Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Lifecycle Assessment Framework of Jatropha Biodiesel Production System
3.2. Energy and Carbon Balance Analysis
3.3. Land Suitability Evaluation
Characteristic | Tolerance Parameters |
---|---|
Annual mean temperature (°C) | ≥17 |
Annual extreme minimum temperature (°C) | ≥0 |
Thornthwaite humidity index | −66.7~100 |
Effective accumulated temperature above 10 °C | ≥5000 |
Sunshine hours | ≥1000 |
Soil depth (m) | ≥0.3 |
Average slope (°) | ≤25 |
Altitude (m) | ≤1800 |
3.4. Cost-Benefit Analysis
4. Data
4.1. Land Use Data
4.2. Geophysical Data
4.3. Social and Economic Data
5. Results
5.1. Energy and Carbon Balance Analysis of Jatropha Biodiesel Production
Item | Quantity |
---|---|
Feedstock stage | |
Fertilizer (MJ/kg) | 9.39 |
Labor (MJ/kg) | 0.26 |
Transportation (MJ/kg) | 0.17 |
Fuel stage | |
Oil extraction (MJ/kg) | 2.70 |
Refining (MJ/kg) | 0.42 |
Total energy input (MJ/kg) | 12.93 |
Jatropha biodiesel output (MJ/kg) | 13.3 |
Net energy (MJ/ MJ) | 0.03 |
Source of CO2 Emission | Quantity of CO2 Equivalent (kg/ha) |
---|---|
Application of fertilizers | 45735 |
Transportation of seeds and fertilizers | 1808 |
Oil extraction and refining | 39114 |
Jatropha plantation * | −95000 |
Net carbon balance | −8343 |
5.2. Land Resources for Jatropha Plantation
Type of Land | Suitable Land (ha) | Available suitable land (ha) |
---|---|---|
Cultivated land | 54150 | 1080 |
Closed forest | 24230 | 0 |
Shrub | 7830 | 0 |
Open forest | 42240 | 21100 |
Barren/grass land | 43650 | 21800 |
Unused land | 340 | 170 |
Total | 172440 | 44200 |
5.3. Cost-Benefit Analysis of Jatropha Plantation
Item | The First Year | The Second Year | The Third Year |
---|---|---|---|
Seedling cost (USD/ha) | 46 | 0 | 0 |
Compound fertilizer (kg/ha) | 825 | 146 | 213 |
Organic fertilizer (kg/ha) | 0 | 825 | 825 |
Fertilizer cost (USD/ha) | 191 | 199 | 215 |
Labour hour of land preparation (hour/ha) | 40 | 0 | 0 |
Labour hour of planting (hour/ha) | 11 | 0 | 0 |
Labour hour of weeding (hour/ha) | 19 | 19 | 19 |
Labour hour of fertilizering (hour/ha) | 5 | 6 | 6 |
Total labour hour (hour/ha) | 75 | 25 | 25 |
Total labour cost (USD/ha) | 405 | 134 | 136 |
Land cost (USD/ha) | 35 | 35 | 35 |
Total cost (USD/ha) | 676 | 368 | 386 |
Item | Planting Period | Rearing Period | Full Bearing Period |
---|---|---|---|
Seedling cost (USD/year·ha) | 46 | 0 | 0 |
Labor cost (USD/year·ha) | 405 | 182 | 183 |
Fertilizer cost (USD/year·ha) | 191 | 207 | 238 |
Land cost (USD/year·ha) | 35 | 35 | 35 |
Total cost (USD/year·ha) | 676 | 423 | 456 |
Yield (kg/year·ha) | 0 | 750 | 2250 |
Income (USD/year·ha) | 0 | 232 | 695 |
Profit (USD/year·ha) | −676 | −192 | 238 |
6. Concluding Remarks
Acknowledgments
References
- Statistical Review of World Energy 2010; BP-British Petroleum Co.: London, UK, 2011.
