Next Article in Journal
Slotted Blades Savonius Wind Turbine Analysis by CFD
Next Article in Special Issue
Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network
Previous Article in Journal
Thermal CFD Analysis of Tubular Light Guides
Previous Article in Special Issue
AC Power Local Network with Multiple Power Routers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data

1
Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea
2
Department of System Operation & Control, Korea Power Exchange, Seoul 135-791, Korea
3
Department of Electrical Engineering, Chonnam National University, Gwangju 500-757, Korea
*
Author to whom correspondence should be addressed.
Energies 2013, 6(12), 6322-6334; https://doi.org/10.3390/en6126322
Submission received: 3 September 2013 / Revised: 13 November 2013 / Accepted: 25 November 2013 / Published: 3 December 2013
(This article belongs to the Special Issue Smart Grids: The Electrical Power Network and Communication System)

Abstract

:
In this paper we propose a new method to evaluate the effects of nationwide conservation voltage reduction (CVR) on peak-load shaving, using substation operating results management system (SOMAS) data. Its evaluation is based on a national CVR factor, which is defined as the weighted average of CVR factors associated with all transformer banks and weighting coefficients are determined by the reconstructed loads corresponding to each transformer bank. To make use of the data resulting from nationwide CVR without installing additional measuring devices, we adopt a linearized static-load model with a linearizing parameter. SOMAS data are used to evaluate the effects of nationwide CVR on peak-load shaving in the Korean power system. Evaluation results show that the national CVR factor of the Korean power system has small values in the summer season and large values in the winter season. This means that the effect of nationwide CVR on peak-load shaving in the Korean power system presents stronger benefits during winter months.

1. Introduction

Smart grids provide significant opportunities for utilities to control their distribution voltages effectively. With the additions of communication and smart controllers to voltage regulators and transformer load tap changers, utilities could take finer control of distribution voltage levels [1,2,3]. Particularly, conservation voltage reduction (CVR) could be an easy win for smart grids [4,5,6]. CVR is a well-known technique of controlling distribution voltage levels to reduce energy consumption [7,8]. It is widely used for two main reasons: peak-load shaving and reducing the total annual energy consumption. CVR is also directly linked to a reduction in carbon emissions. Moreover, with reduced voltages, transformer life is extended because iron losses are a function of operating voltage levels [9]. Especially during periods of peak demand, when there is a significant amount of stress on the transformer, and CVR may be a way to reduce this stress and potentially help prevent outages. The first wide-scale implementation of CVR ocurred during the oil embargo in 1973, when the Public Service Commission of New York ordered its utilities to implement a voltage reduction of 3.0%–5.0% in order to reduce annual energy consumption [7]. Since then, many electric utilities have tried to implement CVR in their power systems using different strategies [10,11,12,13,14,15,16,17]. In particular, CVR is a practice employed by modern electric utilities as an emergency measure for peak-load shaving with a voltage reduction in the range of 2.0%–5.0% [18,19,20]. For example, Korea Electric Power Corporation (KEPCO) has implemented CVR with two-step voltage reductions of 2.5% and 5.0% to reduce peak load in the short term. One key characteristic that determines the effects of CVR is the nature of the load [14]. Its effect differs from utility to utility and circuit to circuit because load characteristics vary.
Owing to the complexities and uncertainties of power systems [21], decision makers and planners are facing increased pressure to respond more effectively to a number of the associated issues and conflicts. In particular, the effects of nationwide CVR, i.e., CVR implemented at a national level, should be evaluated in advance to aid power-system operators in making proper emergency plans related to peak-load shaving. Since the first wide-scale implementation of CVR in 1973, considerable research has been done evaluating the effects of CVR implemented at regional levels [10,11,12,13,14,15,16,17,22,23,24,25,26,27,28,29]. However, there have been relatively few reports of evaluations of the effects of CVR at a national level [30,31]. In contrast to other methods, our method allows evaluation of the effects of nationwide CVR without installing additional measuring devices. In this paper, substation operating results management system (SOMAS) were used to evaluate the effects of nationwide CVR; however energy management system (EMS) data can also be used following suitable processing.
The purpose of this paper is to propose a new method for evaluating the effects of nationwide CVR on peak-load shaving using SOMAS data. The paper is divided into four sections, including the Introduction. Section 2 describes a linearized static-load model with a linearizing parameter and proposes the definition of a national CVR factor as a metric for evaluating the effects of nationwide CVR. In Section 3, the national CVR factors for the Korean power system are estimated from nationwide CVR implemented in different seasons. Our conclusions are given in Section 4.

