefficient (man-day/ha) | Amount of dust absorption (tonne/ha) |
---|---|---|---|
Pinus tabulaeformis Carr | 1250 | [84.5, 86] | [10.8, 11.7] |
Mongolian Scotch Pine | 1250 | [84.5, 86] | [11.7, 12.6] |
Larix gmellini (Rupr.) Pupr. | 1250 | [84.5, 86] | [10.8, 11.7] |
Poplar | 1250 | [84.5, 86] | [10.8, 11.7] |
Ulmus pumila L. | 1666 | [84.5, 86] | [11.7, 12.6] |
Salix matsudana Kodidz | 1666 | [84.5, 86] | [11.7, 12.6] |
Sophora japonica Linn | 1250 | [84.5, 86] | [10.8, 11.7] |
Catalpa ovata Don | 1250 | [84.5, 86] | [10.8, 11.7] |
Robinia pseudoacacia cv. idaho | 1250 | [84.5, 86] | [10.8, 11.7] |
Elaegnus angustifolius | 1666 | [84.5, 86] | [10.8, 12.6] |
Haloxylon ammodendron | 1157 | [41.5, 43] | [10.8, 12.6] |
Caragana Korsgunskii Kom | 2000 | [41.5, 43] | [10.8, 12.6] |
Tamarix chinensis Lour | 1250 | [41.5, 43] | [10.8, 12.6] |
Flos Caryophyllata | 1666 | [41.5, 43] | [10.8, 11.7] |
Rosa xanthina Lindl | 1666 | [41.5, 43] | [10.8, 11.7] |
A. sibirica (L) Lam | 1250 | [41.5, 43] | [10.8, 12.6] |
Prunus tomentosa Thunb | 1250 | [41.5, 43] | [10.8, 11.7] |
Timber forest | Stand volume (m3/ha) | Timber-produced rate (%) |
---|---|---|
Poplar | [165, 181.5] | [62.5, 65] |
Parameters | Numerical value |
---|---|
Correction coefficient of temperature regulation (%) | [5.5, 6] |
Percentage of rainfall stock volume (%) | [72.5, 75] |
Percentage of non-forest belt effect (%) | [50, 50.1] |
Physiological water consumption of forest (%) | [14.9, 15] |
Mixed types | Mixed modes | Mixed ratios |
---|---|---|
Coniferous and broadleaved mixed forest | Pinus tabulaeformis Carr, Larix gmellini (Rupr.) Pupr. | 3:1 |
Mongolian Scotch Pine, Larix gmellini (Rupr.) Pupr. | 1:10 | |
Poplar, Pinus tabulaeformis Carr | 8:2 | |
Ulmus pumila L., Mongolian Scotch Pine | 8:2 | |
Mongolian Scotch Pine, Salix matsudana Kodidz | 8:2 | |
Poplar, Mongolian Scotch Pine | 8:2 | |
Broadleaved mixed forest | Poplar, Ulmus pumila L. | 8:2 |
Poplar, Elaegnus angustifolius | 8:2 | |
Ulmus pumila L., Elaegnus angustifolius | 8:2 | |
Arbers mixed forest | Pinus tabulaeformis Carr, Larix gmellini (Rupr.) Pupr., A. sibirica (L) Lam | 4:4:2 |
Pinus tabulaeformis Carr, Larix gmellini (Rupr.) Pupr., Prunus tomentosa Thunb | 4:4:2 | |
Pinus tabulaeformis Carr, A.sibirica (L) Lam | 2:3 | |
Pinus tabulaeformis Carr, Caragana Korsgunskii Kom | 1:1 | |
Mongolian Scotch Pine, A.sibirica (L) Lam | 2:3 | |
Mongolian Scotch Pine, Caragana Korsgunskii Kom | 1:1 | |
Elaegnus angustifolius, Tamarix chinensis Lour | 1:1 | |
Ulmus pumila L., Caragana Korsgunskii Kom | 2:1 | |
Elaegnus angustifolius, Haloxylon ammodendron | 1:1 | |
Shrubs mixed forest | Flos Caryophyllata, Rosa xanthina Lindl | 1:1 |
Elaegnus angustifolius, Caragana Korsgunskii Kom | 2:1 |
Economic parameters | Unit | Numerical value |
---|---|---|
Pinus tabulaeformis Carr seedling | CNY/plant | [1.0, 1.1] |
Larix gmellini (Rupr.) Pupr. seedling | CNY/plant | [0.8, 0.88] |
Mongolian Scotch Pine seedling | CNY/plant | [3.25, 3.5] |
Poplar seedling | CNY/plant | [6.0, 6.5] |
Ulmus pumila L. seedling | CNY/plant | [2.5, 2.75] |
Salix matsudana Kodidz seedling | CNY/plant | [6.0, 6.6] |
