Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine
Abstract
:1. Introduction
1.1. Motivation
1.2. Hardware
Manufacturer Type | Volkswagen TDI 2.0 - 475 NE (CJDA) Industrial Engine |
---|---|
Number of cylinders | 4 |
Displacement volume | 1.968 L |
Bore | 81.0 mm |
Stroke | 95.5 mm |
Compression ratio | 16.5 |
Injection system | Bosch Common-Rail |
Diesel injectors | Piezo |
Maximum pressure | 1800 bar |
1.3. Overall Control Structure
1.4. System Description
Engine speed | 2000 rpm |
Intake manifold pressure | 1.1 bar |
Fuel/air equivalence ratio | 0.8 |
EGR rate | 0.2 |
1.5. Problem Formulation
1.6. Contribution
1.7. Structure
2. Feedback Combustion Control
2.1. SISO
2.2. SIMO—Transformation Method
Engine speed | 2000 rpm |
Intake manifold pressure | 0.99 bar |
Fuel/air equivalence ratio | 0.65 |
EGR rate | 0.3 |
2.3. MIMO
3. Diesel-Minimal Combustion Control and Extremum Seeking
3.1. Introduction to Extremum Seeking
3.2. Diesel-Minimal Combustion Control Using Extremum Seeking
3.2.1. Slow Excitation Approach
- fast: dynamics of the system with -stabilizing feedback loop
- medium: excitation of the start of injection
- slow: integrator with adaptation rate ϵ and low-pass filter used to drive the gradient to zero, i.e., the extremum seeking.
3.2.2. Fast Excitation Approach
- very fast: excitation of start of injection
- fast: dynamics of the system with -stabilizing feedback loop
- medium: integrator with adaptation rate ϵ and low-pass filter used to drive the gradient to zero, i.e., the extremum seeking.
Slow Excitation Approach | Fast Excitation Approach | |
---|---|---|
very fast | – | excitation |
fast | feedback loop | feedback loop |
medium | excitation | extremum seeking |
slow | extremum seeking | – |
4. Experimental Results
4.1. Validation of the Method
4.2. Comparison at the Alternative Operating Point
Transformation | Extremum Seeking | ||
---|---|---|---|
(bar) | |||
(kg/h) | |||
(kg/h) | |||
(g/kWh) | |||
(%) |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IEA Publications, International Energy Agency. CO2 Emissions from Fuel Combustion—Highlights; IEA Publications, International Energy Agency: Paris, France, 2012. [Google Scholar]
- IEA Publications, International Energy Agency. World Energy Outlook; IEA Publications, International Energy Agency: Paris, France, 2011. [Google Scholar]
- Bakar, R.A. A technical review of compressed natural gas as an alternative fuel for internal combustion engines. Am. J. Eng. Appl. Sci. 2008, 1, 302–311. [Google Scholar]
- Serrano, D.; Bertrand, L. Exploring the Potential of Dual Fuel Diesel-CNG Combustion for Passenger Car Engine. In Proceedings of the FISITA 2012 World Automotive Congress; Springer: Berlin/Heidelberg, Germany, 2013; pp. 139–153. [Google Scholar]
- Ott, T.; Onder, C.; Guzzella, L. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Energies 2013, 6, 3571–3592. [Google Scholar] [CrossRef]
- Selim, M.Y. Pressure-time characteristics in diesel engine fueled with natural gas. Renew. Energy 2001, 22, 473–489. [Google Scholar] [CrossRef]
- Sahoo, B.; Sahoo, N.; Saha, U. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review. Renew. Sustain. Energy Rev. 2009, 13, 1151–1184. [Google Scholar] [CrossRef]
- Papagiannakis, R.; Rakopoulos, C.; Hountalas, D.; Rakopoulos, D. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions. Fuel 2010, 89, 1397–1406. [Google Scholar] [CrossRef]
- Königsson, F.; Stalhammar, P.; Angstrom, H.E. Characterization and Potential of Dual Fuel Combustion in a Modern Diesel Engine; SAE Technical Paper 2011-01-2223; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Ishiyama, T.; Kang, J.; Ozawa, Y.; Sako, T. Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine; SAE Technical Paper 2011-01-1963; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Guzzella, L.; Onder, C. Introduction to Modeling and Control of Internal Combustion Engine Systems, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Eriksson, L.; Nielsen, L. Modeling and Control of Engines and Drivelines; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Kiencke, U.; Nielsen, L. Automotive Control Systems: For Engine, Driveline, and Vehicle, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Isermann, R. Engine Modeling and Control; Springer-Verlag: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Eichmeier, J.; Wagner, U.; Spicher, U. Controlling gasoline low temperature combustion by diesel micro pilot injection. J. Eng. Gas Turbines Power 2012, 134, 072802. [Google Scholar] [CrossRef]
- Han, X.; Zheng, M.; Tjong, J. Clean combustion enabling with ethanol on a dual-fuel compression ignition engine. Int. J. Engine Res. 2015, 16, 639–651. [Google Scholar] [CrossRef]