2. National CVR Factor

2.1. Linearized Load Modeling Based on SOMAS Data Resulting from Nationwide CVR

In the Korean power system, there are two readily available sources of data that do not require the installation of additional measuring devices: EMS data and SOMAS data. The Korean EMS records its data every 4 s from all substations across the country. Due to its complex data structure and some data errors caused by its fast communication requirements, it is difficult to use EMS data for providing accurate load modeling at a national level. In the case of SOMAS, data are sent every 2 min from every transformer bank across the country and are used to analyze load status. This analysis allows KEPCO to monitor power usage and take any necessary preemptive action to avoid outages. Because SOMAS collects 2-minute averaged data, it is not appropriate to use SOMAS data for estimating the parameters of dynamic-load modeling. Dynamic-load modeling can accurately reflect the load characteristics; however, it requires high time-resolution data. On the other hand, the parameters of static-load modeling can be estimated using SOMAS data because relatively low time-resolution data are sufficient for static-load modeling [32,33,34]. In particular, ZIP (constant impedance, current, and power) load modeling has a simple structure, and its parameters can be derived from just a few data samples. Moreover, because ZIP load modeling can represent the physical meaning of loads and it is used by many electrical companies including KEPCO to manage their power systems, it is one of the most appropriate modeling techniques for estimating parameters based on SOMAS data.
Assuming that the total number of operating transformer banks is NT and n denotes the discrete-time index of SOMAS data, a ZIP model of the load measured at the kth transformer bank is given by:
P M k ( n ) = P R k ( n ) { p Z k V B k 2 ( n ) + p I k V B k ( n ) + p P k }
where:
  • p Z k + p I k + p P k = 1 ;
  • n I k : Inception time when a voltage reduction is implemented at the kth transformer bank;
  • P M k ( n ) : Measured load including the effect of the voltage reduction;
  • P R k ( n ) : Reconstructed load after removing the effect of the voltage reduction;
  • V M k ( n ) : Bank voltage measured at the kth transformer bank;
  • V S k = V M k ( n I k 1 ) : Steady-state bank voltage just before the inception time;
  • V B k ( n ) = V M k ( n ) V S k : Normalized bank voltage based on V S k ;
  • p Z k : Constant-impedance fraction of the reconstructed load;
  • p I k : Constant-current fraction of the reconstructed load;
  • p P k : Constant-power fraction of the reconstructed load.
Although the ZIP load model is one of the most appropriate non-linear load models due to its simple structure and practicality, it cannot be used with SOMAS data resulting from nationwide CVR. Given that nationwide CVR is usually in the range 2.0%–5.0%, it is difficult to accurately determine ZIP parameters using SOMAS data obtained from nationwide CVR [34]. Therefore, instead of the ZIP load model, this paper uses a linearized load model, which was proposed in [34] and is described briefly below.
If Δ V B k ( n ) denotes the voltage variation due to nationwide CVR, Equation (1) can be modified to:
P M k ( n ) = P R k ( n ) { p Z k ( 1 + Δ V B k ( n ) ) 2 + p I k ( 1 + Δ V B k ( n ) ) + p P k }
where Δ V B k ( n ) = Δ V S k ( n ) V S k = V M k ( n ) V S k V S k .
This can be rearranged as follows:
P M k ( n ) = P R k ( n ) { p Z k ( 1 + 2 Δ V B k ( n ) + Δ V B k 2 ( n ) ) + p I k ( 1 + Δ V B k ( n ) ) + p P k } = P R k ( n ) { ( p Z k + p I k + p P k ) + ( 2 p Z k + p I k ) Δ V B k ( n ) + p Z k Δ V B k 2 ( n ) } = P R k ( n ) { 1 + ( 2 p Z k + p I k ) Δ V B k ( n ) + p Z k Δ V B k 2 ( n ) }
Assuming that the voltage variation is small compared with the nominal voltage, Equation (3) can be simplified to the basic form of the linearized load model with a linearizing parameter p C k :
P M k ( n ) P R k ( n ) { 1 + ( 2 p Z k + p I k ) Δ V B k ( n ) } = P R k ( n ) { 1 + p C k Δ V B k ( n ) }
Given that the values of P M k ( n ) and Δ V B k ( n ) are obtained from SOMAS data, P R k ( n ) is required to estimate the linearizing parameter. In this paper, P R k ( n ) is assumed to be in the form of a quadratic polynomial. This assumption is possible because nationwide CVR is usually implemented near peak-load time, and its time period is short enough to consider the load profile as a quadratic polynomial curve. Therefore, the reconstructed load can be expressed with polynomial coefficient a m k :
P R k ( n ) a 2 k n 2 + a 1 k n + a 0 k
Finally, to estimate the linearizing parameter and polynomial coefficients, an objective function is defined as:
min n [ ( a 2 k n 2 + a 1 k n + a 0 k ) { 1 + p C k Δ V B k ( n ) } P M k ( n ) ] 2
subject to 0 p C k 2 .