Caragana Korsgunskii Kom seedling | CNY/plant | [0.15, 0.18] |
Other tree species seedling | CNY/plant | [0.4, 0.5] |
Caragana Korshinskii Kom products | CNY/kg | [0.40, 0.56] |
Cistanche Deserticola products | CNY/kg | [20, 22] |
Wastewater treatment cost | CNY/m3 | [0.825, 0.850] |
Electricity price converted by temperature regulation | CNY/plant | [30.00, 30.01] |
Dust removal costs | CNY/tonne | [82.84, 85] |
Afforestation sites | Average annual rainfall (mm) | Gross labour force (million man-days) |
---|---|---|
Land type 1 | [434.9, 535.6] | [17.35, 17.69] |
Land type 2 | [300, 375] | [101.03, 103.42] |
Land type 3 | [400, 450] | [81.85, 83.33] |
Land type 4 | 102.9 | [17.23, 17.79] |
3.2. Results and Discussion
Afforestation sites (i) | Afforestation mode | Afforestation scale (ha) | ||
---|---|---|---|---|
Tree species | Planting pattern | Symbol | Value | |
Land type 1 | Mongolian Scotch Pine, Salix matsudana Kodidz | Mixed forest | 1,292.49 | |
Mongolian Scotch Pine, A. sibirica (L) Lam | Mixed forest | 245.7 | ||
Mongolian Scotch Pine, Poplar | Mixed forest | [0, 71.25] | ||
Mongolian Scotch Pine | Pure forest | 494.66 | ||
Haloxylon ammodendron | Pure forest | 130.4 | ||
Land type 2 | Caragana Korsgunskii Kom, Elaegnus angustifolius | Mixed forest | 7,476.57 | |
Caragana Korsgunskii Kom, Ulmus pumila L. | Mixed forest | 4,271.07 | ||
Poplar, Ulmus pumila L. | Mixed forest | [480.88, 832.5] | ||
Mongolian Scotch Pine, Caragana Korsgunskii Kom | Mixed forest | 3.48 | ||
Caragana Korsgunskii Kom | Pure forest | 3,357.38 | ||
Land type 3 | Poplar, Ulmus pumila L. | Mixed forest | [9,669.82, 9,861.2] | |
Land type 4 | Elaegnus angustifolius, Haloxylon ammodendron | Mixed forest | [973.5, 1,000] | |
Tamarix chinensis Lour | Pure forest | [400, 500] | ||
Haloxylon ammodendron | Pure forest | 2,269 |
4. Conclusions
References
- Ma, G.Z. Discussion on forestry carbon sequestration projects in China under CDM. J. Southwest For. Coll. 2008, 28, 20–23. [Google Scholar]
- Valentini, R.; Matteucci, G.; Dolman, A.J. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H. Land Use, Land Use Change and Forestry; A Special Report of the IPCC. IPCC: Geneva, Switzerland, 2000. Available online: http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf (accessed on 7 June 2012).
- Sabine, C.L.; Heimann, M.; Artaxo, P.; Bakker, D.C.E.; Field, C.B.; Gruber, N.; Prinn, R.G.; Richey, J.E.; Lankao, P.R.; Sathaye, J.A.; et al. Current Status and Past Trends of the Global Carbon Cycle. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World; Field, C.B., Raupach, M.R., Eds.; Island Press: Washington, DC, USA, 2004; pp. 17–44. [Google Scholar]
- Louise, A.; Pedro, M.C.; Sandra, B. A conceptual framework and its application for addressing leakage: the case of avoided deforestation. Clim. Policy 2006, 3, 123–136. [Google Scholar]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Forestry; IPCC Report for Climate Change 2007 Mitigation. IPCC: Geneva, Switzerland, 2007; pp. 543–584. Available online: http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter9.pdf (accessed on 7 June 2012).