- Ott, T.; Zurbriggen, F.; Onder, C.; Guzzella, L. Cylinder Individual Feedback Control of Combustion in a Dual Fuel Engine. Adv. Automot. Control 2013, 7, 600–605. [Google Scholar]
- Ott, T.M. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Ph.D. Thesis, ETH Zurich, Zurich, Swizerland, 2013. [Google Scholar]
- Bargende, M. Schwerpunkt-Kriterium und automatische Klingelerkennung. MTZ Motortech. Z. 1995, 56, 623. [Google Scholar]
- Pischinger, R.; Kell, M.; Sams, T. Thermodynamik der Verbrennungskraftmaschine, 3rd ed.; Springer: Bonn, Germany, 2009. [Google Scholar]
- Zurbriggen, F.; Ott, T.; Onder, C.; Guzzella, L. Optimal Control of the Heat Release Rate of an Internal Combustion Engine with Pressure Gradient, Maximum Pressure, and Knock Constraints. J. Dyn. Syst. Meas. Control 2014, 136, 061006. [Google Scholar] [CrossRef]
- Emiliano, P. Spark ignition feedback control by means of combustion phase indicators on steady and transient operation. J. Dyn. Syst. Meas. Control 2014, 136, 051021. [Google Scholar] [CrossRef]
- Asad, U.; Zheng, M. Diesel pressure departure ratio algorithm for combustion feedback and control. Int. J. Engine Res. 2014, 15, 101–111. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Gao, G.; Ouyang, M. In-cycle diesel low temperature combustion control based on SOC detection. Appl. Energy 2014, 136, 77–88. [Google Scholar] [CrossRef]
- Borgers, M.; Haußner, M.; Houben, H.; Pechhold, F. Drucksensor-Glühkerze für Dieselmotoren. MTZ Motortech. Z. 2004, 65, 888–895. [Google Scholar] [CrossRef]
- Draper, C.S.; Li, Y.T. Principles of Optimalizing Control Systems and an Application to the iNternal Combustion Engine; American Society of Mechanical Engineers: New York, NY, USA, 1951. [Google Scholar]
- Scotson, P.G.; Wellstead, P.E. Self-tuning optimization of spark ignition automotive engines. IEEE Control Syst. Mag. 1990, 10, 94–101. [Google Scholar] [CrossRef]
- Larsson, S.; Andersson, I. Self-optimising control of an SI-engine using a torque sensor. Control Eng. Pract. 2008, 16, 505–514. [Google Scholar] [CrossRef]
- Mohammadi, A.; Manzie, C.; Nešić, D. Online optimization of spark advance in alternative fueled engines using extremum seeking control. Control Engineering Practice 2014, 29, 201–211. [Google Scholar] [CrossRef]
- Hellstrom, E.; Lee, D.; Jiang, L.; Stefanopoulou, A.G.; Yilmaz, H. On-Board Calibration of Spark Timing by Extremum Seeking for Flex-Fuel Engines. IEEE Trans. Control Syst. Technol. 2013, 21, 2273–2279. [Google Scholar] [CrossRef]
- Killingsworth, N.J.; Aceves, S.M.; Flowers, D.L.; Espinosa-Loza, F.; Krstić, M. HCCI engine combustion-timing control: Optimizing gains and fuel consumption via extremum seeking. IEEE Trans. Control Syst. Technol. 2009, 17, 1350–1361. [Google Scholar] [CrossRef]
- Lewander, M.; Widd, A.; Johansson, B.; Tunestal, P. Steady state fuel consumption optimization through feedback control of estimated cylinder individual efficiency. In Proceedings of the American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 4210–4214.
- Popovic, D.; Jankovic, M.; Magner, S.; Teel, A.R. Extremum seeking methods for optimization of variable cam timing engine operation. IEEE Trans. Control Syst. Technol. 2006, 14, 398–407. [Google Scholar] [CrossRef]
- Corti, E.; Forte, C.; Cavina, N.; Mancini, G.; Ravaglioli, V. Automatic Combustion Control for Calibration Purposes in a GDI Turbocharged Engine; SAE Technical Paper 2014-01-1346; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Tan, Y.; Moase, W.; Manzie, C.; Nešić, D.; Mareels, I. Extremum seeking from 1922 to 2010. In Proceedings of the 2010 29th IEEE Chinese Control Conference (CCC), Beijing, China, 29–31 July 2010; Volume 29, pp. 14–26.
- Krstić, M.; Wang, H.H. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 2000, 36, 595–601. [Google Scholar] [CrossRef]
- Ariyur, K.B.; Krstić, M. Real-Time Optimization by Extremum-Seeking Control; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Bertsekas, D. Constrained Optimization and Lagrange Multiplier Methods; Athena Scientific: Belmont, MA, USA, 1996. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zurbriggen, F.; Hutter, R.; Onder, C. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine. Energies 2016, 9, 58. https://doi.org/10.3390/en9010058
Zurbriggen F, Hutter R, Onder C. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine. Energies. 2016; 9(1):58. https://doi.org/10.3390/en9010058
Chicago/Turabian StyleZurbriggen, Florian, Richard Hutter, and Christopher Onder. 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine" Energies 9, no. 1: 58. https://doi.org/10.3390/en9010058
APA StyleZurbriggen, F., Hutter, R., & Onder, C. (2016). Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine. Energies, 9(1), 58. https://doi.org/10.3390/en9010058