2.2. Estimation of a National CVR Factor

The CVR factor, which is defined as the ratio of the normalized load reduction to the normalized voltage reduction, is the metric most often used to estimate the effectiveness of CVR as a peak-load shaving or energy-saving measure. To estimate the CVR factor of the kth transformer bank, its normalized load reduction is expressed as:
Δ P B k ( n ) = Δ P R k ( n ) P R k ( n ) = P M k ( n ) P R k ( n ) P R k ( n )
The reconstructed load in Equation (7) can then be obtained from Equation (4) with the linearizing parameter that minimizes the objective function of Equation (6):
P R k ( n ) = P M k ( n ) 1 + p C k Δ V B k ( n )
Substitution of Equation (8) into Equation (7) yields:
Δ P B k ( n ) = p C k Δ V B k ( n )
Therefore, the CVR factor of the kth transformer bank is given by:
C V R F B k = Δ P B k ( n ) Δ V B k ( n ) = p C k
In this paper, a national CVR factor is defined as the weighted average of CVR factors of all transformer banks considered:
C V R F N = k = 1 N C { P R k ( n F ) P N ( n F ) × C V R F B k } = k = 1 N C { w k × C V R F B k }
where P N ( n ) = l = 1 N C P R l ( n ) : National load corresponding to the sum of transformer-bank loads.
In Equation (11), NC represents the number of transformer banks considered and nF indicates the time when the effect of nationwide CVR on peak-load shaving is maximized during the period of its first-step voltage reduction. As shown in Equation (11), the weighting coefficient wk is based on the reconstructed load of the corresponding transformer bank. Substitution of Equation (10) into Equation (11) yields:
C V R F N = k = 1 N C { w k × p C k } = k = 1 N C { w k × ( 2 p Z k + p I k ) }
This can be rearranged as follows:
C V R F N = 2 k = 1 N C { w k × p Z k } + k = 1 N C { w k × p Z k } = 2 p Z N + p I N = p C N
where p Z N and p I N represent the constant-impedance fraction and the constant-current fraction of the national load, respectively, and p C N becomes the linearizing parameter of the national load.

3. Evaluating the Effects of Nationwide CVR on Peak-Load Shaving

Bank voltages are controlled to maintain a minimum voltage to customers at the ends of distribution lines. Due to this operational constraint, the voltage reduction of some transformer banks was too small to be detected as a result of nationwide CVR. In this paper, only the transformer banks exhibiting voltage reductions greater than a threshold were considered when evaluating the effects of nationwide CVR. In addition, the inception time is defined as the time when the voltage variation becomes greater than the threshold, which was set to 0.8% based on the analysis of SOMAS data resulting from nationwide CVR. Figure 1 shows a flowchart for evaluating the effects of nationwide CVR.

