Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data
Abstract
:1. Introduction
2. National CVR Factor
2.1. Linearized Load Modeling Based on SOMAS Data Resulting from Nationwide CVR
- ;
- : Inception time when a voltage reduction is implemented at the kth transformer bank;
- : Measured load including the effect of the voltage reduction;
- : Reconstructed load after removing the effect of the voltage reduction;
- : Bank voltage measured at the kth transformer bank;
- : Steady-state bank voltage just before the inception time;
- : Normalized bank voltage based on ;
- : Constant-impedance fraction of the reconstructed load;
- : Constant-current fraction of the reconstructed load;
- : Constant-power fraction of the reconstructed load.
2.2. Estimation of a National CVR Factor
3. Evaluating the Effects of Nationwide CVR on Peak-Load Shaving
3.1. Estimation of Linearizing Parameters for Transformer-Bank Loads in the Korean Power System
3.2. Evaluation of the Effects of Nationwide CVR in the Korean Power System
3.2.1. Case I: Nationwide CVR on 9 August 2012
3.2.2. Case II: Nationwide CVR on 16 October 2012
3.2.3. Case III: Nationwide CVR on 20 November 2012
3.2.4. Case IV: Nationwide CVR on 10 April 2013
3.3. Summary of Evaluation Results in the Korean Power System
Time | Number of Transformer Bank | Bank Voltages | Bank Loads | CVRFN | |||||
---|---|---|---|---|---|---|---|---|---|
MV | MV | GW | GW | % | |||||
2012 | 08/07 | 11:20 | 2093 | 1889 | 43.50 | 42.81 | 49.97 | 49.65 | 39.82 |
08/09 | 13:43 | 2093 | 1901 | 43.72 | 43.04 | 50.42 | 50.14 | 36.20 | |
10/16 | 14:09 | 2098 | 1837 | 42.35 | 41.58 | 36.96 | 36.63 | 49.89 | |
10/25 | 14:10 | 2098 | 1932 | 44.53 | 43.79 | 38.68 | 38.36 | 52.25 | |
10/30 | 18:00 | 2098 | 1908 | 44.03 | 43.27 | 41.02 | 40.60 | 61.48 | |
11/06 | 16:14 | 2102 | 1909 | 44.03 | 42.95 | 42.98 | 42.21 | 70.42 | |
11/20 | 17:32 | 2104 | 1936 | 44.72 | 43.90 | 46.68 | 46.01 | 79.50 | |
2013 | 04/02 | 10:00 | 2123 | 1794 | 41.36 | 40.58 | 40.39 | 39.97 | 55.26 |
04/10 | 08:57 | 2123 | 1913 | 44.18 | 43.33 | 42.03 | 41.67 | 44.22 | |
04/15 | 09:22 | 2123 | 1827 | 42.16 | 41.29 | 38.99 | 38.66 | 44.00 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Flynn, B.R. Key smart grid applications. Prot. Control J. 2009, 8, 29–34. [Google Scholar]
- Kolenc, M.; Papic, I.; Blazic, B. Minimization of losses in smart grids using coordinated voltage control. Energies 2012, 5, 3768–3787. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, L.; Lu, Q.; Min, Y. Research on a hierarchical dynamic automatic voltage control system based on the discrete event-driven method. Energies 2013, 6, 2949–2965. [Google Scholar] [CrossRef]
- Fairley, P. An easy smart-grid upgrade saves power. IEEE Spectr. 2010, 47, 13–14. [Google Scholar]
- Neal, R.; Bravo, R. Advanced Volt/VAr Control Element of Southern California Edison’s Irvine Smart Grid Demonstration. In Proceedings of the IEEE PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–3.
- Jauch, E.T. Possible effects of smart grid functions on LTC transformers. IEEE Trans. Ind. Appl. 2011, 47, 1013–1021. [Google Scholar] [CrossRef]
- Scalley, B.R.; Kasten, D.G. The effects of distribution voltage reduction on power and energy consumption. IEEE Trans. Educ. 1981, 24, 210–216. [Google Scholar] [CrossRef]
- Chen, M.S.; Shoults, R.; Fitzer, J.; Songster, H. The effects of reduced voltages on the efficiency of electric loads. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 2158–2166. [Google Scholar] [CrossRef]
- Diaz-Aguilo, M.; Sandraz, J.; Macwan, R.; de Leon, F.; Czarkowski, D.; Comack, C.; Wang, D. Field-validated load model for the analysis of CVR in distribution secondary networks: Energy conservation. IEEE Trans. Power Deliv. 2013, 28, 2428–2436. [Google Scholar] [CrossRef]
- Lauria, D.M. Conservation Voltage Reduction (CVR) at northeast utilities. IEEE Trans. Power Deliv. 1987, 2, 1186–1191. [Google Scholar] [CrossRef]
- Kirshner, D. Implementation of conservation voltage reduction at commonwealth Edison. IEEE Trans. Power Syst. 1990, 5, 1178–1182. [Google Scholar] [CrossRef]
- De Steese, J.G.; Englin, J.E.; Sands, R.D. Conservation Voltage Reduction Potential in the Pacific Northwest. In Proceedings of the IEEE Energy Conversion Engineering Conference, Reno, NV, USA, 12–17 August 1990; pp. 43–47.
- Kennedy, B.W.; Fletcher, R.H. Conservation Voltage Reduction (CVR) at snohomish county PUD. IEEE Trans. Power Syst. 1991, 6, 986–998. [Google Scholar] [CrossRef]
- Lefebvre, S.; Gaba, G.; Ba, A.-O.; Asber, D.; Ricard, A.; Perreault, C.; Chartrand, D. Measuring the Efficiency of Voltage Reduction at Hydro-Quebec Distribution. In Proceedings of the IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–7.
