Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Steam Reforming Experiments
2.4. Data Analysis
3. Results and Discussion
3.1. Catalyst Characterization
Sample | BET Surface area (m2/g) | Pore volume (cm3/g) | Average pore diameter (nm) |
---|---|---|---|
SBA-15 | 476.4 | 0.76 | 5.63 |
Ni/SBA-15 | 261.1 | 0.43 | 4.31 |
Ni-CeO2(1wt%)/SBA-15 | 301.6 | 0.48 | 4.32 |
Ni-CeO2(3wt%)/SBA-15 | 307.7 | 0.51 | 4.89 |
3.2. Effects of Catalytic Temperature and CeO2 Loading Content on the Steam Reforming of Toluene
Sample | Carbon content under different temperatures (wt%) | |||
700 °C | 750 °C | 800 °C | 850 °C | |
Ni/SBA-15 | 0.31 | 0.28 | 0.25 | 0.21 |
Ni-CeO2(1wt%)/SBA-15 | 0.12 | 0.11 | 0.05 | 0.02 |
Ni-CeO2(3wt%)/SBA-15 | 0.09 | 0.08 | 0.05 | 0.01 |
3.3. Effects of the S/C Ratio on the Steam Reforming of Toluene
No. | Catalyst | Temperature (°C) | S/C | Space time | Toluene conversion (%) | Ref. |
---|---|---|---|---|---|---|
1 | Fe/MgO | 850 | 18:7 | 20 kgcath/m3 [a] | 77 | [36] |
2 | NiO-CeO2/Olivine | 830 | 5:1 | 862 h−1 [b] | 77.9 | [20] |
3 | Fe/Olivine | 850 | 15:7 | 16.7 kgcath/m3 [a] | 85 | [29] |
4 | Ni/cordierite | 900 | 2:1 | - | 94.1 | [19] |
5 | Ni/Al/La | 650 | 5.7:1 | 1326 h−1 [c] | 94.53 | [37] |
6 | Cordierite | 900 | 1.5:1 | 1031 h−1 [b] | 95 | [38] |
7 | Ni/Olivine | 650 | 2.3:1 | 9 kgcath/m3 [a] | 100 | [39] |
8 | Ni-CeO2/SBA-15 | 850 | 3:1 | 16 kgcath/m3 [a] | 98.9 | - |
3.4. Catalytic Stability Test
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Ball, M.; Wietschel, M. The future of hydrogen-opportunities and challenges. Int. J. Hydrog. Energy 2009, 34, 615–627. [Google Scholar]
- Haykiri-Acma, H.; Yaman, S. Thermogravimetric investigation on the thermal reactivity of biomass during slow pyrolysis. Int. J. Green Energy 2009, 6, 333–342. [Google Scholar] [CrossRef]
- Gezer, I.; Doğru, M.; Akay, G. Gasification of apricot pit shells in a downdraft gasifier. Int. J. Green Energy 2009, 6, 218–227. [Google Scholar] [CrossRef]
- Yin, R.; Liu, R.; Wu, J.; Wu, X.; Sun, C.; Wu, C. Influence of particle size on performance of a pilot-scale fixed-bed gasification system. Bioresour. Technol. 2012, 119, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.B.; Ngo, S.I.; Lim, Y.-I.; Lee, J.W.; Lee, U.-D.; Song, B.-H. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed. Energy Convers. Manag. 2012, 54, 100–112. [Google Scholar] [CrossRef]
- Huang, B.-S.; Chen, H.-Y.; Kuo, J.-H.; Chang, C.-H.; Wey, M.-Y. Catalytic upgrading of syngas from fluidized bed air gasification of sawdust. Bioresour. Technol. 2012, 110, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hisada, Y.; Koike, M.; Li, D.; Watanabe, H.; Nakagawa, Y.; Tomishige, K. Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene. Appl. Catal. B Environ. 2012, 121–122, 95–104. [Google Scholar] [CrossRef]
- Yang, X.Q.; Xu, S.P.; Xu, H.L.; Liu, X.D.; Liu, C.H. Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catal. Commun. 2010, 11, 383–386. [Google Scholar] [CrossRef]
- Devi, L.; Ptasinski, K.J.; Janssen, F.J.J.G. Pretreated olivine as tar removal catalyst for biomass gasifiers: Investigation using naphthalene as model biomass tar. Fuel Process. Technol. 2005, 86, 707–730. [Google Scholar] [CrossRef]
- Yu, Q.Z.; Brage, C.; Nordgreen, T.; Sjöström, K. Effects of Chinese dolomites on tar cracking in gasification of birch. Fuel 2009, 88, 1922–1926. [Google Scholar] [CrossRef]
- Devi, L.; Ptasinski, K.J.; Janssen, F.J.J.G.; van Paasen, S.V.B.; Bergman, P.C.A.; Kiel, J.H.A. Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine. Renew. Energy 2005, 30, 565–587. [Google Scholar] [CrossRef]
- Park, H.J.; Park, S.H.; Sohn, J.M.; Park, J.; Jeon, J.-K.; Kim, S.-S.; Park, Y.-K. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresour. Technol. 2010, 101, S101–S103. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Hirabayashi, D.; Suzuki, K. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1−x catalyst. Bioresour. Technol. 2010, 101, S97–S100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.K.; Kuhn, J.N.; Felix, L.G.; Slimane, R.B.; Choi, C.W.; Ozkan, U.S. Thermally impregnated Ni-olivine catalysts for tar removal by steam reforming in biomass gasifiers. Ind. Eng. Chem. Res. 2008, 47, 717–723. [Google Scholar] [CrossRef]
- Colby, J.L.; Wang, T.; Schmidt, L.D. Steam reforming of benzene as a model for biomass-derived syngas tars over rh-based catalysts. Energy Fuel 2009, 24, 1341–1346. [Google Scholar] [CrossRef]
- Li, C.; Hirabayashi, D.; Suzuki, K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas. Fuel Process. Technol. 2009, 90, 790–796. [Google Scholar] [CrossRef]