3.1. Estimation of Linearizing Parameters for Transformer-Bank Loads in the Korean Power System

SOMAS data were used to estimate the linearizing parameters for the transformer-bank loads found in the Korean power system. On 9 August 2012, nationwide CVR was implemented in the Korean power system with the aim of performing peak-load shaving. It was reported that KEPCO ordered a 2.5% voltage reduction to all substation operators at 14:43, with the total number of operating transformer banks set at 2093.
Figure 1. Flowchart for evaluating the effects of nationwide CVR.
Figure 1. Flowchart for evaluating the effects of nationwide CVR.
Energies 06 06322 g001
In the case of the 108th transformer bank, the inception time was 13:46 and its actual voltage reduction was about 2.17%, dropping from 23.1 kV to 22.6 kV, as shown in Figure 2a. In this case, the objective function of (6) reaches its minimum value when p C 108 = 0.82 , a 2 108 = 0.00049 , a 1 108 = 0.04244 , and a 0 108 = 28.7105 . Therefore, the CVR factor of the 108th transformer bank becomes 0.82, equal to the linearizing parameter [see Equation (10)]. In Figure 2b, the red solid line indicates the reconstructed load after removing the effect of the voltage reduction and the green dashed line indicates the load profile in the form of a quadratic polynomial curve. It can be seen that the reconstructed load exhibits a similar trend to the load profile.
Figure 2. Results of the nationwide CVR implemented at the 108th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Figure 2. Results of the nationwide CVR implemented at the 108th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Energies 06 06322 g002
In the case of the 480th transformer bank, the inception time was 13:48 and its actual voltage reduction was about 2.59%, declining from 23.1 kV to 22.5 kV, as shown in Figure 3a. In this case, the objective function of Equation (6) reaches its minimum value when p C 480 = 0.22 , a 2 480 = 0.00002 , a 1 480 = 0.01208 , and a 0 480 = 30.2622 .
Figure 3. Results of the nationwide CVR implemented at the 480th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Figure 3. Results of the nationwide CVR implemented at the 480th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Energies 06 06322 g003
In the case of the 705th transformer bank, the inception time was 13:46 and its actual voltage reduction was about 1.75%, dropping from 22.9 kV to 22.5 kV, as shown in Figure 4a. In this case, the objective function of Equation (6) reaches its minimum value when p C 705 = 1.34 , a 2 705 = 0.00049 , a 1 705 = 0.02345 , and a 0 705 = 37.7200 .
Figure 4. Results of the nationwide CVR implemented at the 705th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Figure 4. Results of the nationwide CVR implemented at the 705th transformer bank on 9 August 2012: (a) measured bank voltage; and (b) transformer-bank load.
Energies 06 06322 g004
From the above three results, it can be seen that the linearizing parameters are different according to each transformer bank.

3.2. Evaluation of the Effects of Nationwide CVR in the Korean Power System

For comparison, this paper used the load data saved on a reference date when neither nationwide CVR nor any abnormal loading event occurred. Additionally, the reference date was chosen to lie near the date when the corresponding nationwide CVR would be implemented.

3.2.1. Case I: Nationwide CVR on 9 August 2012

At 13:43 on 9 August 2012, nationwide CVR was implemented in the Korean power system with the main purpose of peak-load shaving. In this case, voltage reductions greater than 0.8% were detected on 1901 transformer banks from among 2093. The voltage reductions of 1901 transformer banks were also limited due to the operational constraint mentioned before.
As shown in Figure 5a, when the nationwide CVR was implemented with a command of 2.5% voltage reduction, the average voltage reduction at the national level was 1.56%, declining from 43.72 to 43.04 MV. Figure 5b shows that the sum of the reconstructed loads has a similar profile to the sum of reference loads. To compare them more easily, an offset of −1031 MW was added to the sum of reference loads. The reconstructed loads of individual transformer banks were obtained using the linearizing parameters estimated in Section 3.1, and 6 August 2012 was selected as the reference date for the reference loads. Figure 5b also shows that the maximum peak-load shaving appeared at 13:58, with a reduction amount of 280 MW. The difference between the sum of the reconstructed loads and the sum of the measured loads reflects the peak-load shaving results from the voltage reduction.
Figure 5. Results of the nationwide CVR implemented on 9 August 2012: (a) sum of 1901 bank voltages; and (b) sum of 1901 transformer-bank loads.
Figure 5. Results of the nationwide CVR implemented on 9 August 2012: (a) sum of 1901 bank voltages; and (b) sum of 1901 transformer-bank loads.
Energies 06 06322 g005
Following this first evaluation, it was found that the national CVR factor was 36.20% on 9 August 2012.