- Guy, C.K.L. China’s Energy Security: Perception and Reality. Energy Policy 2011, 39, 1330–1337. [Google Scholar] [CrossRef]
- Zhang, N.; Lior, N.; Jin, H. The energy situation and its sustainable development strategy in China. Energy 2011, 35, 1–11. [Google Scholar]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Chen, G.Q. Emergy account of the Chinese Economy 2004. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 2337–2356. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q.; Zhou, J.B.; Jiang, M.M.; Chen, B. Ecological input-output modeling for embodied resources and emissions in Chinese economy. Commun. Nonlinear Sci. Numer. Simul. 2010, 15(7), 1942–1965. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Zhang, Y.; Zhang, L.X.; Zhao, Y.W.; Jiang, M.M. Emergy-based urban ecosystem health assessment: A case study of Baotou, China. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(3), 972–981. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, B.; Yang, Z.F.; Chen, G.Q.; Jiang, M.M.; Liu, G.Y. Comparison of typical mega cities in China using emergy synthesis. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(6), 2827–2836. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Yang, Z.F.; Ji, X.; Zhang, L.X.; Chen, G.Q. Ecological evaluation of Beijing economy based on emergy indices. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(5), 2482–2494. [Google Scholar] [CrossRef]
- Liu, J.; Deng, X. Impacts and mitigation of climate change on Chinese cities. Curr. Opin. Environ. Sustain. 2011, 3, 188–192. [Google Scholar] [CrossRef]
- Chen, G.Q.; Chen, B. Extended exergy analysis of the Chinese society. Energy 2009, 34(9), 1127–1144. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Ecological footprint accounting and analysis of the Chinese Society 1981–2001 based on embodied energy. Ecol. Econ. 2007, 61(2–3), 335–376. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Tian, Y.; Yang, X.; Zhang, Y.; Zheng, Y.; Wang, L. Bioenergy industries development in China: Dilemma and solution. Renew. Sustain. Energy Rev. 2009, 13, 2571–2579. [Google Scholar] [CrossRef]
- Askew, M.; Holmes, C. The potential for biomass and energy crops in agriculture, in Europe, in land use, policy and rural economy terms. Int. Sugar J. 2002, 104, 482–492. [Google Scholar]
- Zamboni, A.; Murphy, R.J.; Woods, J.; Bezzo, F.; Shah, N. Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction. Bioresour. Technol. 2011, 102, 7457–7465. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, S.; Xiao, M.; Luo, J. Comparison on performance of biodiesel and fossil diesel. China Oils Fats 2008, 33, 1–5. [Google Scholar]
- Food and Agriculture Organization (FAO). Bioenergy, food security and sustainability—towards an international framework. In Proceedings of High-level Conference on World Food Security: The Challenges of Climate Change and Bioenergy, Rome, Italy, 3–5 June 2009.
- Wang, Z.; Calderon, M.M.; Lu, Y. Lifecycle assessment of the economic, environmental and energy performance of Jatropha curcas L. biodiesel in China. Biomass Bioenergy 2011, 35, 2893–2902. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, B.; Ji, X.; He, Y.F.; Chen, G.Q. Exergetic evaluation of corn-ethanol production in China. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(5), 2450–2461. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, H.; Michiel, K.; Erika, M.; Wimvan, V. Impacts of bioethanol development on China’s regional agricultural development. China Econ. Q. 2009, 2, 727–742. [Google Scholar]
- Flavin, C. Time to move to a second generation of biofuels. Available online: http://www.worldwatch.org/node/5616 (accessed on 28 March 2009).
- Latner, K.; O’Kray, C.; Jiang, J.Y. China, Peoples Republic of Bio-Fuels: An Alternative Future for Agriculture; GAIN Report CH6049; USDA Foreign Agricultural Service: Washington, DC, USA, 8 August 2006.
- John, R.; Andrea, S.; Astrid, A. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenergy 2010, 34, 1427–1439. [Google Scholar] [CrossRef]
- Mol, A.P.J. Boundless biofuels? Between vulnerability and environmental sustainability. Sociol. Rural. 2007, 47, 297–315. [Google Scholar] [CrossRef]
- Openshaw, K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 2000, 19, 1–15. [Google Scholar] [CrossRef]
- Jongschaap, R.E.E.; Corré, W.J.; Bindraban, P.S.; Brandendurg, W.A. Claims and Facts on Jatropha curcas L.: Global Jatropha curcas Evaluation, Breeding and Propagation Programme; Plant Research International: Wageningen, The Netherlands, 2007. [Google Scholar]
- Ye, M.; Li, C.Y.; Francis, G.; Makkar, H.P.S. Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor. Syst. 2009, 76, 487–497. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, X.; Chang, S. Scenario analysis on alternative fuel/vehicle for China’s future road transport: Life-cycle energy demand and GHG emissions. Energy Policy 2010, 38, 3943–3956. [Google Scholar] [CrossRef]
- Delucchi, M. A conceptual framework for estimating the climate impacts of land-use change due to energy crop programs. Biomass Bioenergy 2011, 35, 2337–2360. [Google Scholar] [CrossRef]
- Jiang, Q.; Deng, X.; Zhan, J.; He, S. Estimation of land production and its response to cultivated land conversion in north China plain. Chin. Geogr. Sci. 2011, 21, 685–694. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Scott, R.; Emi, U. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Sunde, K.; Brekke, A.; Solberg, B. Environmental impacts and costs of woody Biomass-to-Liquid (BTL) production and use—A review. For. Policy Econ. 2011, 13, 591–602. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.F.; Hao, F.H.; Chen, G.Q. Emergy-based energy and material metabolism of the Yellow River Basin. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(3), 923–934. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q.; Hao, F.H.; Yang, Z.F. The water resources assessment based on resource exergy for the mainstream Yellow River. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(1), 331–334. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R.; Musademba, D.; Musiyiwa, K. Characterisation of land types and agro-ecological conditions for production of Jatropha as a feedstock for biofuels in Zimbabwe. Biomass Bioenergy 2011, 35, 2080–2086. [Google Scholar] [CrossRef]
- Maesa, W.H.; Trabucco, A.; Achten, W.M.J.; Muys, B. Climatic growing conditions of Jatropha curcas L. Biomass Bioenergy 2009, 33, 1481–1485. [Google Scholar] [CrossRef]
- Rajagopal, D.; Hochman, G.; Zilberman, D. Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energy Policy 2011, 39, 228–233. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, X.; Chang, S.; Guo, Q. Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl. Energy 2009, 86, S197–S208. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, P.; Yuan, X.; Wang, Y. The methodology to analysis the energy consumption and CO2 emission of chemical synthesis of biodiesel based on life cycle assessment. Renew. Energy Resour. 2009, 27, 72–75. [Google Scholar]
- Wang, M.; Saricks, C.; Santini, D. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; U.S. Department of Energy: Washington, DC, USA, 1999.