- Short, T.A.; Mee, R.W. Voltage Reduction Field Trials on Distribution Circuits. In Proceedings of the IEEE Transmission and Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May 2012. [CrossRef]
- Belvin, R.C.; Short, T.A. Voltage Reduction Results on a 24-kV Circuit. In Proceedings of the IEEE Transmission and Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May 2012. [CrossRef]
- Diskin, E.; Fallon, T.; O’mahony, G.; Power, C. Conservation Voltage Reduction and Voltage Optimisation on IRISH Distribution Networks. In Proceedings of the CIRED Workshop, Lisbon, Portugal, 29–30 May 2012; pp. 1–4.
- Independent Electricity System Operator (IESO). Voltage Reduction Test Report; Independent Electricity System Operator: Toronto, ON, Canada, 2010; pp. 5–6. [Google Scholar]
- System Operations Division. Emergency Operations Manual; PJM: Valley Forge, PA, USA, 2011; pp. 32–33. [Google Scholar]
- Korea Power Exchange. Electricity Regulatory Commission. Korean Electricity Market Rule; Korea Power Exchange: Seoul, Korea, 2013; pp. 46–48. [Google Scholar]
- Zeng, Y.; Cai, Y.P.; Huang, G.H.; Dai, J. A review on optimization modeling of energy systems planning and GHG emission mitigation under uncertainty. Energies 2011, 4, 1624–1656. [Google Scholar] [CrossRef]
- Preiss, R.F.; Warnock, V.J. Impact of voltage reduction on energy and demand. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 1665–1671. [Google Scholar] [CrossRef]
- Kirshner, D.; Giorsetto, P. Statistical tests of energy savings due to voltage reduction. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 1205–1210. [Google Scholar] [CrossRef]
- Warnock, V.J.; Kirkpatrick, T.L. Impact of voltage reduction on energy and demand: Phase II. IEEE Trans. Power Syst. 1986, 1, 92–95. [Google Scholar] [CrossRef]
- Roytelman, I.; Wee, B.K.; Lugtu, R.L.; Kulas, T.M.; Brossart, T. Pilot project to estimate the centralized Volt/VAr control effectiveness. IEEE Trans. Power Syst. 1998, 13, 864–869. [Google Scholar] [CrossRef]
- Fletcher, R.H.; Saeed, A. Integrating Engineering and Economic Analysis for Conservation Voltage Reduction. In Proceedings of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; pp. 725–730.
- Fletcher, R.H. Conservation Voltage Regulation: A Chance for T&D and Energy Efficiency to Team Up. In Proceedings of the Panel Discussions of Utility Energy Efficiency Summit, Portland, OR, USA, 17 March 2009.
- Skov, T. Trending Toward Distributed Voltage Optimization: A Simple Solution Overlooked. In Proceedings of the Newsletters of Transmission & Distribution World, New York, NY, USA, 4 June 2013.
- Willoughby, R. Conservation Voltage Regulation (CVR) and Marginal Line Losses (MLL). In Proceedings of the TechAdvantage Conference, New Orleans, LA, USA, 18–21 February 2013.
- De Steese, J.G.; Merrick, S.B.; Kennedy, B.W. Estimating methodology for a large regional application of conservation voltage reduction. IEEE Trans. Power Syst. 1990, 5, 862–870. [Google Scholar] [CrossRef]
- Schneider, K.; Fuller, J.; Tuffner, F.; Singh, R. Evaluation of Conservation Voltage Reduction (CVR) on a National Level; Pacific Northwest National Laboratory: Richland, WA, USA, 2010. [Google Scholar]
- Dias, L.G.; El-Hawary, M.E. Nonlinear parameter estimation experiments for static load modelling in electric power systems. IEEE Proc. C Gener. Transm. Distrib. 1989, 136, 68–77. [Google Scholar] [CrossRef]
- Lee, S.H.; Son, S.E.; Lee, S.M.; Cho, J.M.; Song, K.B.; Park, J.W. Kalman-filter based static load modeling of real power system using K-EMS data. J. Electr. Eng. Technol. 2012, 7, 304–311. [Google Scholar] [CrossRef]
- Nam, S.-R.; Kang, S.-H.; Lee, J.-H.; Choi, E.-J.; Ahn, S.-J.; Choi, J.-H. EMS-data-based load modeling to evaluate the effect of conservation voltage reduction at a national level. Energies 2013, 6, 3692–3705. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nam, S.-R.; Kang, S.-H.; Lee, J.-H.; Ahn, S.-J.; Choi, J.-H. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies 2013, 6, 6322-6334. https://doi.org/10.3390/en6126322
Nam S-R, Kang S-H, Lee J-H, Ahn S-J, Choi J-H. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies. 2013; 6(12):6322-6334. https://doi.org/10.3390/en6126322
Chicago/Turabian StyleNam, Soon-Ryul, Sang-Hee Kang, Joo-Ho Lee, Seon-Ju Ahn, and Joon-Ho Choi. 2013. "Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data" Energies 6, no. 12: 6322-6334. https://doi.org/10.3390/en6126322
APA StyleNam, S. -R., Kang, S. -H., Lee, J. -H., Ahn, S. -J., & Choi, J. -H. (2013). Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data. Energies, 6(12), 6322-6334. https://doi.org/10.3390/en6126322