3.2.2. Case II: Nationwide CVR on 16 October 2012

At 14:09 on 16 October 2012, there was another implementation of nationwide CVR in the Korean power system. In this case, voltage reductions greater than 0.8% were detected on 1837 transformer banks from among 2098.
As shown in Figure 6a, when the first-step voltage reduction was implemented with a command of 2.5% voltage reduction, the average nationwide voltage reduction was 1.82%, going from 42.35 to 41.55 MV.
When the second-step voltage reduction was implemented with a command of 5.0% voltage reduction, the average nationwide voltage reduction was 2.47%, declining from 42.35 to 41.31 MV. For comparison, 18 October 2012 was selected as the reference date for the reference loads, and an offset of 595 MW was added to the sum of the reference loads. As shown in Figure 6b, the maximum peak-load shaving for the first-step voltage reduction appeared at 14:20 with a reduction amount of 329 MW. For the second-step voltage reduction, the maximum of peak load shaving appeared at 14:32, with a reduction amount of 450 MW.
Figure 6. Results of the nationwide CVR implemented on 16 October 2012: (a) sum of 1837 bank voltages; and (b) sum of 1837 transformer-bank loads.
Figure 6. Results of the nationwide CVR implemented on 16 October 2012: (a) sum of 1837 bank voltages; and (b) sum of 1837 transformer-bank loads.
Energies 06 06322 g006
Following this second evaluation, it was found that the national CVR factor was 49.89% on 16 October 2012.

3.2.3. Case III: Nationwide CVR on 20 November 2012

At 17:32 on 20 November 2012, there was a third implementation of nationwide CVR in the Korean power system. In this case, voltage reductions greater than 0.8% were detected on 1936 transformer banks from among 2104.
As shown in Figure 7a, when the nationwide CVR was implemented with a command of 2.5% voltage reduction, the average voltage reduction at the national level was 1.83%, going from 44.72 to 43.90 MV. For comparison, 19 November 2012 was selected as the reference date for the reference loads, and an offset of 810 MW was added to the sum of reference loads. As shown in Figure 7b, the maximum peak-load shaving occurred at 18:14, with a reduction amount of 668 MW.
Figure 7. Results of the nationwide CVR implemented on 20 November 2012: (a) sum of 1936 bank voltages; and (b) sum of 1936 transformer-bank loads.
Figure 7. Results of the nationwide CVR implemented on 20 November 2012: (a) sum of 1936 bank voltages; and (b) sum of 1936 transformer-bank loads.
Energies 06 06322 g007
Following this third evaluation, it was found that the national CVR factor was 79.50% on 20 November 2012. It should be noted that these two values are much larger than those for the previous two cases.

3.2.4. Case IV: Nationwide CVR on 10 April 2013

At 08:57 on 10 April 2013, there was a fourth implementation of nationwide CVR in the Korean power system. In this case, voltage reductions greater than 0.8% were detected on 1913 banks from among 2123.
As shown in Figure 8a, when the first-step voltage reduction was implemented with a command of 2.5% voltage reduction, the average nationwide voltage reduction was 1.92%, declining from 44.18 MV to 43.33 MV. When the second-step voltage reduction was implemented with a command of 5.0% voltage reduction, the average nationwide voltage reduction was 2.65%, dropping from 44.18 MV to 43.01 MV.
Figure 8. Results of the nationwide CVR implemented on 10 April 2013: (a) sum of 1913 bank voltages; and (b) sum of 1913 transformer-bank loads.
Figure 8. Results of the nationwide CVR implemented on 10 April 2013: (a) sum of 1913 bank voltages; and (b) sum of 1913 transformer-bank loads.
Energies 06 06322 g008
For comparison, 11 April 2013 was selected as the reference date for the reference loads, and an offset of 366 MW was added to the sum of reference loads. As shown in Figure 8b, the maximum peak-load shaving for the first-step voltage reduction took place at 9:54, with a reduction amount of 358 MW. For the second-step voltage reduction, the maximum peak-load shaving took place at 10:20, with a reduction amount of 495 MW.
Following these evaluations, it was found that the national CVR factor was 44.22% on 10 April 2013.