- Łamacz, A.; Krztoń, A.; Djéga-Mariadassou, G. Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts. Catal. Today 2011, 176, 347–351. [Google Scholar] [CrossRef]
- Yan, C.-F.; Cheng, F.-F.; Hu, R.-R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts. Int. J. Hydrog. Energy 2010, 35, 11693–11699. [Google Scholar] [CrossRef]
- Zhao, B.F.; Zhang, X.D.; Chen, L.; Qu, R.B.; Meng, G.F.; Yi, X.L.; Sun, L. Steam reforming of toluene as model compound of biomass pyrolysis tar for hydrogen. Biomass Bioenergy 2010, 34, 140–144. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Wang, Y.C.; Brown, R.C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energ. Convers. Manag. 2007, 48, 68–77. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, J.; Li, Q.; Stucky, G.D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 2000, 12, 275–279. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Ji, S.; Lang, B.; Habimana, F.; Li, C. Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane. J. Nat. Gas. Chem. 2008, 17, 225–231. [Google Scholar] [CrossRef]
- Wan, H.; Li, X.; Ji, S.; Huang, B.; Wang, K.; Li, C. Effect of Ni loading and CexZr1−xO2 promoter on Ni-Based SBA-15 catalysts for steam reforming of methane. J. Nat. Gas. Chem. 2007, 16, 139–147. [Google Scholar] [CrossRef]
- Li, D.; Nakagawa, Y.; Tomishige, K. Development of Ni-based catalysts for steam reforming of tar derived from biomass pyrolysis. Chin. J. Catal. 2012, 33, 583–594. [Google Scholar] [CrossRef]
- Bartholomew, C.H.; Farrauto, R.J. Chemistry of nickel-alumina catalysts. J. Catal. 1976, 45, 41–53. [Google Scholar] [CrossRef]
- Brown, M.D.; Baker, E.G.; Mudge, L.K. Environmental design considerations for thermochemical biomass energy. Biomass 1986, 11, 255–270. [Google Scholar] [CrossRef]
- Virginie, M.; Courson, C.; Kiennemann, A. Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst. Cr. Chim. 2010, 13, 1319–1325. [Google Scholar] [CrossRef]
- Jiménez-Morales, I.; Vila, F.; Mariscal, R.; Jiménez-López, A. Hydrogenolysis of glycerol to obtain 1,2-propanediol on Ce-promoted Ni/SBA-15 catalysts. Appl. Catal. B 2012, 117–118, 253–259. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Ji, S.; Shi, X.; Tang, J. Effect of CexZr1−xO2 promoter on Ni-based SBA-15 catalyst for steam reforming of methane. Energy Fuel 2008, 23, 25–31. [Google Scholar] [CrossRef]
- Solsona, B.; Blasco, T.; López Nieto, J.M.; Peña, M.L.; Rey, F.; Vidal-Moya, A. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J. Catal. 2001, 203, 443–452. [Google Scholar] [CrossRef]
- Vradman, L.; Landau, M.V.; Herskowitz, M.; Ezersky, V.; Talianker, M.; Nikitenko, S.; Koltypin, Y.; Gedanken, A. High loading of short WS2 slabs inside SBA-15: Promotion with nickel and performance in hydrodesulfurization and hydrogenation. J. Catal. 2003, 213, 163–175. [Google Scholar] [CrossRef]
- Hu, X.; Lu, G. Investigation of steam reforming of acetic acid to hydrogen over Ni–Co metal catalyst. J. Mol. Catal. A 2007, 261, 43–48. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, X.; Li, Y.; Cai, W.; Xu, Y.; Shen, W. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catal. Commun. 2006, 7, 367–372. [Google Scholar] [CrossRef]
- Di Felice, L.; Courson, C.; Foscolo, P.U.; Kiennemann, A. Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int. J. Hydrog. Energy 2011, 36, 5296–5310. [Google Scholar]
- Bona, S.; Guillén, P.; Alcalde, J.G.; García, L.; Bilbao, R. Toluene steam reforming using coprecipitated Ni/Al catalysts modified with lanthanum or cobalt. Chem. Eng. J. 2008, 137, 587–597. [Google Scholar] [CrossRef]
- Xu, X.; Chen, L.; Zhang, X.; Sun, H.; Xu, M. Catalytic conversion of model compounds of biomass tar. J. Fuel Chem. Technol. 2009. [Google Scholar] [CrossRef]
- Świerczyński, D.; Libs, S.; Courson, C.; Kiennemann, A. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B 2007, 74, 211–222. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tao, J.; Zhao, L.; Dong, C.; Lu, Q.; Du, X.; Dahlquist, E. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts. Energies 2013, 6, 3284-3296. https://doi.org/10.3390/en6073284
Tao J, Zhao L, Dong C, Lu Q, Du X, Dahlquist E. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts. Energies. 2013; 6(7):3284-3296. https://doi.org/10.3390/en6073284
Chicago/Turabian StyleTao, Jun, Leiqiang Zhao, Changqing Dong, Qiang Lu, Xiaoze Du, and Erik Dahlquist. 2013. "Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts" Energies 6, no. 7: 3284-3296. https://doi.org/10.3390/en6073284
APA StyleTao, J., Zhao, L., Dong, C., Lu, Q., Du, X., & Dahlquist, E. (2013). Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts. Energies, 6(7), 3284-3296. https://doi.org/10.3390/en6073284