- Dong, J.; Ma, X. Life cycle assessment on biodiesel production. Mod. Chem. Ind. 2007, 27, 59–63. [Google Scholar]
- Xing, A.; Ma, J.; Zhang, Y.; Wang, Y.; Jin, Y. Life cycle assessment of biodiesel environmental effects. J. Tsinghua Univ. Sci. Tech. 2010, 50, 917–922. [Google Scholar]
- Chen, B.; Chen, Z.M.; Zhou, Y.; Chow, J.B.; Chen, G.Q. Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Commun. Nonlinear Sci. Numeri. Simul. 2009, 14(2), 622–635. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, B.; Zhou, J.B.; Li, Z.; Zhou, Y.; Xi, X.R.; Lin, C.; Chen, G.Q. Constructed wetland treatment of municipal wastewater in Longdao River, Beijing. Commun. Nonlinear Sci. Numer. Simul. 2008, 13(9), 1986–1997. [Google Scholar] [CrossRef]
- Zhou, J.B.; Jiang, M.M.; Chen, B.; Chen, G.Q. Emergy evaluations for constructed wetland and conventional wastewater treatments. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(4), 1781–1789. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, B.; Yang, Z.F. National water footprint in an input-output framework-a case study of China 2002. Ecol. Model. 2009, 220, 245–253. [Google Scholar] [CrossRef]
- Ji, X.; Chen, G.Q.; Chen, B.; Jiang, M.M. Exergy-based assessment for waste gas emissions from Chinese transportation. Energy Policy 2009, 37, 2231–2240. [Google Scholar] [CrossRef]
- Kamahara, H.; Hasanudin, U.; Widiyanto, A.; Tachibanad, R.; Atsutae, Y.; Gotoe, N.; Daimone, H.; Fujief, K. Improvement potential for net energy balance of biodiesel derived from palm oil: A case study from Indonesian practice. Biomass Bioenergy 2010, 34, 1818–1824. [Google Scholar] [CrossRef]
- Hu, Z.; Fang, F.; Ben, D.; Pu, G.; Wang, C. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China. Appl. Energy 2004, 78, 247–256. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, D.; Pu, G.; Wang, C. Life Cycle energy efficiency assessment of cassava-based fuel ethanol. J. Shanghai Jiao Tong Univ. 2004, 38, 1715–1720. [Google Scholar]
- Deng, X.Z.; Huang, J.K.; Scott, R.; Emi, U. Growth, population and industrialization and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Deng, X.Z.; Su, H.; Zhan, J.Y. Integration of multiple data sources to simulate the dynamics of land systems. Sensors 2008, 8, 620–634. [Google Scholar] [CrossRef]
- Asli, M.; Marcotte, D. Comparison of Kriging methods in a multivariate context. Math. Geol. 1995, 27(5), 641–658. [Google Scholar] [CrossRef]
- Wang, M.Q. Methodology, development, use, and results. ANL/ESD-39; In GREET 1.5 Transportation Fuel-Cycle Model; U.S. Department of Energy: Washington, DC, USA, 1999; Volume 1. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Deng, X.; Han, J.; Yin, F. Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China. Energies 2012, 5, 2150-2164. https://doi.org/10.3390/en5072150
Deng X, Han J, Yin F. Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China. Energies. 2012; 5(7):2150-2164. https://doi.org/10.3390/en5072150
Chicago/Turabian StyleDeng, Xiangzheng, Jianzhi Han, and Fang Yin. 2012. "Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China" Energies 5, no. 7: 2150-2164. https://doi.org/10.3390/en5072150
APA StyleDeng, X., Han, J., & Yin, F. (2012). Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China. Energies, 5(7), 2150-2164. https://doi.org/10.3390/en5072150