3.3. Summary of Evaluation Results in the Korean Power System

Table 1 summarizes the national CVR factors of the Korean power system. The national CVR factor varied between 36.20% and 79.50%, which is slightly different from the typical CVR factors reported previously: field tests showed a CVR factor in the range 50%–150% [27], EPRI’s distribution green circuits program found average CVR factors of around 80% [28], and industries have reported CVR factors of 70%–100% [29]. Differences between the national CVR factor and these previously reported CVR factors result from the smoothing effect that occurs when the national CVR factor is estimated based on the weighted average of CVR factors of all transformer banks. In particular, the national CVR factor of the Korean power system was small in the summer season and large in the winter season. This means that the effect of nationwide CVR on peak-load shaving in the Korean power system is substantially greater in the winter season.
Table 1. National CVR factors of the Korean power system.
Table 1. National CVR factors of the Korean power system.
TimeNumber of Transformer BankBank VoltagesBank LoadsCVRFN
k = 1 N C V S k k = 1 N C V M k ( n F ) k = 1 N C P R k ( n F ) k = 1 N C P M k ( n F )
N T N C MVMVGWGW%
201208/0711:202093188943.5042.8149.9749.6539.82
08/0913:432093190143.7243.0450.4250.1436.20
10/1614:092098183742.3541.5836.9636.6349.89
10/2514:102098193244.5343.7938.6838.3652.25
10/3018:002098190844.0343.2741.0240.6061.48
11/0616:142102190944.0342.9542.9842.2170.42
11/2017:322104193644.7243.9046.6846.0179.50
201304/0210:002123179441.3640.5840.3939.9755.26
04/1008:572123191344.1843.3342.0341.6744.22
04/1509:222123182742.1641.2938.9938.6644.00