- Zhang, X.Q.; Wu, S.H. A Guide to the CDM Afforestation Project in China; China Forestry Publishing House: Beijing, China, 2006. [Google Scholar]
- Roland, O.; Pablo, B.; Tomas, S. How attractive are forest carbon sinks? Economic insights into supply and demand of certified emission reductions. J. For. Econ. 2005, 11, 77–94. [Google Scholar]
- Anders, L.; Fredrik, L.; Achim, G. Storms can cause Europe-wide reduction in forest carbon sink. Glob. Change Biol. 2008, 15, 346–355. [Google Scholar]
- Sun, L.Y.; Li, H.M. An analysis on advantages and disadvantages of developing forest carbon sequestration projects in China. Ecol. Sci. 2005, 24, 42–45. [Google Scholar]
- Van, E.T.; Embo, T.; Muys, B.; Lust, N. A methodology to select the best locations for new urban forests using multicriteria analysis. Forestry 2002, 75, 13–23. [Google Scholar] [CrossRef]
- Espelta, J.M.; Retana, J.; Habrouk, A. An economic and ecological multi-criteria evaluation of reforestation methods to recover burned Pinus nigra forests in NE Spain. For. Ecol. Manag. 2003, 180, 185–198. [Google Scholar] [CrossRef]
- Gilliams, S.; Raymaekers, D.; Muys, B.; Van Orshoven, J. Comparing multiple criteria decision methods to extend a geographical information system on afforestation. Comput. Electron. Agric. 2005, 49, 142–158. [Google Scholar] [CrossRef]
- Babaeyan, K.; Ervine, D.A.; Pender, G. Field measurements and flow modelling of overbank flows in River Severn. J. Environ. Inform. 2003, 1, 28–36. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patty, G.G. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civ. Eng. Syst. 1992, 9, 319–335. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Grey integer programming: An application to waste management planning under uncertainty. Eur. J. Oper. Res. 1995, 83, 594–620. [Google Scholar] [CrossRef]
- Huang, G.H. IPWM: An interval parameter water quality management model. Eng. Optim. 1996, 26, 79–103. [Google Scholar] [CrossRef]
- Huang, G.H.; Loucks, D.P. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ. Eng. Environ. Syst. 2000, 17, 95–118. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Xiao, H.N.; Qin, X.S. An inexact two-stage quadratic program for water resources planning. J. Environ. Inform. 2007, 10, 99–105. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H. An inexact multistage stochastic quadratic programming method for planning water resources systems under uncertainty. Environ. Eng. Sci. 2007, 24, 1377–1399. [Google Scholar]
- Li, Y.P.; Huang, G.H.; Nie, S.L. Inexact multistage stochastic integer programming for water resources management under uncertainty. J. Environ. Inform. 2008, 88, 93–107. [Google Scholar]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, D.; Zhang, Y.; Wang, X.; Li, Y.; Zhao, W. An Optimization Model of Carbon Sinks in CDM Forestry Projects Based on Interval Linear Programming. Energies 2012, 5, 1766-1781. https://doi.org/10.3390/en5061766
Li D, Zhang Y, Wang X, Li Y, Zhao W. An Optimization Model of Carbon Sinks in CDM Forestry Projects Based on Interval Linear Programming. Energies. 2012; 5(6):1766-1781. https://doi.org/10.3390/en5061766
Chicago/Turabian StyleLi, Dufeng, Yang Zhang, Xianen Wang, Yu Li, and Wenjin Zhao. 2012. "An Optimization Model of Carbon Sinks in CDM Forestry Projects Based on Interval Linear Programming" Energies 5, no. 6: 1766-1781. https://doi.org/10.3390/en5061766
APA StyleLi, D., Zhang, Y., Wang, X., Li, Y., & Zhao, W. (2012). An Optimization Model of Carbon Sinks in CDM Forestry Projects Based on Interval Linear Programming. Energies, 5(6), 1766-1781. https://doi.org/10.3390/en5061766