4. Conclusions

We have described a new method to evaluate the effects of nationwide CVR on peak-load shaving using SOMAS data. To evaluate these effects, a national CVR factor was proposed as the weighted average of the CVR factors for all transformer-bank loads. To make use of the data resulting from nationwide CVR without installing additional measuring devices, a linearized static-load model was used to represent the transformer-bank loads. In the national CVR factor, the CVR factor for each transformer bank was estimated by finding its linearizing parameter, and the weighting coefficients of the national CVR factor were determined from the reconstructed loads obtained from each transformer bank. Consequently, the national CVR factor represents the linearizing parameter of the national load.
SOMAS data were used for evaluating the effects of nationwide CVR on peak-load shaving in the Korean power system. Because bank voltages are controlled to keep a minimum voltage to end-of-line customers, the voltage reductions of some transformer banks are too small to be detected. In this paper, only transformer banks exhibiting voltage reductions greater than 0.8% were considered when evaluating the effects of nationwide CVR. As a first step in evaluating the effects of nationwide CVR, the linearizing parameters for individual transformer-bank loads were estimated using the SOMAS data obtained from the nationwide CVR. Second, the national CVR factor was estimated as a metric for comparing the effects of the nationwide CVR. Evaluation results showed that the effects of nationwide CVR on peak-load shaving in the Korean power system are greater in the winter season than in summer.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2011-0011432).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Flynn, B.R. Key smart grid applications. Prot. Control J. 2009, 8, 29–34. [Google Scholar]
  2. Kolenc, M.; Papic, I.; Blazic, B. Minimization of losses in smart grids using coordinated voltage control. Energies 2012, 5, 3768–3787. [Google Scholar] [CrossRef]
  3. Hu, W.; Zheng, L.; Lu, Q.; Min, Y. Research on a hierarchical dynamic automatic voltage control system based on the discrete event-driven method. Energies 2013, 6, 2949–2965. [Google Scholar] [CrossRef]
  4. Fairley, P. An easy smart-grid upgrade saves power. IEEE Spectr. 2010, 47, 13–14. [Google Scholar]
  5. Neal, R.; Bravo, R. Advanced Volt/VAr Control Element of Southern California Edison’s Irvine Smart Grid Demonstration. In Proceedings of the IEEE PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–3.
  6. Jauch, E.T. Possible effects of smart grid functions on LTC transformers. IEEE Trans. Ind. Appl. 2011, 47, 1013–1021. [Google Scholar] [CrossRef]
  7. Scalley, B.R.; Kasten, D.G. The effects of distribution voltage reduction on power and energy consumption. IEEE Trans. Educ. 1981, 24, 210–216. [Google Scholar] [CrossRef]
  8. Chen, M.S.; Shoults, R.; Fitzer, J.; Songster, H. The effects of reduced voltages on the efficiency of electric loads. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 2158–2166. [Google Scholar] [CrossRef]
  9. Diaz-Aguilo, M.; Sandraz, J.; Macwan, R.; de Leon, F.; Czarkowski, D.; Comack, C.; Wang, D. Field-validated load model for the analysis of CVR in distribution secondary networks: Energy conservation. IEEE Trans. Power Deliv. 2013, 28, 2428–2436. [Google Scholar] [CrossRef]
  10. Lauria, D.M. Conservation Voltage Reduction (CVR) at northeast utilities. IEEE Trans. Power Deliv. 1987, 2, 1186–1191. [Google Scholar] [CrossRef]
  11. Kirshner, D. Implementation of conservation voltage reduction at commonwealth Edison. IEEE Trans. Power Syst. 1990, 5, 1178–1182. [Google Scholar] [CrossRef]
  12. De Steese, J.G.; Englin, J.E.; Sands, R.D. Conservation Voltage Reduction Potential in the Pacific Northwest. In Proceedings of the IEEE Energy Conversion Engineering Conference, Reno, NV, USA, 12–17 August 1990; pp. 43–47.
  13. Kennedy, B.W.; Fletcher, R.H. Conservation Voltage Reduction (CVR) at snohomish county PUD. IEEE Trans. Power Syst. 1991, 6, 986–998. [Google Scholar] [CrossRef]
  14. Lefebvre, S.; Gaba, G.; Ba, A.-O.; Asber, D.; Ricard, A.; Perreault, C.; Chartrand, D. Measuring the Efficiency of Voltage Reduction at Hydro-Quebec Distribution. In Proceedings of the IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–7.
  15. Short, T.A.; Mee, R.W. Voltage Reduction Field Trials on Distribution Circuits. In Proceedings of the IEEE Transmission and Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May 2012. [CrossRef]
  16. Belvin, R.C.; Short, T.A. Voltage Reduction Results on a 24-kV Circuit. In Proceedings of the IEEE Transmission and Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May 2012. [CrossRef]
  17. Diskin, E.; Fallon, T.; O’mahony, G.; Power, C. Conservation Voltage Reduction and Voltage Optimisation on IRISH Distribution Networks. In Proceedings of the CIRED Workshop, Lisbon, Portugal, 29–30 May 2012; pp. 1–4.
  18. Independent Electricity System Operator (IESO). Voltage Reduction Test Report; Independent Electricity System Operator: Toronto, ON, Canada, 2010; pp. 5–6. [Google Scholar]
  19. System Operations Division. Emergency Operations Manual; PJM: Valley Forge, PA, USA, 2011; pp. 32–33. [Google Scholar]
  20. Korea Power Exchange. Electricity Regulatory Commission. Korean Electricity Market Rule; Korea Power Exchange: Seoul, Korea, 2013; pp. 46–48. [Google Scholar]
  21. Zeng, Y.; Cai, Y.P.; Huang, G.H.; Dai, J. A review on optimization modeling of energy systems planning and GHG emission mitigation under uncertainty. Energies 2011, 4, 1624–1656. [Google Scholar] [CrossRef]
  22. Preiss, R.F.; Warnock, V.J. Impact of voltage reduction on energy and demand. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 1665–1671. [Google Scholar] [CrossRef]
  23. Kirshner, D.; Giorsetto, P. Statistical tests of energy savings due to voltage reduction. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 1205–1210. [Google Scholar] [CrossRef]
  24. Warnock, V.J.; Kirkpatrick, T.L. Impact of voltage reduction on energy and demand: Phase II. IEEE Trans. Power Syst. 1986, 1, 92–95. [Google Scholar] [CrossRef]
  25. Roytelman, I.; Wee, B.K.; Lugtu, R.L.; Kulas, T.M.; Brossart, T. Pilot project to estimate the centralized Volt/VAr control effectiveness. IEEE Trans. Power Syst. 1998, 13, 864–869. [Google Scholar] [CrossRef]
  26. Fletcher, R.H.; Saeed, A. Integrating Engineering and Economic Analysis for Conservation Voltage Reduction. In Proceedings of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; pp. 725–730.
  27. Fletcher, R.H. Conservation Voltage Regulation: A Chance for T&D and Energy Efficiency to Team Up. In Proceedings of the Panel Discussions of Utility Energy Efficiency Summit, Portland, OR, USA, 17 March 2009.
  28. Skov, T. Trending Toward Distributed Voltage Optimization: A Simple Solution Overlooked. In Proceedings of the Newsletters of Transmission & Distribution World, New York, NY, USA, 4 June 2013.
  29. Willoughby, R. Conservation Voltage Regulation (CVR) and Marginal Line Losses (MLL). In Proceedings of the TechAdvantage Conference, New Orleans, LA, USA, 18–21 February 2013.
  30. De Steese, J.G.; Merrick, S.B.; Kennedy, B.W. Estimating methodology for a large regional application of conservation voltage reduction. IEEE Trans. Power Syst. 1990, 5, 862–870. [Google Scholar] [CrossRef]
  31. Schneider, K.; Fuller, J.; Tuffner, F.; Singh, R. Evaluation of Conservation Voltage Reduction (CVR) on a National Level; Pacific Northwest National Laboratory: Richland, WA, USA, 2010. [Google Scholar]
  32. Dias, L.G.; El-Hawary, M.E. Nonlinear parameter estimation experiments for static load modelling in electric power systems. IEEE Proc. C Gener. Transm. Distrib. 1989, 136, 68–77. [Google Scholar] [CrossRef]
  33. Lee, S.H.; Son, S.E.; Lee, S.M.; Cho, J.M.; Song, K.B.; Park, J.W. Kalman-filter based static load modeling of real power system using K-EMS data. J. Electr. Eng. Technol. 2012, 7, 304–311. [Google Scholar] [CrossRef]
  34. Nam, S.-R.; Kang, S.-H.; Lee, J.-H.; Choi, E.-J.; Ahn, S.-J.; Choi, J.-H. EMS-data-based load modeling to evaluate the effect of conservation voltage reduction at a national level. Energies 2013, 6, 3692–3705. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Nam, S.-R.; Kang, S.-H.; Lee, J.-H.; Ahn, S.-J.; Choi, J.-H. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies 2013, 6, 6322-6334. https://doi.org/10.3390/en6126322

AMA Style

Nam S-R, Kang S-H, Lee J-H, Ahn S-J, Choi J-H. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies. 2013; 6(12):6322-6334. https://doi.org/10.3390/en6126322

Chicago/Turabian Style

Nam, Soon-Ryul, Sang-Hee Kang, Joo-Ho Lee, Seon-Ju Ahn, and Joon-Ho Choi. 2013. "Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data" Energies 6, no. 12: 6322-6334. https://doi.org/10.3390/en6126322

APA Style

Nam, S. -R., Kang, S. -H., Lee, J. -H., Ahn, S. -J., & Choi, J. -H. (2013). Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies, 6(12), 6322-6334. https://doi.org/10.3390/en6126322

Article Metrics

Back to TopTop